DOES ENERGY AND IMPULSE ARE INTER CONVERTABLE

Manjunath R

manjunath5496@gmail.com

Abstract: Consider a photon of relativistic mass 'm' moving with speed 'c' is associated with the wavelength ' λ ' is given by the relation $\lambda = h/mc$, Where h = planck's constant (6.625*10^-34 JS). According to wave theory, speed of the photon wave is given by $\mathbf{c} = \lambda / \mathbf{T}$, where $\mathbf{T} =$ time period. By substitution of value of 'c' in the equation $\lambda = h/mc$, we get the expression $\mathbf{m} \lambda^2 = \mathbf{hT}$. According to wave theory, as frequency of photon wave is given by $\mathbf{f} = \mathbf{1}/\mathbf{T}$. [Academia Arena, 2010;2(5):15-18] (ISSN 1553-992X).

Keywords: photon; relativistic mass; wavelength; wave theory

Consider a photon of relativistic mass 'm' moving with speed 'c' is associated with the wavelength ' λ ' is given by the relation $\lambda = h/mc$, *Where* h = planck's constant (6.625*10^-34 JS).

According to wave theory, speed of the photon wave is given by $c = \lambda / T$, where T = time period.

By substitution of value of 'c' in the equation $\lambda = h/mc$, we get the expression $m \lambda^2 = hT$.

According to wave theory, as frequency of photon wave is given by f=1/T.

Then the equation $m \lambda^{2} = hT$ becomes $f=h/m\lambda^{2}$

De Broglie wavelength associated with the photon is given by $\lambda = h/p$,

thus the equation $f=h/m\lambda^2$ becomes $f=p/m\lambda$.

Angular frequency associated with the photon is given by $\omega = 2 \pi f$.

By putting the value of $\mathbf{f}=\mathbf{p}/\mathbf{m}\lambda$. in the above equation we get $\omega = 2 \pi \mathbf{p}/\mathbf{m}\lambda$.

The above equation $\omega = 2 \pi p/m\lambda$. can be applied to both photons and material particles like electron in motion. Debroglie wavelength associated with the electron is given by $\lambda = h/mv$

Where v=velocity of electron in motion

Then the equation $\omega = 2 \pi p/m\lambda$ becomes $\omega = 2 \pi pmv/mh$ i.e $\omega = 2 \pi pv/h$.

Part : 2

Consider a electron of mass " \mathbf{m}_{e} " at rest, total energy associated with the electron is given by " $\mathbf{m}_{e} \mathbf{c}^{2}$ ". Suppose radiation of energy **hf** is incident on this electron at rest. Part of energy **hf**" is absorbed by electron and part of

energy **hf**' is scattered by electron. Absorbed energy **hf**'' is converted to motion of electron, hence electron travels a distance '**x**' in time '**t**'. let θ is the scattering angle.

Figure :1 -schematic diagram of scattering of energy of photon by electron

x= Linear displacement of electron

hf = Energy of incident radiation

hf' = Energy of scattered radiation

 θ = scattering angle

Consider a parallelogram ABCD constructed as shown in the figure 1.

Let AB=CD=x, AD=BC=hf, AC=hf'(opposite sides in parallelogram are equal)

Law of cosine is given by $a^2=b^2+c^2-2bc \cos \theta$. Let a = x, b=hf, c=hf', $\cos A = \cos \theta$.

By applying the <u>law of cosine</u> to the triangle ADC, we get

 $X^2=(hf)^2+(hf')^2-2(hf)(hf')\cos\theta = 1$

By law of conservation of momentum of photon.

We get $\overrightarrow{p} = \overrightarrow{p} + \overrightarrow{p}$ where $\overrightarrow{p}, \overrightarrow{p}, \overrightarrow{p}$ be the momentum of incident, absorbed and scattered photon respectively.

Let us assume absorbed momentum of photon = momentem of electron

i.e.
$$\overrightarrow{p} = \overrightarrow{p}$$

Thus $\overrightarrow{p} = \overrightarrow{p} + \overrightarrow{p}$ where \overrightarrow{p} = momentum of electron y'

 $\overrightarrow{p} = \overrightarrow{p} - \overrightarrow{p}$ Squaring on the both sides we get

P^2=
$$\begin{pmatrix} \overrightarrow{p} - \overrightarrow{p} \\ y & y' \end{pmatrix}$$
^2, as (a-b)^2=a^2+b^2-2ab

Thus the above equation becomes $\mathbf{p} \, ^2 = \mathbf{p}_y \, ^2 + \mathbf{p}_y \, ^2 - 2 \, | \stackrel{\rightarrow}{p}_y \, \cdot \, \stackrel{\rightarrow}{p}_y \, '|$

According to dot product rule $| \vec{a} \bullet \vec{b} | = |\mathbf{a}| |\mathbf{b}| \cos \theta$

Then we get $p^2 = p_y^2 + p_{y'}^2 + 2 |p_y| |p_{y'}| \cos \theta$

Let us multiply the above equation by c ^ 2we get

Where $c = speed of light in vaccum (3* 10 ^ 8 m/s)$

$$P^{2} c^{2} = p_{y} c^{2} + p_{y} c^{2} - 2 |p_{y}| |p_{y}| c^{2} \cos \theta$$

As we know frequency of photon is directly proportional to it's momentum

i.e hf = pc thus the below equation is obtained

$$p^{2} c^{2} = (hf)^{2} + (hf')^{2} - 2(hf)(hf')\cos\theta = 2$$

By comparison of 1 and 2 we get $\mathbf{x} \wedge 2 = \mathbf{p} \wedge 2 \mathbf{c} \wedge 2$

i.e $\mathbf{x} = \mathbf{pc}$ (position of electron is defined as the function of it's momentum)

As told earlier position of electron is defined as a function of it's momentum i.e $\mathbf{x} = \mathbf{pc}$

Small change in momentum of electron causes small change in it's position i.e. dx = dpc hence,

```
dp = dx/c
```

Newton second law of motion is mathematically represented by equation F=dp/dt

Where \mathbf{F} = force exerted by photon

dp = Small change in momentum of electron with respect to time

As dp = dx/c then the above equation becomes F = dx/dtc.

as velocity of electron is defined as $\mathbf{v} = \mathbf{dx}/\mathbf{dt}$.

Then $\mathbf{F} = \mathbf{v}/\mathbf{c}$ is obtained

Force exerted by photon is defined as function of velocity of electron

As impulse exerted by photon is mathematically given by I = F dt.

then the equation $\mathbf{F} = \mathbf{dx}/\mathbf{dtc}$ becomes $\mathbf{Fdt} = \mathbf{dx}/\mathbf{c}$

i.e I =dx/c

Impulse exerted by photon is defined as function of change in position of electron At point A and B mass of electron is mei.e total energy assosiated with electron is mec^2. (as electron is at rest at point Aand B)

But in between point A and B mass of electron is mc² (since electron is in motion in between point A and B) Hence total energy of electron in motion is mathematically given by $E = mec^2 + hf'$ (As absorbed energy adds up to rest mass energy) where E= total energy of electron in motion hf'=absorbed energy of photon mec^2=rest mass energy of electron As absorbed momentum of photon equals the momentum of electron i.e $\mathbf{p}_{y''} = \mathbf{p}$ As **x=pc** (position of electron is defined as the function of it's momentum) then $x = p_y'c$ p_y c=hf' then x=hf' then the equation E= mec^2+hf' becomes equation E= mec^2+x=3 According to Einstein equation $E = m_e c^2 + E_k = 4$ By camparison of 3 and 4 we get $\mathbf{E}_{k} = \mathbf{x}$ i.e kinetic energy of electron = position of electron Small change in kinetic energy of electron causes small change in it's position i.e $\mathbf{d} \mathbf{E}_k = \mathbf{d} \mathbf{x}$ i.e $\mathbf{I} = \mathbf{d} \mathbf{x}/\mathbf{c}$ i.e $I = d E_k/c$ i.e $d E_k = Ic$ According to workenergy theorm Work done on particle equals change in kinetic energy of particle i.e $W = d E_k$ i.e W = IcWork done on particle involves storage of energy in particle i.e $W=E_a$ where $E_a=$ Energystored in particle. $E_a = Ic$, energy stored in particle is defined as a function of impulse applied

Thus $\mathbf{E}_{\mathbf{a}} \boldsymbol{a} \mathbf{I}$ (as c is constant) i.e impulse and energy are interconvertable.

2) <u>Proof for Einstein predicted formula</u> E=tc

As $\mathbf{x} = \mathbf{pc}$ (position of electron is defined as the function of it's momentum)

As momentum of electron can be given by p=mv then the equation x = pc becomes x=mvc i.e x/v=mcAccording to newton v=x/t i.e equation x/v=mc becomes t=mcAccording to Einstein $E=mc^2$ hence E=mcc becomes E=tc

1/20/2010