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Abstract: Due to the unknown nature of nuclear forces, using nuclear models for different purposes of nuclear 
usage, as explanation of the interactions between nuclear particles are remarkable. In this study, by introducing a 
density and nucleus parameterization; we modify the Fermi gas model, and calculate nuclear quantities based on the 
modified model. For the first time, according to properties of the nuclear density, we consider it as an error function, 
then, parameterize nuclear density based on the known properties of nucleus. According to the modified Fermi gas 
model, we calculate quantities of density, radius and find the relationship between them. Then, we calculate the 
surface thickness of the nucleus and the nucleus radius, average radius of the nucleus, volumetric energy, surface 
energy and the Coulomb energy with the Pauli correction effect, asymmetric energy of nucleons, the nuclear 
compressibility; binding energy is obtained using outcomes too. At last Coefficients of Binding Energy is compared 
with previous studies; the result of formulation and error in the Tablecurve software shows that error calculated by 
the program was too little so we concluded that the formula presented to calculate the nuclear energy is appropriate 
to interpret nuclear properties. 
[Reshadatiyan M, Tahmasebi Birgani M J, Ghasemi F, Kazeminejad I. Modified Fermi-Gas Model to Calculate 
the Nuclear Quantities. Academ Arena 2013;5(10):1-7] (ISSN 1553-992X). http://www.sciencepub.net/academia. 
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1. Introduction 
Nuclei have a certain time–independent 

properties such mass, size, charge, intrinsic angular 
momentum and certain time–dependent properties 
such as radioactivity and artificial transmutations 
(nuclear reactions). The mass of a nucleus is related 
to the mass summation of the protons and neutrons 
which constitute it and nuclear binding energy is the 
energy required to split a nucleus of an atom into its 
component parts (Serway and Vuille, 2010);  the 
binding energy is also reduced by Coulomb repulsion 
forces between the protons (Jevremovic, 2009). The 
electron scattering experiment could reliably use for 
measuring nuclear radius (Povh, 2008). The nucleon 
density distribution has been measured in scattering 
experiments too (Sitenko and Tartakovskii, 1977); 
heavy nuclei have a uniform central density, 
surrounded by a diffuse surface region. The shape of 
the nucleon density distributions (Woods-Saxon 
distributions) is described by a Fermi function. A 
Woods-Saxon distribution is an accurate one as its 
nuclear potential does not have a sharp edge as 
indicated by Moharram et al. (1980), and Srokowski 
et al.  (1995).  

The nuclear force (nucleon–nucleon 
interaction) is very powerful, but extremely short-
range; the range of the nuclear force is < 2 fm 
(Bolonkin, 2009). There are many different nucleus 

models that scientists have used to explain the nature 
of the nuclear force in order to employ of nuclear 
energy since 1934 (Sutton, 1992); to this day 
proposed models can not completely alone explain all 
nuclear properties. These models include some that 
are based on the three phases of ordinary matter: 
solid, liquid, and gaseous, and some that are based on 
atomic molecules. One of an independent particle 
models is Fermi gas model (semi-classical); due to 
the lack of experimental data, this model is still not 
completed. However it is a statistical model of the 
nucleus; this model pictures the nucleus as a 
degenerate gas of protons and neutrons as nucleons 
move freely inside the nucleus (Sharma, 2008). 

In the present study we modified Fermi gas 
model considering effect of the nuclear surface and 
calculate the surface thickness of the nucleus and the 
nucleus radius, average radius of the nucleus, kinetic 
energy and the Coulomb energy with the Pauli 
correction effect, asymmetric energy of nucleons, the 
nuclear compressibility and binding energy based on 
the modified model as well as comparing the findings 
with results of other studies.  
 
2. Material and Methods  

Due to the different approximations for the 
nuclear density, Woods-Saxon distribution 
considered more accurate than other approximations. 
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This function should be expressed by series in order 
to use in calculations; consequently, it would be more 
complicated. So firstly we introduce a simple 
function which is similar to this distribution curve 
and represents nuclear density; finally nuclear 
quantities will be calculated using this novel 
function. The error function is suggested for nuclear 
density and is defined as follows (Weber et al., 
2003): 
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Figure 1 presents error function, this graph 
plots in Matlab Software.  For similarity between 
Woods-Saxon distribution and 1-erf(x) curves, we 
ourselves propose density function as the follows: 
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Figure 1.  )(1 xerf  curve is similar to 

Woods-Saxon distribution  
 

2.1 The average radius of the nucleus 
Radius of the nucleus can be calculated from 

the knowledge of mass number (Hobbie et al., 2007) 
and accordingly density, so in the following equation 
ρ�	is the density where R� is the average radius of the 
nucleus and we have: 
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After substituting Eq. (2) in Eq. (3) and 
solving integrals by the Derive 6 software, R� 3 is 
obtained as: 

3
)(66.1

3
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2.2 ��	in density function 

Since in the Fermi gas model, we 
 

consider nuclear shape as spherical (Wong, 
2004); in calculating ρ�	 the volume of a sphere 
is used: 

 dVrA 



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After substituting Eq. (2) in Eq. (5) 

and solving integrals, 	ρ�	 will be 3 .  
If we consider Hauser-Feshbach 

nuclear density which is 
381072/1    we have: 
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 2.3 The average kinetic energy of a nucleon 
Number of counted balances in interval k to 

k+dk at momentum space (k) is obtained by: 
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To modify this model, counting balances on 

three surfaces 0,0,0  zkykxk  (Surface effect) 
and counting balances on axis (linear effect), should 
be moved out of the volume. 

Surface linear effect is defined: 










a

dk

2

1
 

(8) 

By substitution volume and surface area 
formula of sphere, the correct counted balances in 
momentum space are obtained:  
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According to the Pauli exclusion principle 
which illustrate state of electrons in the same orbit, 
(Godse  and Bakshi, 2009) we have: 
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By substitution Eq. (9) in Eq. (10) and 
solving the integral we obtain: 
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For Average kinetic energy of the nucleons 
we can use this formula: 
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Eq. (13) is fermi energy of the last balance. 

After solving the integral respect to FK  we have: 
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Based on the results of Feshbach 

calculations, Experimental value for 
1

4.1


 fmFK  

and 
FE  will be MeV40 where M is the proton mass.  

Kinetic energy in Eq. (14) can be obtained 
as a function of A in Eq. (11). For this we use change 
of variable 

FKRX   and approximation method to 

solve the problem which is  55.0 yX  and the other 

one   4.226.32  Ayy . This equation can be solved 
using Cardan method too (Nickalls, 2008). For nuclei 
with different Nucleons numbers, we put y and X 
values in Table 1. 
 
 

Table 1. Values of the third-order in Eq. (11) 

X* Y* A 

4.75 4.2 27 

5.85 5.3 64 

7.05 6.5 125 

8.2 7.7 216 

9.5 7.8 342 
 

Values calculated in solving the third order 
equation (Eq. (11)) for different numbers of nucleons 
were inserted in the software Tablecurve shows in 
Figure 2 and amid numerous formulas, a formula that 
had the lowest standard error was determined that is:  

4.0
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We know (Bartke, 2009): 

3
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And in Fermi gas model 14.1  fmK F
 so 

by substituting in Eq. (15), 0R  can be calculated as a 

function of A: 
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  Furthermore, by inserting 
FKR  and 0R

values in Eq. (14) we have: 
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Figure  2. Graph of RKF

 as a function of A 

 
2.4 The Coulomb energy 

The shape of the nucleus is determined 
mainly by three factors, the volume energy, the 
surface energy, and the coulomb energy (Aruldhas 
and Rajagopal, 2005); Nuclear Coulomb energy 
according to the Pauli Exclusion Principle is obtained 
by: 
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After putting the proposed density function 

in the formula, the integral equation is split into two 
separate integrals; the first integral gives classical 
Coulomb energy of a sphere; the second integral 
gives corrections of the Pauli principle on the nuclear 
Coulomb energy. 

 

The answer to the first integral for 1Z  is: 
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And finally total coulomb energy is:  
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By substitution Eq. (22) in to Eq. (23) we 
can write: 
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2.5 The asymmetry energy 

Asymmetry energy (also called Pauli 
Energy) is an energy associated with the Pauli 
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Exclusion Principle. To calculate this energy it is 
sufficient to calculate the energy difference between 
two symmetry and asymmetry nucleus. So by 

assuming MeVEF 40  In the following expression 
���

�
 is called neutron excess ratio which decrease 

nuclear stability (Singh, 2008).  
 

We have: 
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2.6 The binding energy  

Nuclear energy is the summation of kinetic 
energy and the binding energy of the nucleus that is

EBTU . ; as we know MeVU 40  

Consequently, the whole binding energy is 
obtained using U and T which was calculated lately 
(Eq. (18)), and by subtracting relations of the 
Coulomb energy, asymmetry energy and the coupling 
energy we can write the following equation,  
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2.7 The Nuclear compressibility 

The curvature of the shape of the volume 
energy as a function of the density in the vicinity of 
the equilibrium value defines the nuclear 
compressibility K (Hornyak, 1975):   

: 
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In Eq. (29) by taking two derivatives with 
respect to

0R , considering MeVEF 40  and 

substitution in Eq. (27) we obtain:  
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While Berg and Lawrence's achieved 

relation for  
ComK  

is 3

2

210125 AA    (Berg and Wilets, 

1956). 
Finally considering Eq. (27), the 

compressibility of nuclear is: 
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2.8 The nuclear electric quadrupole moment 

The nuclear electric quadrupole moment is a 
parameter which describes the effective shape of the 
ellipsoid of nuclear charge distribution (Cottingham 
and Greenwood, 2001).  

The nuclear electric quadrupole moment is 
defined as: 

  dV
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Note that the nucleus assumed spherical, 
now we write spherical polar coordinates for Eq. 
(32):      
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As it is obvious the calculated value is equal 
to zero, Of course the above integral was expected, 
because the nuclear electric quadrupole moment 
depends on the nucleus shape and it’s symmetric and 
asymmetric with respect to axes and in this spherical 
shell nuclear model the nuclear electric quadrupole 
moment is equal to zero due to symmetry of the 
sphere with respect to axes (McParland, 2010).  
 
2.9 The Thickness of the nuclear surface 

The surface thickness is defined to be the 
change in radius required to reduce �(r)/�� from 0.9 
to 0.1 (�� is the density in the center of the nucleus). 

Using Eq. (2) the following result are 
obtained by Derive 6 software; if we consider: 
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09/0)(  x  So we have 088.0x , and for 

01/0)(  x  we have 163.1x                                                                                               

On the other hand, as regards � = 	�� and 

�� =
�

�
	so the surface thickness will be: 
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As a result, the thickness of the nuclear 
surface is obtained as a function of A using Eq. (17):  

4.0
53.059.1 At   (35) 

In Table 2 we calculated the thickness of the 
surface for a number of heavy and semi-heavy nuclei 
with respect to the relation obtained for surface 
thickness of the nucleus. 

 
Table 2. Surface thickness value for heavy and semi-

heavy nuclear obtained by Eq. (35) 
t*(fm) Nucleus 

4.24 Fe
56
26  

4.57 As
75
33  

4.76 Sr
88
38   

5.3 Xe
130
54  

6.05 Pb
206
82  

6.32 U
238
92  

 
3. Results  

The calculations result of the nuclear 
quantities was showed in this project. Among the 
proposed models, the Fermi gas model as a selected 
model in this project is a proper model for calculating 
the properties and factors of nucleus. 

The advantage of this model is that  by 
investigating variety of approximation for nuclear 
density, we could introduce a function (Error 
function) for the nucleus density, and with employing 
it; we could find, firstly, a relation for the average 
radius �� with respect to α, which is a coefficient of 
the nucleus radii (X=αr)  also, we calculated ���. 

We could find 	��  in the proposed density 
function (nuclear density, when the nucleus radius 	is 
equal to	��). We obtain the average kinetic energy of 
the nucleons with respect to A; after that we gain 
binding energy by reducing surface effects, 
asymmetry, Coulomb and coupling of nucleons. 

In binding energy, the term with coefficients 
A is the volume energy term; the term with a 

coefficient �
�

�  is the surface energy term; and the 

term with a coefficient �
�

� is the radial. The next term 

is the Coulomb energy; then, asymmetry energy; and 
γ is the coupling energy. By different values  for   A, 
we collect values X, and Y in Table 1. And then, best 
curve fit to the data which is shown in Figure 2, is 
plotted using the Tablecurve software. 

 
 

4. Discussions  
Considering the calculated surface thickness 

values, it can be seen, this quantity can be increased 
by increasing the number of nucleons. Based on the 
binding energy significance in splitting a nucleus of 
an atom into its component parts; a comparison of 
experimental and theoretical of binding energy 
coefficients of this study with others has shown in 
Table 3. This table show, the volumetric energy 
coefficient values which have been calculated in this 
study is very close to  values obtained by others. 
Surface energy coefficient calculated in the present 
study is as a function of the nucleon number of the 
nucleus (A) while other studies have obtained a 
constant numerical value for this coefficient. With 
paying more attention in the binding energy formula, 
it can be seen that this relation has a term A-
dependent compared to the relations calculated by 
others and the result will be a modified Fermi gas 
model for nucleus. A comparison between the 
nuclear compressibility calculated in this study and 
the results of others indicate that there has not been 
found an experimental procedure for the 
determination of this quantity until now; however 
Berg and Wilets (1956) obtained the relation 

3

2

210125 AAKcom  , Brueckner and Gammel (1958) 
achieved k=172,  Molitoris and Stöcker (1985) 
attained k=380MeV, Danielewicz (1994) acquired 
k=215, and we obtained the value of k=148 for 
A=100 based on Eq. (30). Results of formulation and 
partial error in the Tablecurve software show minor 
error and indicates the formula presented to calculate 
the nuclear energy is appropriate; so that By finding a 
relation for the nuclear fixed radius amount �� with 
respect to atomic number, we can calculate the mean 
radius of the nuclear, the volumetric energy, surface 
energy, and coulomb energy along with the Pauli 
effect, asymmetry energy of nucleons, 
compressibility of nuclear and Fermi energy. The 
advantage of this method is that it can calculate the 
entropy and the thermodynamics of nuclear will be 
achieved consequently; we will consider calculation 
this for our future work. In future relativistic case can 
be discussed and evaluated; nucleus can consider in 
adiabatic state and thermodynamic calculations can 
be carried out on the basis of this assumption; also as 
we assumed two-particle interacts in here (proton - 
proton or protons - neutrons or neutrons - neutrons), 
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in future three-particle interacts (protons - neutrons - 
neutrons) also can be studied in order to find 
modified quantities. Regarding the fact that fossil 

fuels are coming to an end soon, the use of nuclear 
energy for peaceful purposes is getting a big deal of 
attention (Esrafilian and Maghamipour, 2012).  

 
Table 3. Coefficients of binding energy formula (semi-empirical formula of mass) based on the various theories and 
experiment. 

 

 

  MeVa asym
 

Asymmetry energy 
coefficient 

 MeVaC
 

Coulomb energy 
coefficient 

 MeVaS
 

Surface 
energy 

coefficient 

 MeVaV
 

Coefficient of 
volumetric 

energy 

Ref.  

   23.3 0.698 17.23 -15.58  (Green and Engler, 
1957)   

   0.727 20 19.23 -15.642 (Brueckner et al., 
1961) 

   28.1 7.17 18.56 -15.68 (Myers and 
Swiatecki, 1966) 

   1.79 0.717 18.56 -15.68 (Wang and Hwang, 
1972) 

   1.22 33.16 17.07 -15.25 (Seeger and 
Howard, 1976)  

   1.17 30,3 19 -14.9 (Sapershtein and 
Khodel, 1977) 

   -19.3 -0.585 -13 14 (Fewell, 1995) 
   -23.2 -0.72 -18.3 15.8 (Yang and  

Hamilton, 2010) 
   -1.32 -0.83 -6.8f(A) 16 Current study 
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