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Abstract: In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two
biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly

n n___n
marvelous proof, which this margin is too small to contain.” This means: X'+yt=2N(n>2) has no integer
solutions, all different from 0(i.e., it has only the trivial solution, where one of the integers is equal to 0). It has been

called Fermat’s last theorem (FLT). It suffices to prove FLT for exponent 4. and every prime exponent P Fermat
proved FLT for exponent 4. Euler proved FLT for exponent 3. In this paper using automorphic functions we prove

FLT for exponents 3P and P, where P isan odd prime. The proof of FLT must be direct. But indirect proof
of FLT is disbelieving.
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In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields

exp[ri tiJij = Zn: S.J
i=1

i=1

QD)
where J denotes a 7 th root of unity, J" =1 , " is an odd number, f are the real numbers.
y

7 is called the automorphic functions(complex hyperbolic functions) of order 7 with n—1 variables

[1-7].
n—1
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where i=1,2,...,n;
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(2) may be written in the matrix form
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n n n
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) 1 cos (n=Dz sin (n=Dz
L n n
where (I’l - 1) /2 1S an even number.

From (4) we have its inverse transformation
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From (5) we have

n
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In (3) and (6) l and S; have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT.
Using (4) and (5) in 1991 Jiang invented that every factor of exponent /7 has the Fermat equation and proved FLT

[1-7] Substituting (4)

into (5) we prove (5).
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where J . '
From (3) we have
n—1
2
exp(4+ 223/‘) =1
" ' (8)
From (6) we have
. S S, - S S ), o S),.

& s s slls, s, - (S
exp(A+2sz)= 2 ! 3|72 (S:) (8,1
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From (8) and (9) we have the circulant determinant

, 9
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» S8, S,
< S, S S
exp(A+2ZB/.)= S 3l=1
/=1 e e oo :
Sn Sn—l U Sl ( 10)
f 5 #0 , where i=12,n , then (10) has infinitely many rational solutions.
Assume Si#0 , 5, #0 , 5 =0 where © 3,4,+,n.5,=0 are 11— 2 indeterminate equations with

n—=1 Variables. From (6) we have

& =82 +82+288,(~1) cosLZ
n

4 _
e’ =8+ Sz’ an
From (10) and (11) we have the Fermat equation
n-1 n—1
< [ ‘ Jjr
exp(A+2YB,) = (S, +5,) TI(S] +57 +28,S,(~1) cos L) = 5] +5 =1
= = n (12)

Example[1]. Let /7= 15 From (3) we have
A=t +t,)+ (@, +t)+ (G +1,)+ (@, +1,)+(E +1,)+(E +1,)+ (2, + 1)

2z R4 4r
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T 14~ 21z 287
=—(t, +tl4)cosF+(z‘ , +1,)c08—— T —(t, +t,)cos—— T +(t, +tll)cosF
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(s +19) COS =+ (f +1y) c05 == — (1 + ) cos—

>

;
A+2) B, =0,  A+2B;+2B =5(t; +1,)

J= . (13)
Form (12) we have the Fermat equation

g
exp(A+2D> B)=S8"+5"=(5) +(85;) =1

/=1 . (14)
From (13) we have
exp(A+2B, +2B,) =[exp(t; +1,,)T ' (15)
From (11) we have
exp(A+2B, +2B,)=S; +S; 16)
From (15) and (16) we have the Fermat equation
exp(A+2B, +2B,) =] +5; =[exp(t; +1,)]" a7

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational
solutions for exponent 5[1].
Theorem 1. [1-7]. Let 7= 3P,Where P>3 is odd prime. From (12) we have the Fermat’s equation
3p-1

2
exp(A+2) B)=8"+8"=(8) +(8;) =1
= ) (18)

From (3) we have
P-1

2
exp(4 + 22 B}j) =[exp(?, + tzp)]P
J= : (19)

From (11) we have
P-1

2
exp(4 +2ZB3J) =S +S;
j=l . (20)

From (19) and (20) we have the Fermat equation
P-1

2
P P P
exp(A+2) B,) =S +S8;, =[exp(t, +1,,)]
= (21)
Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational

solutions for P>3 [1, 3-7].
Theorem 2. In 1847 Kummer write the Fermat’s equation

x'+yl=2" (22)
in the form
(x+)x+m)x+r7 ) (x+r7y)=2" (23)
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2 .. 2x
¥ =CcoS— +1isin—
P P

where P s odd prime,

Kummer assume the divisor of each factor is a £ th power. Kummer proved FLT for prime exponent p<100

[8].

We consider the Fermat’s equation
3P 3P 3p
Xty =z

(24)
we rewrite (24)
P\3 P\3 P\3
(Y +O1) =) o5)
From (24) we have
(xP + yP)(xP + ”yP)(xP + rZyP) — Z}P (26)
T .. 27
r=CcoS—+i1sm—
where 3 3
We assume the divisor of each factor isa £ th power.
X
s=2 5=
Let z, Z . From (20) and (26) we have the Fermat’s equation
P P j2
X+ y = [Z X eXp(l‘P + tZP)] (27)

Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer

solutions for prime exponent P

Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24)

() + () =)

(28)

Euler proved that (25) has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no integer

solutions for all prime exponent P [1-7].
We consider Fermat equation

el +y4P _ 4P
We rewrite (29)

) (O ="
D"+ =Y

Fermat proved that (30) has no integer solutions
for exponent 4 [8]. Therefore we prove that (31) has no

integer solutions for all prime exponent P
[2,5,7].This is the proof that Fermat thought to have
had.

Remark. It suffices to prove FLT for exponent 4. Let
n=4p , where P is an odd prime. We have the
Fermat’s equation for exponent 4P and the Fermat’s

equation for exponent P [2,5,7]. This is the proof that
Fermat thought to have had. In complex hyperbolic

functions let exponent 7 be n=I11P n=2I1

and "= 4HP. Every factor of exponent /2 has the
Fermat’s equation [1-7]. In complex trigonometric

functions let exponent 7 be n=I11P n=2I1

&3

(29)

(30)
(31)

and "= 411P . Every factor of exponent 7 has
Fermat’s equation [1-7].Using modular elliptic curves
Wiles and Taylor prove FLT[9,10].This is not the proof
that Fermat thought to have had. The classical theory of
automorphic functions, created by Klein and Poincare,
was concerned with the study of analytic functions in
the unit circle that are invariant under a discrete group
of transformations. Automorphic functions are
generalization of the trigonometric ,hyperbolic,elliptic,
and certain other functions of elementary analysis. The
complex trigonometric functions and complex
hyperbolic functions have a wide application in
mathematics and physics.
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