G.R.Irlapati'S Geoscope

Gangadhara Rao Irlapati

H. No.5-30-4/1, Saibabanagar, Jeedimetla,, Hyderabad, India-500055 Email: <u>scientistgangadhar@gmail.com</u>

Abstract: I have conducted many researches on the earthquakes during the year of 1980-87 and invented the Geoscope which can help to forewarn the earthquakes in advance Sri. AJVB Maheswara Rao Member of Parliament (Loksabha) was recommended the Geoscope to Sri K. R. Narayanan, Minister of science & Technology Department for further research and development in the services of the country. In 1989, the Honble High Court of Andhra Pradesh was also issued orders to the government of India, Ministry of science & Technology, council of scientific and Industrial Research to provide research facilities to carryout the experiments in National Geophysical Research Institute, Hyderabad for Implementation in the service of the country.

[Gangadhara Rao Irlapati. G.R. Irlapati'S Geoscope. Academ Arena 2017;9(12s): 355-370]. (ISSN 1553-992X). http://www.sciencepub.net/academia. 12. doi:10.7537/marsaaj0912s1712.

Keywords: Earth Quaker, Local, Regional, Central Geoscope Centers: Simple, Homemade, Micro Geoscope Centers: Seismic luminescence studies, Electrogeopluse study etc.

Importance:

By setting up the National Geoscope Project and maintain, the country can be predicted the impending earthquakes, volcanic hazards(and storm surges, tsunamis etc consequence secondary hazards due to the earthquakes occur in the womb that means underground of the sea or ocean if the country have the chances of occurring of these disasters) in advance.

By setting up the National Geoscope Project and maintain, the country can be predicted the earth's underground resources like metallic resources such as iron, gold, silver, tin, copper, nickel, aluminum, chromium etc mine sites and non-metallic resources like sand gravel, gypsum, halite, uranium, dimension stones, etc. can be found by inserting many kinds of super high remote sensing technology in the area of sensor physics, signal processing used specially image processing, electromagnetic detection technology and geophysical deep underground detectors and mineral exploration equipments, natural gas sensors etc in the undergroung of the through the Geoscope.

Setting up the National Geoscope Project and maintain will also be useful in emerging industries such as geothermal and geo-sequestration etc.

<u>1. Introduction:</u>

Geoscope is very easy and simple invention which can help to forewarn the earthquakes in advance and also useful to study the earth's underground. Geoscope means- a mechanical architecture established in between the underground and the surface observatory with the help of bore-well proposed for conducting geological studies to know the earthquakes, ores and water currents etc.

Country-Wise National Geoscope Projects:

I have also proposed about 200 country-wise National Geoscope Projects for all the world countries.

Afghanistan - National Geoscope Project
Albania - National Geoscope Project
Algeria - National Geoscope Project
American Samoa - National Geoscope Project
Andorra - National Geoscope Project
Angola - National Geoscope Project
Anguilla - National Geoscope Project
Argentina - National Geoscope Project
Antigua and Barbuda - National Geoscope Project
Argentina - National Geoscope Project
Armenia - National Geoscope Project
Aruba - National Geoscope Project
Australia - National Geoscope Project
Austria - National Geoscope Project
Azerbaijan - National Geoscope Project
Bahamas - National Geoscope Project
Bahrain - National Geoscope Project
Bangladesh - National Geoscope Project
Barbados - National Geoscope Project
Belarus - National Geoscope Project
Belgium - National Geoscope Project
Belize - National Geoscope Project
Benin - National Geoscope Project
Bermuda - National Geoscope Project
Bhutan - National Geoscope Project
Bolivia - National Geoscope Project
Bosnia and Herzegovina
Botswana - National Geoscope Project
Brazil - National Geoscope Project
Brunei and Darussalam - National Geoscope Project
Bulgaria - National Geoscope Project

Burkina Faso - National Geoscope Project
Burundi - National Geoscope Project
Cambodia - National Geoscope Project
Cameroon - National Geoscope Project
Canada - National Geoscope Project
Cape Verde - National Geoscope Project
Cayman Islands - National Geoscope Project
Central African Republic - National Geoscope Project
Chad - National Geoscope Project
Chile - National Geoscope Project
China - National Geoscope Project
Christmas Islands - National Geoscope Project
Cocas Keeling Islands - National Geoscope Project
Colombia - National Geoscope Project
Comoros - National Geoscope Project
Congo (Kinshasa) - National Geoscope Project
Republic of Congo (Brazzaville) - National Geoscope
Project
Cook Islands - National Geoscope Project
Costa Rica - National Geoscope Project
Ivory Coast - National Geoscope Project
Croatia - National Geoscope Project
Cuba Cyprus - National Geoscope Project
Czech Republic - National Geoscope Project
Denmark - National Geoscope Project
Djibouti - National Geoscope Project
Dominica - National Geoscope Project
Dominican Republic - National Geoscope Project
East Timor (Timor-Leste) - National Geoscope Project
Ecuador - National Geoscope Project
Egypt - National Geoscope Project
El Salvador - National Geoscope Project
Equatorial Guinea - National Geoscope Project
Eritrea - National Geoscope Project
Estonia - National Geoscope Project
Ethiopia - National Geoscope Project
Falkland Islands - National Geoscope Project
1 5
Faroe Islands - National Geoscope Project
Fiji - National Geoscope Project
Finland - National Geoscope Project
France - National Geoscope Project
French Guiana - National Geoscope Project
French Polynesia - National Geoscope Project
French Southern Territories - National Geoscope
Project
Gabon - National Geoscope Project
Gambia - National Geoscope Project
Georgia - National Geoscope Project
Germany - National Geoscope Project
Ghana - National Geoscope Project
Gibraltar - National Geoscope Project
Great Britain - National Geoscope Project
Greece - National Geoscope Project
Greenland - National Geoscope Project

Grenada - National Geoscope Project
Guadeloupe - National Geoscope Project
Guam - National Geoscope Project
Guatemala - National Geoscope Project
Guinea - National Geoscope Project
Guinea-Bissau - National Geoscope Project
Guyana - National Geoscope Project
Haiti - National Geoscope Project
Holy See - National Geoscope Project
Honduras - National Geoscope Project
Honduras - National Geoscope Project
Hong Kong - National Geoscope Project
Hungary - National Geoscope Project
Iceland - National Geoscope Project
India - National Geoscope Project
Indonesia - National Geoscope Project
Iran - National Geoscope Project
Iraq - National Geoscope Project
Ireland - National Geoscope Project
Israel - National Geoscope Project
Italy - National Geoscope Project
Jamaica - National Geoscope Project
Japan - National Geoscope Project
Jordan - National Geoscope Project
Kazakhstan - National Geoscope Project
Kenya - National Geoscope Project
Kiribati - National Geoscope Project
Korea North - National Geoscope Project
Korea South - National Geoscope Project
Kosovo - National Geoscope Project
Kuwait - National Geoscope Project
Kyrgyzstan - National Geoscope Project
Laos (People Democratic) - National Geoscope
Project
Latvia - National Geoscope Project
Lebanon - National Geoscope Project
Lesotho - National Geoscope Project
Liberia - National Geoscope Project
Libya - National Geoscope Project
Liechtenstein - National Geoscope Project
Lithuania - National Geoscope Project
Luxembourg - National Geoscope Project
Macau - National Geoscope Project
Macedonia - National Geoscope Project
Madagascar - National Geoscope Project
Malawi - National Geoscope Project
Malaysia - National Geoscope Project
Maldives - National Geoscope Project
Mali - National Geoscope Project
Malta - National Geoscope Project
Marshall Islands - National Geoscope Project
Martinique - National Geoscope Project
Mauritania - National Geoscope Project
Mauritius - National Geoscope Project

Mayotte - National Geoscope Project
Mexico - National Geoscope Project
Micronesia - National Geoscope Project
Moldova - National Geoscope Project
Monaco - National Geoscope Project
Mongolia - National Geoscope Project
Montenegro - National Geoscope Project
Montserrat - National Geoscope Project
Morocco - National Geoscope Project
Mozambique - National Geoscope Project
Myanmar Burma - National Geoscope Project
Namibia - National Geoscope Project
Nauru - National Geoscope Project
Nepal - National Geoscope Project
Netherlands - National Geoscope Project
New Zealand - National Geoscope Project
Nicaragua - National Geoscope Project
Niger - National Geoscope Project
Nigeria - National Geoscope Project
Niue - National Geoscope Project
Northern Mariana Islands - National Geoscope Project
Norway - National Geoscope Project
Oman - National Geoscope Project
Pakistan - National Geoscope Project
Palau - National Geoscope Project
Palestiman Territories - National Geoscope Project
Panama - National Geoscope Project
Papua New Guinea - National Geoscope Project
Paraguay - National Geoscope Project
Peru - National Geoscope Project
Philippines - National Geoscope Project
Pitcairn Islands - National Geoscope Project
Poland - National Geoscope Project
Portugal - National Geoscope Project
Puerto Rice - National Geoscope Project
Qatar - National Geoscope Project
Reunion Islands - National Geoscope Project
Romania - National Geoscope Project
Russia Federation - National Geoscope Project
Rwanda - National Geoscope Project
Saint Kitts and Nevis - National Geoscope Project
Saint Lucia - National Geoscope Project
Samoa - National Geoscope Project
Saint Vincent and the Grenadines - National Geoscope
Project
San Marino - National Geoscope Project
Sao Tome and Principe - National Geoscope Project
Saudi Arabia - National Geoscope Project
Senegal - National Geoscope Project
Serbia - National Geoscope Project
Seychelles - National Geoscope Project
Sierra Leone - National Geoscope Project
Singapore - National Geoscope Project
Slovakia - National Geoscope Project

Slovenia - National Geoscope Project Solomon Islands - National Geoscope Project
Somalia - National Geoscope Project
South Africa - National Geoscope Project
South Sudan - National Geoscope Project
Spain- National Geoscope Project
Sri Lanka - National Geoscope Project
Sudan - National Geoscope Project
Suriname - National Geoscope Project
Swaziland - National Geoscope Project
Sweden - National Geoscope Project
Switzerland - National Geoscope Project
Syria - National Geoscope Project
Taiwan - National Geoscope Project
Tajikistan - National Geoscope Project
Tanzania - National Geoscope Project
Thailand - National Geoscope Project
Tibet - National Geoscope Project
Timor-Leste - National Geoscope Project
Togo - National Geoscope Project
Tokelau - National Geoscope Project
Tonga - National Geoscope Project
Trinidad and Tobago - National Geoscope Project
Tunisia - National Geoscope Project
Turkey - National Geoscope Project
Turkmenistan - National Geoscope Project
Turks and Caicos Islands - National Geoscope Project
Tuvalu - National Geoscope Project
Uganda - National Geoscope Project
Ukraine - National Geoscope Project
United Arab Emirates - National Geoscope Project
United Kingdom - National Geoscope Project
United States of America - National Geoscope Project
Uruguay - National Geoscope Project
Uzbekistan - National Geoscope Project
Vanuatu - National Geoscope Project
Vatican City - National Geoscope Project
Venezuela - National Geoscope Project
Vietnam - National Geoscope Project
Virgin Islands (British) - National Geoscope Project
Virgin Islands (US) - National Geoscope Project
Walls and Futuna Islands - National Geoscope Project
Western Sahara - National Geoscope Project
Yemen - National Geoscope Project
Zambia - National Geoscope Project
Zimbabwe - National Geoscope Project

2. Construction:

Geoscope means- a mechanical architecture established in between the underground and observatory with the help of bore-well proposed for conducting geological studies to know the earthquakes, ores and water currents etc. A borehole having suitable width and depth has to be dug. An observatory having research & analysis facilities has to be constructed on the borehole Apparatus & sensors to recognize the geo- physical and geo-chemical changes generated in the underground such as foreshocks, chemical changes, electrogeopulses, micro-vibrations, pressure, geomagnetic forces etc should be inserted into the underground and linked with the concerned analysis sections of the observatory that is above the ground to study the changes taking place in the underground.

That means-relative results of geological & geographical researches & developments of past, present and future should be interposed, coordinated and constantly developed. The apparatus related to the geology and geography such as Richter scale etc also should be set in the observatories of the Geoscope. we can make many more modern ideas modifications thus bringing many more improvements & developments in the Geoscope.

And we can build many more types of Geoscopes thus connecting many more levels for national wide network, more and required geoscope centers should be established in the earthquake zones where earthquakes occur frequently and there should be establish a central office to co-ordinate and codify the data of warnings about the onset of earthquake. The central office should analysis the data and estimate the time, epicenter, area etc details of the impending earthquake and send to the authorities and people to take precautions.

3. National Geoscope Project

Many extensive researches were conducted on the national geoscopic forewarning system to detect the geological changes in advance. In this system, there should be established three level centers i.e., Local Geoscope Centre, Regional Geoscope Centre and Central Geoscope Centre for maintaining the system in a coordinated manner.

3.1 Local Geoscope Centre:

One or more required number of Geoscopes should be established in the expected earthquake zones. The observation personnel in the respective Geoscopes should watch the onset of earthquakes day and night.

3.2. Regional Geoscope Centre:

There should be established a Regional Geoscopic Centre at every expected quake zone to coordinate and codify the information supplied by the local geoscopic centers of the zone.

3.3 Central Geoscope Centre:

There should be established a Central Geoscopic Centre to co-ordinate and codify the information supplied by the Regional Geoscopic Centers from all over country in a coordinated manner.

3.4 Performance:

Whenever a Local Geoscopic Centre sends warning about the onset of earthquakes, the observation personal should immediately send the information to its Regional Geoscopic Centre. The Regional Geoscopic Centre should analysis the information and send it to the Central Geoscopic Centre. The Central Geoscope Centre analyze the information supplied by the Local Geoscopic Centers, Regional Geoscopic Centers and estimates the epicenter, time, area to be affected urban places etc., details of the impending earthquake and send to the authorities, and media and warnings in advance to take precautions.

4. Types Of Geoscope Models

4.1 Simple Geoscope:

This is a simple construction involving no expenditure. A deep well having suitable width and depth has to be dug. Construct a room over the well. Wash the inner walls of the room with white Lime. Fix an ordinary electric bulb in the room.

4.2 Home Made Geoscope:

This construction involves no expenditure. Even students, children's and science enthusiasts can make the Home-Made Geoscope and detect the earth-quakes 24 to 28 hrs in advance. By making certain changes and alterations, the house having a well can be converted into a Geoscope i.e., wash the inner walls of the house with white Lime. Fix ordinary electric bulbs in the room.

4.3 Performance:

Observe the colour of the room lighting daily. When the bulb glows, the light in room generally appears white in color, but before occurrence of an earth-quake, the room lighting turns blue in colour. The onset of earth-quake can be guessed by this "Seismic luminescence Emission".

4.4 Principle:

Due to stress of continental plates and some other reasons on a place where there are favorable chances for earth-quake to occur, the pressure is induced in the underground. As a result, there is a steady rise in the pressure around the focus centre. Because of the large disparity in the magnitude of energies involved, gas anomalies such as (a) Helium emission (b) chemicoseismic anomalies of sulphur, calcium, nitrogen etc., chemical compounds (c) seismic atomic radiations of radioactive mineral compounds show up much earlier even at large distance from the epiccentre which enter the well through the underground springs. These gas anomalies occupy the room in this manner; emit radiation which gives blue colour (some times red) to the room.

4.5 Micro Geoscope:

Micro-Geoscope is an elaborate construction. For this model a deep bore-well having suitable width and depth has to be dug. An observatory having the most modern high-technological research facilities has to be constructed on that well. Most modern mechanical systems like electronic, physical and chemical sensors and apparatus to recognize the rise and fall of the underground water levels, micro-vibrations and waves generated in the underground, differences in pressure, temperature and other seismic activities should be inserted into the underground and linked with the concerned research analyzing departments of the observatory that is above the well to observe the seismic changes taking place in the underground. The results of researches on the quakes like Richter scale etc., also should be setup in the Geoscope. That means relative results of past, present and future pertaining to the earthquakes or seismic researches should be interposed, co-ordinate, and constantly developed. We can make many more changes thus bringing many more developments in the geoscope.

Observe the geophysical & geochemical changes such as foreshocks, chemical changes, ground water strain in rocks, thermal anomalies. levels. fractroluminescence's anomalies. gas micro-vibrations. electrogeopulses, pressure. geomagnetic forces, etc taking place in the underground. The onset of earthquakes can be guessed by observing the aforesaid changes in the concerned analyzing departments of the observatory.

5. Studies:

I have proposed much type of studies to study the earth's underground through the Geoscope by which we can predict the earthquakes 6 to 24 hours in advance.

5.1 Seismic Luminescence Study:

This is a very easy and simple study in the Geoscope Project. Construct a room over a well having suitable width and depth. Wash the inner walls of the room with white lime. Fix an ordinary electric bulb in the room. (Otherwise by making certain changes and alternations any home or office having a well can be converted into the Geoscope. Wash the inner walls of the house with white lime. Fix an ordinary electric bulb but don't fix fluorescent lamp in the house. This method involves no expenditure).

Observe the colour of the lightning in the Geoscope room daily 24 hours 365 days. When the bulb glows, the lightning in the room generally appears as white (reddish). But before occurrence of an earth-quake, the room lightning turns violet in colour.

Because, before occurring of an earthquake-gas anomalies such as radon, helium, hydrogen and chemico-mineral evaporations such as sulphur, calcium, nitrogen and other fracto-luminescence radiations show up earlier even at large distances from the epicenter due to stress, disturbances, shock waves and fluctuations in the underground forces. These gas anomalies & fracto luminescence radiations and other chemical evaporations enter into the well through the underground springs. When these anomalies occupy the room above the well, the room lighting turns violet in colour. The light in the room scattered in the presence of these gas anomalies, fracto-luminescence radiations and other chemico-mineral evaporations the ultra violet radiation is emitted more and the room lighting turns in violet colour. Our eye catches these variations in the radiation of the lighting in the room easily since_

a) The violet rays having smaller wave length.

b) The violet radiation having property of extending greatly.

c) The light becoming weak in the violet region.

d) The eyes having greater sensitivity to violet radiation.

Due to all reasons the room may appear violet in colour then we can predict the impending earth quakes 12 hours in advance.

5.2 Electro Geopulses Study:

This is also easy study to recognize the impending earth quake. A borehole having suitable width and depth has to be dug. An earth wire or rod should be inserted into the underground by the borehole and linked with the concerned analysis section having apparatus to detect, compare measure of the electric currents of the electric circuit of the earth systems. Otherwise by observing the home electric fans. etc. We can also study the electrogeopulses studies to predict the impending earth quake.

Observe the changes in the electric currents of the earth system 24 hours, 365 days. From a power station, the electricity is distributed to the far-off places. Normally the circuit of the power supply being completed through the earth system. Whenever if the disturbances occurs in the layers of the earth's underground, the fluctuation rate will be more due to the earth quake obstructions such as pressure, faults, vibrations, water currents etc., of the earth's underground. So we can forecast the impending earth quake by observing the obstruction of electric currents of circuit of the earth system in the observatory of the Geoscope and also by the obstruction sounds in the electric fans etc.

5.3 Super High Remote Sensing Technological Studies:

Geoscope is also useful In emerging industries such as geothermal and geo-sequestration etc.

Many kinds of super high remote sensing technology in the area of sensor physics, signal

processing used specially image processing, electromagnetic detection technology etc should be used in the Geoscope.

Geophysical deep underground detectors and mineral exploration equipments, natural gas sensors etc should be used in the Geoscope.

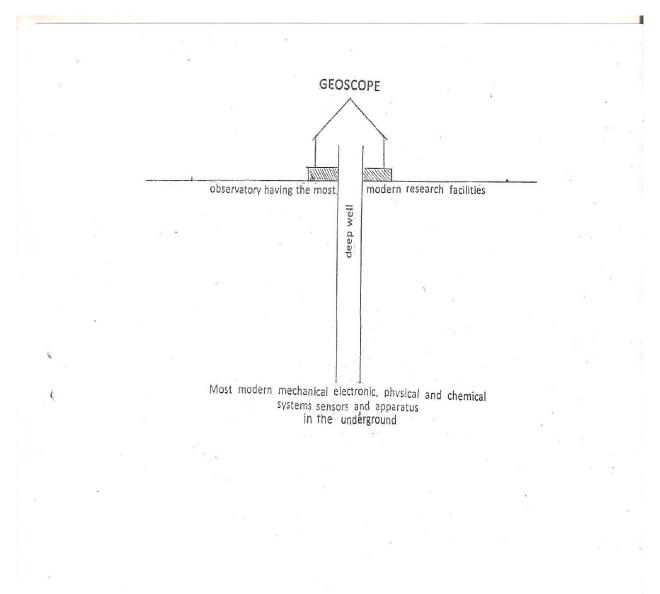
Electromagnetic sensors may also be used in the Geoscope project.

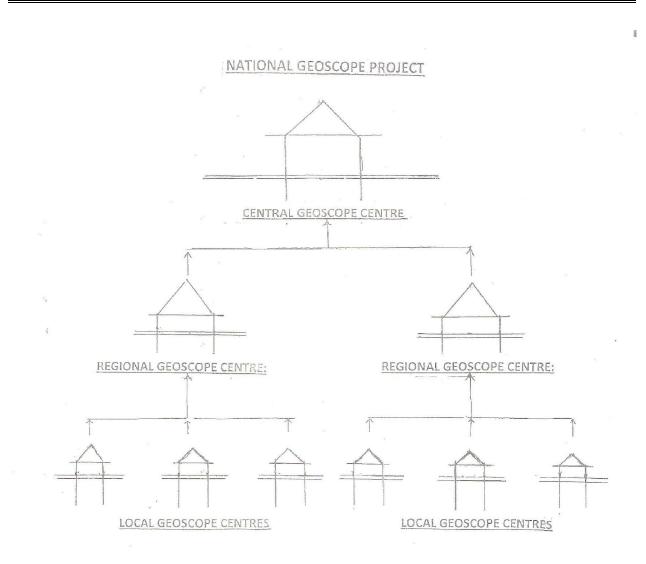
<u>6. Experiments Carriedout:</u>

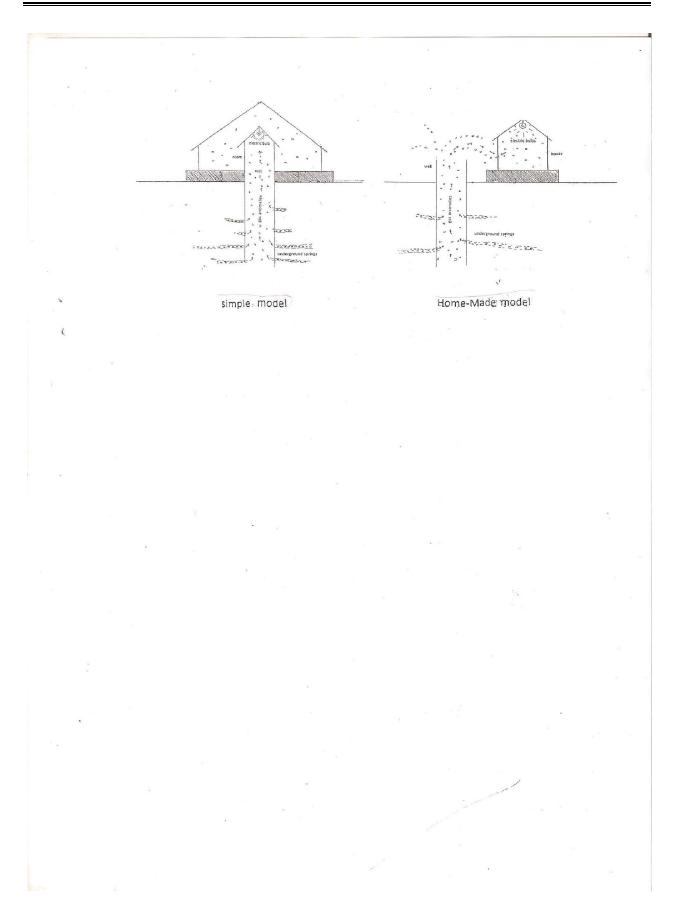
I have carried out a number of experiments on the Geoscope project and all were successfully proved out in practice. The risk of earthquakes in Andhra Pradesh is less but the source is greater in north India and other regions in the world where the establishment of the geoscope is very useful.

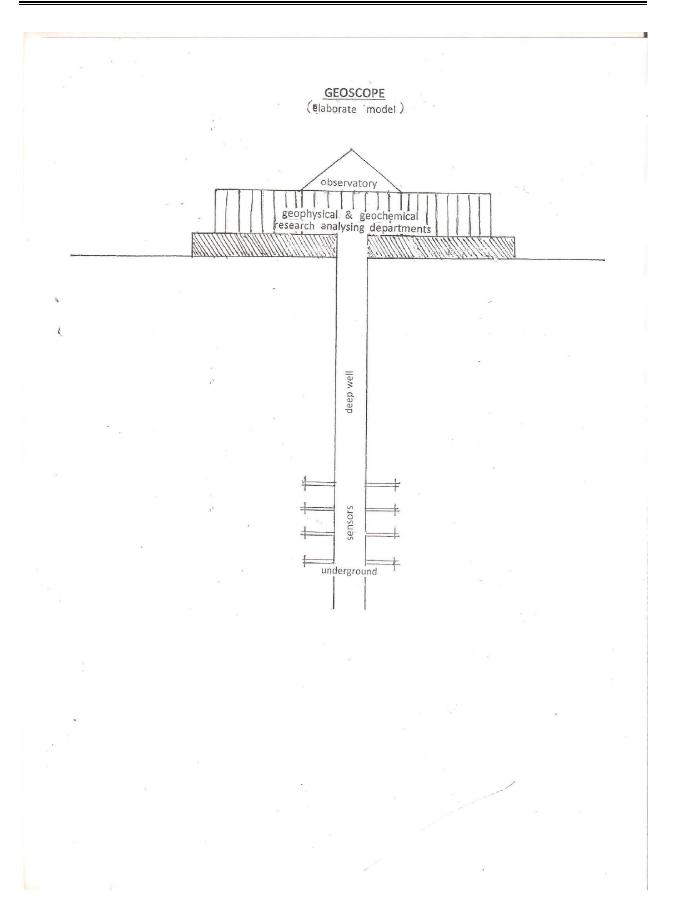
7. Uses:

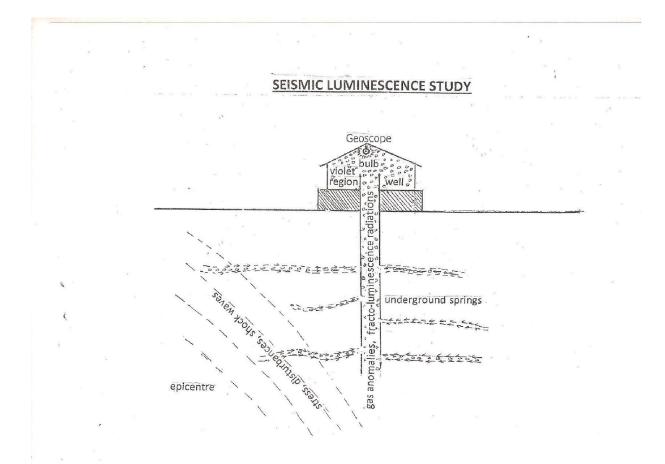
Geoscope can help to forewarn the earthquakes 6 to 18 hours in advance and also used to detect the mines, water sources of underground of a country. Storm surges, tsunamis, volcanic hazards etc geological hazard can be predicted. Earth's ground resources like metallic resources such as iron, gold, silver, tin, copper, nickel, aluminum, chromium etc mine sites and non-metallic resources like sand gravel, gypsum, halite, uranium, dimension stones, etc. can be found.

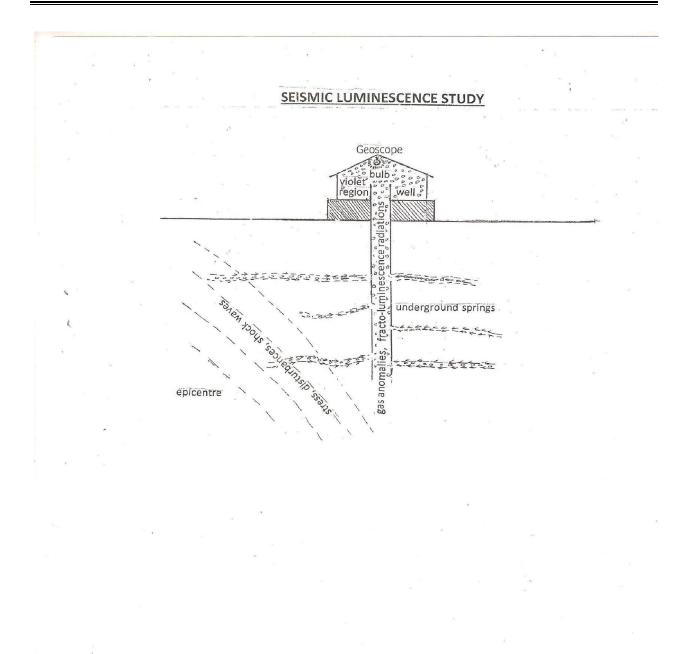

Conclusion:

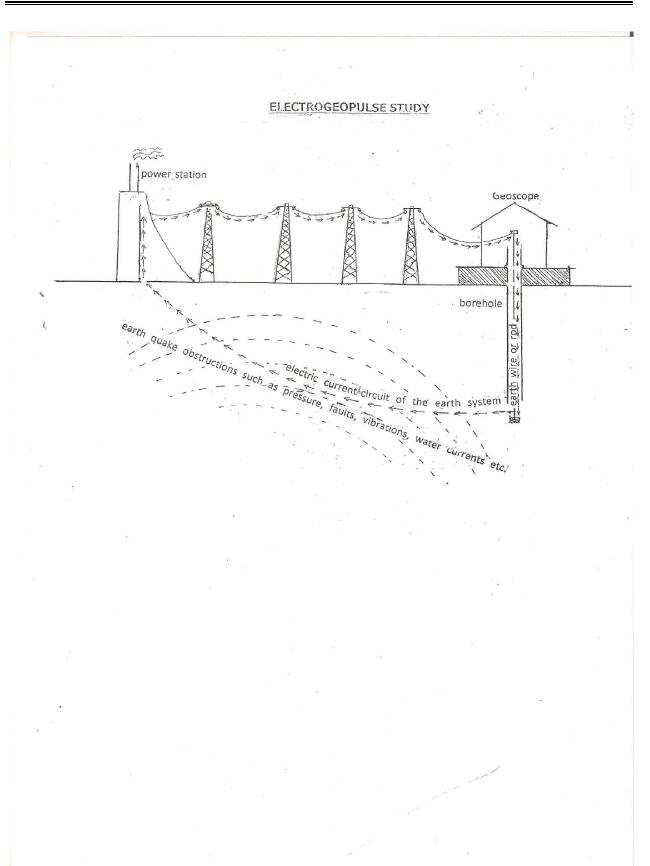

we can make many more researches on the geoscope thus bringing many more developments, modifications and improvements in the geoscope.

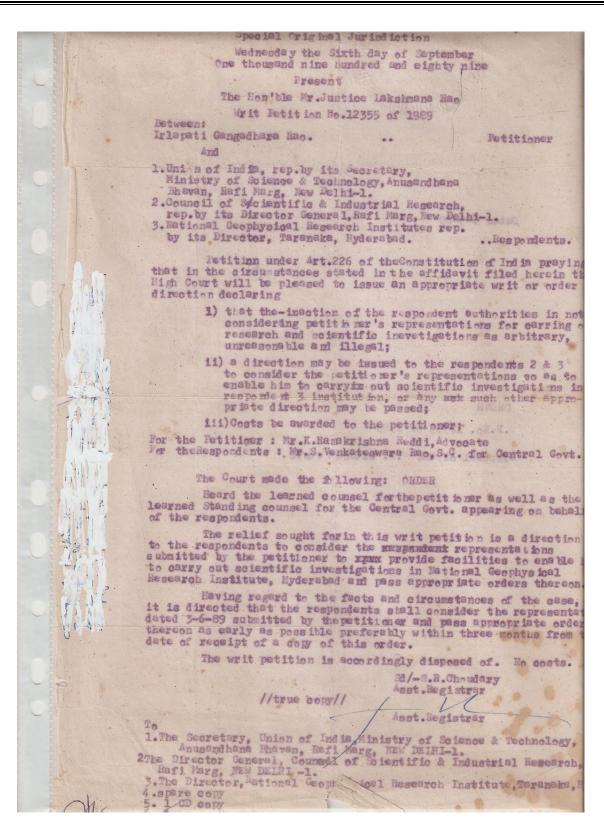

References


- 1. en/Wikipedia.org/wiki/geophysics.
- 2. <u>www.environmental-</u> <u>geophysics.co.uk/documents/ref-</u> <u>manual/techRef.(A</u> reference for geophysical techniques and applications.
- 3. en/Wikipedia.org/wiki/American geophysical union.
- 4. Reference manual-FDSN(<u>www.fdsn.org/seed-</u> manual/SEED MANUAL -V2-4.
- 5. Online library.wiley.com/doi/10.1029/89EO00202/full.
- 6. <u>www.geoscope.ae/detail-survey.php</u>.
- 7. <u>www.iris.edu/</u>.
- 8. seismo.berkeley.edu/2013 part2.
- 9. ngri.org.in/Pdf files/about ngri/annual report/AR/2005-06/chapter 52005-06.
- 10. <u>www.pik.potsdam.de/members/hlol2e/geoscope-</u> report-international berlin
- 11. www.atlantis-press com/php/download.
- 12. pubs.usgs.gov/bul/0932a/report.


Appendices:







40/ VEPTANOS राज्य सन्त्री विज्ञान और प्रौद्योगिकी, परमाणु ऊर्जा, अन्तरिक्ष, इलैक्ट्रोनिकी एवं महासागर विकास भारत सरकार, नई दिल्ली MINISTER OF STATE SCIENCE & TECHNOLOGY, ATOMIC ENERGY, SPACE, ELECTRONICS & OCEAN DEVELOPMENT GOVERNMENT OF INDIA 9th December, 1988. Dear Shri Rao, I have your letter dated 15th November, 1988, enclosing a petition from Shri Gangadhara Rao Irlapati. 2. I will try to help. Yours sincerely, (K.R. NARAYANAN) Shri A.J.V.B. Maheswara Rao, Member of Parliament (LS), 43, North Avenue, New Delhi. Anusandhan Bhavan' Rafi Marg New Delhi-110001

170 ై ా పు **పంచాయికి కార్యాలయవర్ర** పెద్దపారెం. (తూగిగోగిజిల్లా) ధృవచత్రము తూర్పు గోదాచరి జిల్లా ఆత్రేయపురం చుండలం లోని మెర్లపాలెం గ్రామ వంగాయిత్ లో ది. 1.1.1982 నుండి 30.6.87 గం.ము చరకు అనగా నుమారు 5 సంవత్సరములు మెర్లపారెం గ్రామ పంచాయితేనందు వనిచేసియున్నాడు. అని ఇందుమూలముగా ధృవపరచుచున్నాము. · Seg 2 god to Bay ನುರ್ಶವಾರಂ. గామ కంచాయితి, శార్షతార్ . O.

4/15/2017