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HE (Abstract): Theorem 1.
dx)=dx+D)=d(x+2)=2

infinitely-often. Qp)
d(x)=>1,d(3)=1 ~

where d(x) represents the number of distinct prime factors of X, Pl , d(15)=2 ,
d(105) =3
Proof (see[1] p.146 theorem 3.1.154). Prime equations are

p,=10p, +1, p;=15p, +2, p,=6p, +1 (2)
We have Jiang function

Jz(a)):37133(P—4)¢0’ o

w=I1P
where 2<P
We prove that Sy (@) #0 there exist infinitely many primes § such that b , P , b are primes.
We have asymptotic formula
J
7,(N,2)=|[{P < N:10P, +1,15P, +2, 6P, +1} ~ (@) N
¢ (w) log" N ’ @)

#w) = 11(P-1)

From (2) we have 3p, +1=30p, +4=2p, , 3p,+2=30p, +5 :5p4. We prove that there exist
infinitely many triples of consecutive integers, each being the products of two distinct primes.
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Theorem 1.

dx)=dx+D)=d(x+2)=2

infinitely-often. (D
d(x)=>1,d(3)=1
where d(x) represents the number of distinct prime factors of X, Pl , d(15)=2 ,
d(105) =3
Proof (see[1] p.146 theorem 3.1.154). Prime equations are
p,=10p, +1, py=15p, +2, p,=6p, +1 (2)
We have Jiang function
=311(P-4)+
Ju@) =3 (P-4 =0 o
wo=I1P
where 2<P
We prove that J () #0 there exist infinitely many primes B such that b , 3, b are primes.
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We have asymptotic formula
Jy,(@)ao N
¢* (o) log* N

m,(N.2)=[{P, <N :10P, +1,15P, +2, 6P, +1} ~
(4)
) = T1(P=1)

From (2) we have 3p2+1:30p1+4:2p3, 3p2+2:30p1+5:5p4. We prove that there exist

infinitely many triples of consecutive integers, each being the products of two distinct primes.
Theorem 2.

where

dx)=dx+1)=d(x+2)=m>1 infinitely-often (5)

Proof (see [1] p.148, theorem 3.1.158). Suppose that u,u+l and U+2 are three consecutive integers, each

being the products of 7~ I distinet primes. Let M =u(u+1)(u+2) . We define the three prime equations
2M 2M 2M
P=—PFP+1 P = P+1 P = P +1
u , u+l , u+2 (6)
Using Jiang function I (@) we prove that there exist infinitely many primes 1§ such that b , P and b
are primes.
From (6) we have
2M
uP, +1=2MP, +u+1=u+1) —PF +1|=u+1)P,
uP, =2MP, +u u+l
2M
uP, +2 =2MP, +u+2=u+2) ——=F +1|=u+2)P,
u+2
We prove
dx)=d(x+)=d(x+2)=m>1 infinitely-often. N
Theorem 3.
d(x)=d(x+2)=d(x+4)=2 infinitely-often )
Proof [1,2,3]. Prime equations are
P,=70P +1, P,=42P +1, P, =30P +1 )
Using Jiang function I (@) we prove that there exist infinitely many primes B such that b , P and b

are primes.
Frome (9) we have

3P, =210P +3, 3P, +2=210P, +5=>5(42P, +1)=5P,
3P, +4=210P +7=730P, +1)= 7P,

(10
We prove
d(3P,)=d(BP,+2)=d(3P,+4)=2 infinitely-often. an
Theorem 4.
dx)=d(x+2)=d(x+4)=m>1 infinitely-often. (12>

Proof [1, 2, 3]. Suppose that u,u+2 and U+4 are three odd integers, each being the products of 7 -1
distinct primes. Let M =u(u+2)(u+4)
We define three prime equations

oM 2M 2M

P, = P+l P=——P+1 P =——P+1
2 u 1 3 I/t+21 4

u+4 (13)
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Using Jiang function I (@) we prove that there exist infinitely many primes § such that b , P and b
are primes.
From (13) we have uP, =2MP +u ,
2M
=(u+2)——PF +1|=u+2)P,
uP, +2 =2MP, +u+2 u+2
2M
1J3+4:A01+u+4:(u+4{———41+Dj
u+4 =(u+4)F, (14)

We prove

d(x)=d(x+2)=d(x+4)=m>1 infinitely-often. (15
Theorem 5.

dx)=d(x+1)=d(x+2)=d(x+4)=m>1 infinitely-often. (16)
Proof. From (9) we have prime equations
P, =70F +1 P3=105Pl+2’ P, =42K +1 P, =30A +1 an

Using Jiang function we prove there exist infinitely many primes l§ such that b , Py , b and & are primes.
From (17) we have

3P, =210P, +3

3P, +1=210P, +4=2(105P, +2) = 2P,

3P, +2=210P +5="5(42P +1)=5P,

3P, +4=210P, +7=730P +1)=7P, (18
Using Jiang function we prove

dx)=dx+1)=d(x+2)=d(x+4)=m>1 infinitely-often. (19)

d(x)=d(x+1)=d(x+2)=d(x +4) =d(x+8) =d(x +10) = m > 1

infinitely-often.

20
Using Jiang function J (@) we are able to prove
d(x)=d(x+n)=m>1 infinitely-often. 2D
dx)=d(x+5-3)=d(x+7-3)=---=d(x+P-3)=m>1 infinitely-often. (22)

dx)=d(x+n<6)=2

Goldston et. al prove only infinitely-often [4].

PV o A A, XA L B IR AR A — % o XA NS KRB R L. WChE
Wi B X A 1), 20 T 20 foe 5 KA X BRI AR DGR XA D, EL 35045 Hh AT P4 2R« Socil R B TR 2K
2K Goldston S IEAEWFFUIX AN L. 45 3 FEIPRECE T 2 BISCRIAIRNE, EERIRRAZEY RS L, B
AAFHAEFI LR, FARIEAE 2002 FE[1FMRIEN 1 e, EEANIMCA R T e, BAuE, B
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FERTFLTTIANY 2009 4F 1 H 10 H¥EFRIE R E XS AR ERIHEAE A IE ERIARX22),1 A 11 HRIE
BT, RFEE R RERI.
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