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Abstract: 蒋春暄证明费马大定理, 他们正在等待这么一天。中国蒋春暄 1991 年证明了费马大定理, 怀尔斯

1994 年证明费马大定理巳被否定。这将会引起数学界翻天复地变化。 
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在两千年前古希腊毕达哥拉斯提出毕达哥拉斯

定理 
a^2+b^2=c^2    (1) 

有无限多整数解,例如 3^2+4^2=5^2,9+16=25,中

国称为勾股定理.一般中学生都知勾股定理.1637 年

法国业余数学家费马推广毕达哥拉斯定理提出今天

称为费马大定理 
a^n+b^n=c^n  (2) 

n>2 时,(2)无整数解.一般中学生都知费马大定理.

费马大定理是 354 年以来没有证明数学难题。国际

对费马大定理证明评论:”它的证明是 20 世纪最大成

就，是人类的智力最高峰，它相当若干个普通诺贝

尔奖，它可同人类登月球相提并论成就.它可同人类

发现 DNA 和原子分裂相提并论的成就”.1991 年蒋

春暄用他发明数学非常简单证明了费马大定理.中

国数学家刘培杰写一本宣转怀尔斯书,书名为”从毕

达哥拉斯到怀尔斯”中 365 页指出:只用 4 页不需要

任何数论知识蒋春暄就证明了费马大定理,只找到

了有限的赞同者,但却从未收到过任何公开的来自

学术上的反驳.这才是真正费马大定理证明,中学生

都能理解这个证明.蒋春暄因首先证明费马大定理

获特勒肖-伽利略科学院 2009 年度金奖. 有人说:” 

应该先把费马大定理的问题澄清,因为这是舆论的

焦点, 现在谈别的都毫无意义” 。所以本文就谈费

马大定理。 

本文介绍 

（1） 蒋春暄 1991 年只用 4 页证明费马大定

理,In 1991 Jiang proved Fermat last theorem； 

（2） 怀尔斯 1994 年用 120 页证明费马大定

理,In 1994 Wiles proved Fermat last theorem； 
 
Top 10 Greatest Mathematicians 
蒋春暄是大数学家 

M. R. Sexton December 7, 2010 
Often called the language of the universe, 

mathematics is fundamental to our understanding of 
the world and, as such, is vitally important in a modern 
society such as ours. Everywhere you look it is likely 
mathematics has made an impact, from the faucet in 
your kitchen to the satellite that beams your television 
programs to your home. As such, great mathematicians 
are undoubtedly going to rise above the rest and have 
their name embedded within history. This list 
documents some such people. I have rated them based 
on contributions and how they effected mathematics at 
the time, as well as their lasting effect. I also suggest 
one looks deeper into the lives of these men, as they 
are truly fascinating people and their discoveries are 
astonishing – too much to include here. As always, 
such lists are highly subjective, and as such please 
include your own additions in the comments! 
 
10 
Pythagoras of Samos 
 

 



 Academia Arena 2017;9(17s)          http://www.sciencepub.net/academia 

 

99 

Greek Mathematician Pythagoras is considered 
by some to be one of the first great mathematicians. 
Living around 570 to 495 BC, in modern day Greece, 
he is known to have founded the Pythagorean cult, 
who were noted by Aristotle to be one of the first 
groups to actively study and advance mathematics. He 
is also commonly credited with the Pythagorean 
Theorem within trigonometry. However, some sources 
doubt that is was him who constructed the proof 
(Some attribute it to his students, or Baudhayana, who 
lived some 300 years earlier in India). Nonetheless, the 
effect of such, as with large portions of fundamental 
mathematics, is commonly felt today, with the theorem 
playing a large part in modern measurements and 
technological equipment, as well as being the base of a 
large portion of other areas and theorems in 
mathematics. But, unlike most ancient theories, it 
played a bearing on the development of geometry, as 
well as opening the door to the study of mathematics 
as a worthwhile endeavor. Thus, he could be called the 
founding father of modern mathematics. 
 
9 
Andrew Wiles  
 

 
 

The only currently living mathematician on this 
list, Andrew Wiles is most well known for his proof of 
Fermat’s Last Theorem: That no positive integers, a, b 
and c can satisfy the equation a^n+b^n=c^n For n 
greater then 2. (If n=2 it is the Pythagoras Formula). 
Although the contributions to math are not, perhaps, as 
grand as other on this list, he did ‘invent’ large 
portions of new mathematics for his proof of the 
theorem. Besides, his dedication is often admired by 
most, as he quite literally shut himself away for 7 
years to formulate a solution. When it was found that 
the solution contained an error, he returned to solitude 
for a further year before the solution was accepted. To 
put in perspective how ground breaking and new the 
math was, it had been said that you could count the 
number of mathematicians in the world on one hand 
who, at the time, could understand and validate his 
proof. Nonetheless, the effects of such are likely to 
only increase as time passes (and more and more 
people can understand it). 

 
8 
Isaac Newton and Wilhelm Leibniz 
 

 
 

I have placed these two together as they are both 
often given the honor of being the ‘inventor’ of 
modern infinitesimal calculus, and as such have both 
made monolithic contributions to the field. To start, 
Leibniz is often given the credit for introducing 
modern standard notation, notably the integral sign. He 
made large contributions to the field of Topology. 
Whereas all round genius Isaac Newton has, because 
of the grand scientific epic Principia, generally 
become the primary man hailed by most to be the 
actual inventor of calculus. Nonetheless, what can be 
said is that both men made considerable vast 
contributions in their own manner. 
 
7 
Leonardo Pisano Blgollo 
 

 
 

Blgollo, also known as Leonardo Fibonacci, is 
perhaps one of the middle ages greatest 
mathematicians. Living from 1170 to 1250, he is best 
known for introducing the infamous Fibonacci Series 
to the western world. Although known to Indian 
mathematicians since approximately 200 BC, it was, 
nonetheless, a truly insightful sequence, appearing in 
biological systems frequently. In addition, from this 
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Fibonacci also contributed greatly to the introduction 
of the Arabic numbering system. Something he is 
often forgotten for. 

Haven spent a large portion of his childhood 
within North Africa he learned the Arabic numbering 
system, and upon realizing it was far simpler and more 
efficient then the bulky Roman numerals, decided to 
travel the Arab world learning from the leading 
mathematicians of the day. Upon returning to Italy in 
1202, he published his Liber Abaci, whereupon the 
Arabic numbers were introduced and applied to many 
world situations to further advocate their use. As a 
result of his work the system was gradually adopted 
and today he is considered a major player in the 
development of modern mathematics. 
 
6 
Alan Turing 
 

 
 

Computer Scientist and Cryptanalyst Alan Turing 
is regarded my many, if not most, to be one of the 
greatest minds of the 20th Century. Having worked in 
the Government Code and Cypher School in Britain 
during the second world war, he made significant 
discoveries and created ground breaking methods of 
code breaking that would eventually aid in cracking 
the German Enigma Encryptions. Undoubtedly 
affecting the outcome of the war, or at least the 
time-scale. 

After the end of the war he invested his time in 
computing. Having come up with idea of a computing 
style machine before the war, he is considered one of 
the first true computer scientists. Furthermore, he 
wrote a range of brilliant papers on the subject of 
computing that are still relevant today, notably on 
Artificial Intelligence, on which he developed the 
Turing test which is still used to evaluate a computers 
‘intelligence’. Remarkably, he began in 1948 working 

with D. G. Champernowne, an undergraduate 
acquaintance on a computer chess program for a 
machine not yet in existence. He would play the ‘part’ 
of the machine in testing such programs. 
 
 
5 
René Descartes 
 

 
 
 

French Philosopher, Physicist and Mathematician 
Rene Descartes is best known for his ‘Cogito Ergo 
Sum’ philosophy. Despite this, the Frenchman, who 
lived 1596 to 1650, made ground breaking 
contributions to mathematics. Alongside Newton and 
Leibniz, Descartes helped provide the foundations of 
modern calculus (which Newton and Leibniz later 
built upon), which in itself had great bearing on the 
modern day field. Alongside this, and perhaps more 
familiar to the reader, is his development of Cartesian 
Geometry, known to most as the standard graph 
(Square grid lines, x and y axis, etc.) and its use of 
algebra to describe the various locations on such. 
Before this most geometers used plain paper (or 
another material or surface) to preform their art. 
Previously, such distances had to be measured literally, 
or scaled. With the introduction of Cartesian Geometry 
this changed dramatically, points could now be 
expressed as points on a graph, and as such, graphs 
could be drawn to any scale, also these points did not 
necessarily have to be numbers. The final contribution 
to the field was his introduction of superscripts within 
algebra to express powers. And thus, like many others 
in this list, contributed to the development of modern 
mathematical notation. 
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4  
Euclid 

 
 

Living around 300BC, he is considered the 
Father of Geometry and his magnum opus: Elements, 
is one the greatest mathematical works in history, with 
its being in use in education up until the 20th century. 
Unfortunately, very little is known about his life, and 
what exists was written long after his presumed death. 
Nonetheless, Euclid is credited with the instruction of 
the rigorous, logical proof for theorems and 
conjectures. Such a framework is still used to this day, 
and thus, arguably, he has had the greatest influence of 
all mathematicians on this list. Alongside his Elements 
were five other surviving works, thought to have been 
written by him, all generally on the topic of Geometry 
or Number theory. There are also another five works 
that have, sadly, been lost throughout history. 
 
3 
G. F. Bernhard Riemann 
 

 
 

Bernhard Riemann, born to a poor family in 1826, 
would rise to become one of the worlds prominent 

mathematicians in the 19th Century. The list of 
contributions to geometry are large, and he has a wide 
range of theorems bearing his name. To name just a 
few: Riemannian Geometry, Riemannian Surfaces and 
the Riemann Integral. However, he is perhaps most 
famous (or infamous) for his legendarily difficult 
Riemann Hypothesis; an extremely complex problem 
on the matter of the distributions of prime numbers. 
Largely ignored for the first 50 years following its 
appearance, due to few other mathematicians actually 
understanding his work at the time, it has quickly risen 
to become one of the greatest open questions in 
modern science, baffling and confounding even the 
greatest mathematicians. Although progress has been 
made, its has been incredibly slow. However, a prize 
of $1 million has been offered from the Clay Maths 
Institute for a proof, and one would almost 
undoubtedly receive a Fields medal if under 40 (The 
Nobel prize of mathematics). The fallout from such a 
proof is hypothesized to be large: Major encryption 
systems are thought to be breakable with such a proof, 
and all that rely on them would collapse. As well as 
this, a proof of the hypothesis is expected to use ‘new 
mathematics’. It would seem that, even in death, 
Riemann’s work may still pave the way for new 
contributions to the field, just as he did in life. 
 
2 

Carl Friedrich Gauss 高斯不敢证明费马大定理 
 

 
 

Child prodigy Gauss, the ‘Prince of 
Mathematics’, made his first major discovery whilst 
still a teenager, and wrote the incredible Disquisitiones 
Arithmeticae, his magnum opus, by the time he was 21. 
Many know Gauss for his outstanding mental ability – 
quoted to have added the numbers 1 to 100 within 
seconds whilst attending primary school (with the aid 
of a clever trick). The local Duke, recognizing his 
talent, sent him to Collegium Carolinum before he left 



 Academia Arena 2017;9(17s)          http://www.sciencepub.net/academia 

 

102 

for Gottingen (at the time it was the most prestigious 
mathematical university in the world, with many of the 
best attending). After graduating in 1798 (at the age of 
22), he began to make several important contributions 
in major areas of mathematics, most notably number 
theory (especially on Prime numbers). He went on to 
prove the fundamental theorem of algebra, and 
introduced the Gaussian gravitational constant in 
physics, as well as much more – all this before he was 
24! Needless to say, he continued his work up until his 
death at the age of 77, and had made major advances 
in the field which have echoed down through time. 

我是一名在哈佛数学系的博士生, 我看到蒋老师的

成就, 真的非常振奋. 您是我们中国的骄傲, 可以

说是数学史上最伟大天才(以前我以为是高斯 ). 

2006-12-17 来信. 
 
1 
Leonhard Euler  

 
 

欧拉只证明费马大定理指数 3, 蒋春暄用他的方法

证明了只要证明指数 3就证明了费马大定理.只有欧

拉和蒋春暄证明是正确的, 直观的, 任何人都可理

解的. 其它证明都是猜想使人难以理解的。 
 

If Gauss is the Prince, Euler is the King. Living 
from 1707 to 1783, he is regarded as the greatest 
mathematician to have ever walked this planet. It is 
said that all mathematical formulas are named after the 
next person after Euler to discover them. In his day he 
was ground breaking and on par with Einstein in 
genius. His primary (if that’s possible) contribution to 
the field is with the introduction of mathematical 
notation including the concept of a function (and how 
it is written as f(x)), shorthand trigonometric functions, 
the ‘e’ for the base of the natural logarithm (The Euler 
Constant), the Greek letter Sigma for summation and 
the letter ‘/i’ for imaginary units, as well as the symbol 
pi for the ratio of a circles circumference to its 
diameter. All of which play a huge bearing on modern 
mathematics, from the everyday to the incredibly 
complex. 

As well as this, he also solved the Seven Bridges 
of Koenigsberg problem in graph theory, found the 
Euler Characteristic for connecting the number of 
vertices, edges and faces of an object, and (dis)proved 
many well known theories, too many to list. 
Furthermore, he continued to develop calculus, 
topology, number theory, analysis and graph theory as 
well as much, much more – and ultimately he paved 
the way for modern mathematics and all its revelations. 
It is probably no coincidence that industry and 
technological developments rapidly increased around 
this time. 
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Abstract: In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two 
biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly 
marvelous proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n  

 has no integer solutions, all different from 0(i.e., it has only the trivial 
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 3P  and P , where P  is an odd 
prime. The proof of FLT must be direct. But indirect proof of FLT is disbelieving. 

 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 
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where J  denotes a n th root of unity, 1nJ  , n  is an odd number, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order n  with 1n  variables 

[1-7]. 
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(2) may be written in the matrix form 
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where 
( 1) / 2n

 is an even number. 
From (4) we have its inverse transformation 
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From (5) we have 
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In (3) and (6) it  and iS
 have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT. 

Using (4) and (5) in 1991 Jiang invented that every factor of exponent n  has the Fermat equation and proved FLT 
[1-7] Substituting (4) into (5) we prove (5). 
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    
   
   
     
  








    


 

1

1

1

1

1 1

2 2

cos

sin

exp( )sin( )

A

B

B

n n

e

e

e

B





 

 
 
 
   
 
 
  



,                                            （7） 

where 

1
2

1

1 (cos )
2

n

j

j n

n





 
,   

1
2

1

(sin )
2

n

j

j n

n






. 

From (3) we have  

                

1

2

1

exp( 2 ) 1

n

j
j

A B





 
.                             （8） 

From (6) we have 

         

1 2 1 1 1 1 11

2
2 1 3 2 2 1 2 1

1

1 1 1 1

( ) ( )

( ) ( )
exp( 2 )

( ) ( )

n nn

n

j
j

n n n n n n

S S S S S S

S S S S S S
A B

S S S S S S







 

  

 

 

       

 
,          

（9） 

where   

( ) i
i j

j

S
S

t





[7]. 
From (8) and (9) we have the circulant determinant 

            

1 21

2
2 1 3

1

1 1

exp( 2 ) 1

nn

j
j

n n

S S S

S S S
A B

S S S







  





   


            （10） 

If 
0iS 

, where 1,2, ,i n  , then (10) has infinitely many rational solutions. 

Assume 1 0S 
, 2 0S 

, 
0iS 

 where 
3, 4, , . 0ii n S 

 are 2n  indeterminate equations with 

1n  variables. From (6) we have 



 Academia Arena 2017;9(17s)          http://www.sciencepub.net/academia 

 

106 

       1 2
Ae S S 

, 

2 2 2
1 2 1 22 ( 1) cosjB j j

e S S S S
n


   

.          （11） 
From (10) and (11) we have the Fermat equation 

1 1
2 2

2 2
1 2 1 2 1 2 1 2

1
1

exp( 2 ) ( ) ( 2 ( 1) cos ) 1

n n

j n n
j

j
j

j
A B S S S S S S S S

n


 




         
   （12） 

Example[1]. Let 15n  . From (3) we have 

1 14 2 13 3 12 4 11 5 10 6 9 7 8( ) ( ) ( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t t t t             
 

1 1 14 2 13 3 12 4 11

2 3 4
( ) cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

      
5 10 6 9 7 8

5 6 7
( ) cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 

2 1 14 2 13 3 12 4 11

2 4 6 8
( )cos ( )cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
       

 

      
5 10 6 9 7 8

10 12 14
( )cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 

3 1 14 2 13 3 12 4 11

3 6 9 12
( )cos ( )cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

      
5 10 6 9 7 8

15 18 21
( ) cos ( ) cos ( ) cos

15 15 15
t t t t t t

  
     

, 

4 1 14 2 13 3 12 4 11

4 8 12 16
( ) cos ( ) cos ( ) cos ( )cos

15 15 15 15
B t t t t t t t t

   
       

 

      
5 10 6 9 7 8

20 24 28
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

5 1 14 2 13 3 12 4 11

5 10 15 20
( ) cos ( )cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t t

   
        

 

      
5 10 6 9 7 8

25 30 35
( ) cos ( ) cos ( ) cos

15 15 15
t t t t t t

  
     

, 

6 1 14 2 13 3 12 4 11

6 12 18 24
( ) cos ( ) cos ( )cos ( ) cos

15 15 15 15
B t t t t t t t t

   
       

 

      
5 10 6 9 7 8

30 36 42
( )cos ( ) cos ( )cos

15 15 15
t t t t t t

  
     

, 

7 1 14 2 13 3 12 4 11

7 14 21 28
( )cos ( )cos ( )cos ( )cos

15 15 15 15
B t t t t t t t t

   
        

 

      
5 10 6 9 7 8

35 42 49
( ) cos ( )cos ( ) cos

15 15 15
t t t t t t

  
     

, 

       

7

3 6 5 10
1

2 0, 2 2 5( )j
j

A B A B B t t


     
.                         (13) 

Form (12) we have the Fermat equation 



 Academia Arena 2017;9(17s)          http://www.sciencepub.net/academia 

 

107 

           

7
15 15 5 3 5 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1j
j

A B S S S S


     
.                     (14) 

From (13) we have 

                    
5

3 6 5 10exp( 2 2 ) [exp( )]A B B t t   
.                   （15） 

From (11) we have 

                       
5 5

3 6 1 2exp( 2 2 )A B B S S   
.                       (16) 

From (15) and (16) we have the Fermat equation 

          
5 5 5

3 6 1 2 5 10exp( 2 2 ) [exp( )]A B B S S t t     
.                    （17） 

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational 
solutions for exponent 5[1]. 

Theorem 1. [1-7]. Let 3n P ,where 3P   is odd prime. From (12) we have the Fermat’s equation 

          

3 1

2
3 3 3 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1

P

P P P P
j

j

A B S S S S





     
.                  (18) 

From (3) we have 

                  

1

2

3 2
1

exp( 2 ) [exp( )]

P

P
j P P

j

A B t t





  
.                       (19) 

From (11) we have 

                

1

2

3 1 2
1

exp( 2 )

P

P P
j

j

A B S S





  
.                          (20) 

From (19) and (20) we have the Fermat equation 

                

1

2

3 1 2 2
1

exp( 2 ) [exp( )]

P

P P P
j P P

j

A B S S t t





    
.             （21） 

Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational 

solutions for 3P   [1, 3-7]. 
Theorem 2. In 1847 Kummer write the Fermat’s equation 

                      
P P Px y z                               （22） 

in the form 

         
2 1( )( )( ) ( )P Px y x ry x r y x r y z                            （23） 

where P  is odd prime, 

2 2
cos sinr i

P P

 
 

. 

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime exponent p<100 [8].. 
We consider the Fermat’s equation  

                         
3 3 3P P Px y z                            （24） 

we rewrite (24) 

                     
3 3 3( ) ( ) ( )P P Px y z 

                        (25) 
From (24) we have 

                   
2 3( )( )( )P P P P P P Px y x ry x r y z   

                （26） 
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where 

2 2
cos sin

3 3
r i

 
 

 

We assume the divisor of each factor is a P th power. 

Let 
1

x
S

z


, 
2

y
S

z


. From (20) and (26) we have the Fermat’s equation 

          2[ exp( )]P P P
P Px y z t t   

                   (27) 
Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer 

solutions for prime exponent P . 
Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24) 

                    
3 3 3( ) ( ) ( )P P Px y z 

                    (28) 
Euler proved that（25）has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no integer 

solutions for all prime exponent P [1-7]. 
We consider Fermat equation 

                              
4 4 4P P Px y z                        (29) 

We rewrite (29)  

                         
4 4 4( ) (( ) ( )P P Px y z 

                  （30） 

                         
4 4 4( ) ( ) ( )P P Px y z                     （31） 

Fermat proved that (30) has no integer solutions for exponent 4 [8]. Therefore we prove that (31) has no integer 

solutions for all prime exponent P  [2,5,7].This is the proof that Fermat thought to have had. 

Remark. It suffices to prove FLT for exponent 4. Let 4n P , where P  is an odd prime. We have the Fermat’s 

equation for exponent 4P  and the Fermat’s equation for exponent P [2,5,7]. This is the proof that Fermat 

thought to have had. In complex hyperbolic functions let exponent n  be n P  , 2n P   and 4n P  . 

Every factor of exponent n  has the Fermat’s equation [1-7]. In complex trigonometric functions let exponent n  

be n P  , 2n P   and 4n P  . Every factor of exponent n  has Fermat’s equation [1-7].Using 
modular elliptic curves Wiles and Taylor prove FLT[9,10].This is not the proof that Fermat thought to have had. The 
classical theory of automorphic functions, created by Klein and Poincare, was concerned with the study of analytic 
functions in the unit circle that are invariant under a discrete group of transformations. Automorphic functions are 
generalization of the trigonometric ,hyperbolic,elliptic, and certain other functions of elementary analysis. The 
complex trigonometric functions and complex hyperbolic functions have a wide application in mathematics and 
physics. 
Acknowledgments.We thank Chenny and Moshe Klein for their help and suggestion. 
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Automorphic Functions And Fermat’s Last Theorem（3） 
(Fermat’s Proof of FLT) 
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Abstract: In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two 

biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly 
marvelous proof, which this margin is too small to contain.” 

This means: 
( 2)n n nx y z n  

 has no integer solutions, all different from 0(i.e., it has only the trivial 
solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove 

FLT for exponent 4 and every prime exponent P . Fermat proved FLT for exponent 4. Euler proved FLT for 
exponent 3. 

In this paper using automorphic functions we prove FLT for exponents 4P  and P , where P  is an odd 
prime. We rediscover the Fermat proof. The proof of FLT must be direct. But indirect proof of  FLT is 
disbelieving. 

 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 

                      

4 1 4
1

1 1

exp
m m

i i
i i

i i

t J S J




 

 
 

 
 

,                          （1） 

where J  denotes a 4m th root of unity, 
4 1mJ  , m=1,2,3,…, it  are the real numbers. 

iS
 is called the automorphic functions(complex hyperbolic functions) of order 4m  with 4 1m   variables 

[2,5,7]. 

                

1

1

1

1 ( 1) ( 1)
2 cos 2 cos

4 2 2
j

m
BA H

i j
j

i i j
S e e e

m m

 
 





     
        

    


       

2

( 1) 1

1

( 1) ( 1)
2 cos

4 2
j

i m
DA

j
j

i j
e e

m m




 



   
    

  


           （2） 

where   
1,..., 4i m

; 
 

      

4 1 4 1

1 2
1 1

, ( 1)
m m

A t A t 
 

 

 

 

   
,      

2 1 2

2 2 1
1 1

( 1) , ( 1)
m m

H t t 
 

 





 

    
, 

      

4 1 4 1

1 1

cos , sin ,
2 2

m m

j j

j j
B t t

m m
 

 

   


 

 

   
 

      

4 1 4 1

1 1

( 1) cos , ( 1) sin
2 2

m m

j j

j j
D t t

m m
 

 
 

   


 

 

    
, 

      

1

1 2
1

2 2 ( ) 0
m

j j
j

A A H B D




    
.                                    （3） 

From (2) we have its inverse transformation[5,7] 

     

1 2

4 4
1

1 1

, ( 1)
m m

A A i
i i

i i

e S e S 

 

   
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2 2
1

2 1 2
1 1

cos ( 1) , sin ( 1)
m m

H i H i
i i

i i

e S e S 


 

    
, 

      

4 1 4 1

1 1 1
1 1

cos cos , sin sin
2 2

j j

m m
B B

j i j i
i i

ij ij
e S S e S

m m

 
 

 

 
 

    
, 

      

4 1 4 1

1 1 1
1 1

cos ( 1) cos , sin ( 1) sin
2 2

j j

m m
D Di i

j i j i
i i

ij ij
e S S e S

m m

 
 

 

 
 

     
.   （4） 

(3) and (4) have the same form. 
From (3) we have 

                     

1

1 2
1

exp 2 2 ( ) 1
m

j j
j

A A H B D




 
     

 


                  （5） 
From (4) we have 

1 4 2

1
2 1 3

1 2
1

4 4 1 1

exp 2 2 ( )

m

m

j j
j

m m

S S S

S S S
A A H B D

S S S







 
     

 






   


 

1 1 1 1 4 1

2 2 1 2 4 1

4 4 1 4 4 1

( ) ( )

( ) ( )

( ) ( )

m

m

m m m m

S S S

S S S

S S S













   


      (6) 

where  

                        

( ) i
i j

j

S
S

t





[7] 
From (5) and (6) we have circulant determinant 

       

1 4 2

1
2 1 3

1 2
1

4 4 1 1

exp 2 2 ( ) 1

m

m

j j
j

m m

S S S

S S S
A A H B D

S S S







 
      

 






   


     （7） 

Assume 1 20, 0, 0iS S S  
, where 3,..., 4 .i m  

0iS 
 are (4 2)m  indeterminate equations with 

(4 1)m
 variables. From (4) we have 

                     
1 2 2 2 2

1 2 1 2 1 2, ,A A He S S e S S e S S     
 

    

2 2 2
1 2 1 22 cos

2
jB j

e S S S S
m


  

,  

2 2 2
1 2 1 22 cos

2
jD j

e S S S S
m


  

     （8） 

Example [2]. Let 4 12m  . From (3) we have 

 1 1 11 2 10 3 9 4 8 5 7 6( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t          
, 

 2 1 11 2 10 3 9 4 8 5 7 6( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t           
, 

2 10 4 8 6( ) ( )H t t t t t     
, 
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1 1 11 2 10 3 9 4 8 5 7 6

2 3 4 5
( ) cos ( ) cos ( ) cos ( )cos ( ) cos ,

6 6 6 6 6
B t t t t t t t t t t t

    
          

2 1 11 2 10 3 9 4 8 5 7 6

2 4 6 8 10
( )cos ( )cos ( ) cos ( ) cos ( ) cos ,

6 6 6 6 6
B t t t t t t t t t t t

    
          

1 1 11 2 10 3 9 4 8 5 7 6

2 3 4 5
( )cos ( ) cos ( ) cos ( )cos ( )cos ,

6 6 6 6 6
D t t t t t t t t t t t

    
           

2 1 11 2 10 3 9 4 8 5 7 6

2 4 6 8 10
( )cos ( ) cos ( ) cos ( ) cos ( )cos ,

6 6 6 6 6
D t t t t t t t t t t t

    
           

1 2 1 2 1 22( ) 0A A H B B D D      
,  2 2 3 6 92 3( )A B t t t    

.                 （9） 
From (8) and (9) we have 

    
12 12 3 4 3 4

1 2 1 2 1 2 1 2 1 2exp[ 2( )] ( ) ( ) 1A A H B B D D S S S S          
.       (10) 

From (9) we have 

                  
3

2 2 3 6 9exp( 2 ) [exp( )]A B t t t    
.                    (11) 

From (8) we have 

             
2 2 3 3

2 2 1 2 1 2 1 2 1 2exp( 2 ) ( )( )A B S S S S S S S S      
.               (12) 

From (11) and (12) we have Fermat’s equation 

               
3 3 3

2 2 1 2 3 6 9exp( 2 ) [exp( )]A B S S t t t      
.                  (13) 

Fermat proved that (10) has no rational solutions for exponent 4 [8]. 
Therefore we prove we prove that (13) has no rational solutions for exponent 3. [2] 

Theorem . Let 4 4m P , where P  is an odd prime, ( 1) / 2P   is an even number. 
From (3) and (8) we have 

      

1
4 4 4 4

1 2 1 2 1 2
1

exp[ 2 2 ( )] ( ) ( ) 1
P

P P P P
j j

j

A A H B D S S S S




        
.   (14) 

From (3) we have 

             

1

4

2 4 2 4 2 3
1

exp[ 2 ( )] [exp( )]

P

P
j j P P P

j

A B D t t t






     
.           (15) 

From (8) we have 

                

1

4

2 4 2 4 1 2
1

exp[ 2 ( )]

P

P P
j j

j

A B D S S






   
.                (16) 

From (15) and (16) we have Fermat’s equation 

       

1

4

2 4 2 4 1 2 2 3
1

exp[ 2 ( )] [exp( )]

P

P P P
j j P P P

j

A B D S S t t t






       
.    (17) 

Fermat proved that (14) has no rational solutions for exponent 4 [8]. Therefor we prove that (17) has no rational 

solutions for prime exponent P . 
 
Remark. Mathematicians said Fermat could not possibly had a proof, because they do not understand FLT.In 

complex hyperbolic functions let exponent n  be n P  ， 2n P   and 4n P  . Every factor of 

exponent n  has Fermat’s equation [1-7]. Using modular elliptic curves Wiles and Taylor prove FLT [9,10]. This is 
not the proof that Fermat thought to have had. The classical theory of automorphic functions,created by Klein and 
Poincare, was concerned with the study of analytic functions in the unit circle that are invariant under a discrete 
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group of transformation. Automorphic functions are the generalization of trigonometric, hyperbolic elliptic, and 
certain other functions of elementary analysis. The complex trigonometric functions and complex hyperbolic 
functions have a wide application in mathematics and physics. 
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Abstract 
We define that prime equations 

        1 1 1( , , ), , ( , )n k nf P P f P P  
                （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are all prime. If Jiang’s 

function 1( ) 0nJ  
 then （5）has finite prime solutions. If 1( ) 0nJ  

 then there are infinitely many primes 

1, , nP P
 such that 1, kf f

 are  primes. We obtain a unite prime formula in prime distribution 

         
primes}are,,:,,{)1,( 111 kffNPPnN knk  

 

            

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
          （8） 

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6]. Jiang’s 
function provides proofs of the prime theorems which are simple enough to understand and accurate enough to be 
useful. 
 
 
2000 mathematics subject classification 11P32(primary),11P99(secondary). 
Keywords: Jiang function,Prime equations,Prime distribuition. 
 
      Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have 
every reason to believe that there are some mysteries which the human mind will never penetrate. 
                                          Leonhard Euler 
      It will be another million years, at least, before we understand the primes. 

                                         Paul Erdös 
 
Suppose that Euler totient function 

                  2
( ) ( 1)

P
P 


    

 as   ，              （1） 

where 2 P
P


 

 is called primorial. 

Suppose that
( , ) 1ih 

, where 1, , ( )i    . We have prime equations 

                1 ( ) ( )1, ,P n P n h       
                   （2） 

where 
0,1, 2,n  

. 

（2）is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions. We have 

               (mod )

( )
1 (1 (1)).

( )i

i

i i

h
P N

P h

N
o






 


  
,                  （3） 

where ih denotes the number of primes iP N
 in i iP n h 

 
0,1, 2,n  

, 
( )N

 the number of 

primes less than or equal to N . 
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We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in prime 
distribution. 

Let 30   and (30) 8  . From (2) we have eight prime equations 

1 30 1P n 
, 2 30 7P n 

, 3 30 11P n 
, 4 30 13P n 

, 5 30 17P n 
,  

6 30 19P n 
, 7 30 23P n 

, 8 30 29P n 
, 0,1, 2,n               （4） 

Every equation has infinitely many prime solutions. 
THEOREM. We define that prime equations 

        1 1 1( , , ), , ( , , )n k nf P P f P P  
                          （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP P
 are primes. If Jiang’s 

function 
0)(1  nJ

 then (5) has finite prime solutions. If 
0)(1  nJ

 then there exist infinitely many 

primes 1, , nP P
 such that each kf  is a prime. 

PROOF. Firstly, we have Jiang’s function [1-11] 

              
1

3
( ) [( 1) ( )]n

n
P

J P P 


   
,                       （6） 

where 
( )P

 is called sieve constant and denotes the number of solutions for the following congruence 

             
1

1
( , , ) 0 (mod )

k

i n
i

f q q P

 

,                      （7） 

where 1 1, , 1, , 1, , 1nq P q P     
. 

1( )nJ   denotes the number of sets of 1, , nP P
 prime equations such that 1 1 1( , , ), , ( , , )n k nf P P f P P  

 

are prime equations. If 1( ) 0nJ  
 then (5) has finite prime solutions. If 1( ) 0nJ  

 using 
( )P

 we sift 

out from (2) prime equations which can not be represented 1, , nP P
, then residual prime equations of (2) are 

1, , nP P
 prime equations such that 1 1( , , ), ,nf P P 

 1( , , )k nf P P
 are  prime equations. Therefore we 

prove that there exist infinitely many primes 1, , nP P
 such that 1 1( , , ), ,nf P P 

 1( , , )k nf P P
 are 

primes.  
Secondly, we have the best asymptotic formula [2,3,4,6] 

    
primes}are,,:,,{)1,( 111 kffNPPnN knk  

 

            

1 1

1

( )
(deg ) (1 (1)).

! ( ) log

k nk
n

i k n k n
i

J N
f o

n N

 

 
 

 


  
          （8） 

（8）is called a unite prime formula in prime distribution. Let 
1, 0n k 

, 2 ( ) ( )J   
. From (8) we have 

prime number theorem 

            

 1 1 1( , 2) : is prime (1 (1)).
log

N
N P N P o

N
    

.        （9） 
 
 
Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this old 
conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because they 
do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by this 
theorem. 

Example 1. Twin primes , 2P P  (300BC). 
From (6) and (7) we have Jiang’s function 
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2

3
( ) ( 2) 0

P
J P


   

. 

Since 2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   is a prime equation. 

Therefore we prove that there are infinitely many primes P  such that 2P   is a prime. 

Let 30   and 2 (30) 3J 
. From (4) we have three P  prime equations 

               3 5 830 11, 30 17, 30 29P n P n P n     
. 

From (8) we have the best asymptotic formula 

  2
2 2 2

( )
( ,2) : 2 prime (1 (1))

( ) log

J N
N P N P o

N

 


 
    

 

          
2 23

1
2 1 (1 (1)).

( 1) logP

N
o

P N

 
    

   
In 1996 we proved twin primes conjecture [1] 

Remark. 2 ( )J 
 denotes the number of P  prime equations, 

2 2
(1 (1))

( ) log

N
o

N



 


 the number of 

solutions of primes for every P  prime equation. 

Example 2. Even Goldbach’s conjecture 1 2N P P 
. Every even number 6N   is the sum of two primes. 

From (6) and (7) we have Jiang’s function 

            
2

3

1
( ) ( 2) 0

2P P N

P
J P

P





    

 . 

Since 2 ( ) 0J  
 as N   in (2) exist infinitely many 1P

 prime equations such that 1N P
 is a prime 

equation. Therefore we prove that every even number 6N   is the sum of two primes. 
From (8) we have the best asymptotic formula 

  2
2 1 1 2 2

( )
( ,2) , prime (1 (1)).

( ) log

J N
N P N N P o

N

 


 
    

 

        
2 23

1 1
2 1 (1 (1))

( 1) 2 logP P N

P N
o

P P N

  
     

   . 
In 1996 we proved even Goldbach’s conjecture [1] 

Example 3. Prime equations , 2, 6P P P  . 
From (6) and (7) we have Jiang’s function 

             
2

5
( ) ( 3) 0

P
J P


   

, 

2 ( )J 
 is denotes the number of P  prime equations such that 2P   and 6P   are  prime equations. Since 

2 ( ) 0J  
 in (2) exist infinitely many P  prime equations such that 2P   and 6P   are  prime equations. 

Therefore  we prove that there are infinitely many primes P  such that 2P   and 6P   are  primes. 

Let 230, (30) 2J  
. From (4) we have two P  prime equations 

           3 530 11, 30 17P n P n   
. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(

)(
primes}are6,2:{)2,(

33

2
2

3 o
N

NJ
PPNPN 





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Example 4. Odd Goldbach’s conjecture 1 2 3N P P P  
. Every odd number 9N   is the sum of three primes. 

From (6) and (7) we have Jiang’s function 

      
 2

3 23

1
( ) 3 3) 1 0

3 3P P N
J P P

P P




 
       

   . 

Since 3( ) 0J  
 as N   in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 

1 2N P P 
 is a prime equation. Therefore we prove that every odd number 9N   is the sum of three primes. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : prime (1 (1))

2 ( ) log

J N
N P P N N P P o

N

 


 
     

. 

        

2

3 3 33

1 1
1 1 (1 (1))

( 1) 3 3 logP P N

N
o

P P P N

   
        

     . 

Example 5. Prime equation 3 1 2 2P PP 
. 

From (6) and (7) we have Jiang’s function 

                 
 2

3
3

( ) 3 2 0
P

J P P


    
 

3 ( )J 
 denotes the number of pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. Since 

3( ) 0J  
 in (2) exist infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime equation. 

Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 1 2 3 3

( )
( ,3) , : 2 prime (1 (1)).

4 ( ) log

J N
N P P N PP o

N

 


 
    

 

Note. deg 1 2( ) 2PP 
. 

Example 6 [12].  Prime equation 
3 3

3 1 22P P P 
. 

From (6) and (7) we have Jiang’s function 

              

2
3

3
( ) ( 1) ( ) 0

P
J P P 


      

, 

where 
( ) 3( 1)P P  

 if 

1

32 1(mod )
P

P



; 

( ) 0P 
 if 

1

32 1(mod )
P

P


 ; 
( ) 1P P  

 otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 

equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

)).1(1(
log)(6

)(
prime}2:,{)3,(

3

2

3

33
2

3
1212 o

N

NJ
PPNPPN 






 

Example 7 [13].  Prime equation 
4 2

3 1 2( 1)P P P  
. 

From (6) and (7) we have Jiang’s function 

         

2
3

3
( ) ( 1) ( ) 0

P
J P P 


      

 

where 
( ) 2( 1)P P  

 if 
1(mod 4)P 

; 
( ) 2( 3)P P  

 if 
1(mod8)P 

; 
( ) 0P 

 otherwise. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is a prime 
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equation. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

8 ( ) log

J N
N P P N P o

N

 


 
   

 
Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of 

length k . 

   1 2 1 3 1 1 1, , 2 , , ( 1) , ( , ) 1kP P P d P P d P P k d P d       
.      （10） 

From (8) we have the best asymptotic formula 

       
primes}are)1(,,,:{)2,( 11112 dkPdPPNPN  

 

                     

1
2 ( )

(1 (1)).
( ) log

k

k k

J N
o

N

 

 



 
. 

If 2 ( ) 0J  
 then (10) has finite prime solutions. If 2 ( ) 0J  

 then there are infinitely many primes 1P
 such 

that  2 , , kP P
 are  primes.  

To eliminate d  from (10) we have 

     3 2 1 2 12 , ( 1) ( 2) ,3jP P P P j P j P j k       
. 

From (6) and (7) we have Jiang’s function 

             
3

3
( ) ( 1) ( 1)( 1) 0

P k k P
J P P P k

  
       

 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3, , kP P

 are 

prime equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such 

that 3, , kP P
 are primes. 

From (8) we have the best asymptotic formula 

 1 1 2 2 1( ,3) , : ( 1) ( 2) prime,3k N P P N j P j P j k        
    

2 2
3( )

(1 (1))
2 ( ) log

k

k k

J N
o

N

 

 



 
     

2 2 2

1 12

1 ( 1)
(1 (1))

2 ( 1) ( 1) log

k k

k k kP k k P

P P P k N
o

P P N

 

   

 
   

  . 

Example 9. It is a well-known conjecture that one of 
2, 2, 2P P P   is always divisible by 3. To generalize 

above to the k  primes, we prove the following conjectures. Let n  be a square-free even number. 

1. 
2, ,P P n P n 

, 

where 
3 ( 1)n 

. 

From (6) and (7) we have 2 (3) 0J 
, hence one of 

2, ,P P n P n 
 is always divisible by 3. 

2. 
2 4, , , ,P P n P n P n  

, 

where 
5 ( ), 2,3.n b b 

 

From (6) and (7) we have 2 (5) 0J 
, hence one of 

2 4, , , ,P P n P n P n    is always divisible by 5. 

3. 
2 6, , , ,P P n P n P n   , 
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where 
7 ( ), 2, 4.n b b 

 

From (6) and (7) we have 2 (7) 0J 
, hence one of 

2 6, , , ,P P n P n P n  
 is always divisible by 7. 

4. 
2 10, , , ,P P n P n P n  

, 

where 
11 ( ), 3,4,5,9.n b b 

 

From (6) and (7) we have 2 (11) 0J 
, hence one of 

2 10, , , ,P P n P n P n    is always divisible by 11. 

5. 
2 12, , , ,P P n P n P n   , 

where 
13 ( ), 2,6,7,11.n b b 

 

From (6) and (7) we have 2 (13) 0J 
, hence one of 

2 12, , , ,P P n P n P n  
 is always divisible by 13. 

6. 
2 16, , , ,P P n P n P n  

, 

where 
17 ( ), 3,5,6,7,10,11,12,14,15.n b b 

 

From (6) and (7) we have 2 (17) 0J 
, hence one of 

2 16, , , ,P P n P n P n    is always divisible by 17. 

7. 
2 18, , , ,P P n P n P n   , 

where 
19 ( ), 4,5,6,9,16.17.n b b 

 

From (6) and (7) we have 2 (19) 0J 
, hence one of 

2 18, , , ,P P n P n P n    is always divisible by 19. 

Example 10. Let n  be an even number. 

1. 
, , 1,3,5, ,2 1iP P n i k  

, 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such that 

, iP P n
 are  primes for any k . 

2. 
, , 2, 4,6, , 2iP P n i k  

. 

From (6) and (7) we have 2 ( ) 0J  
. Therefore we prove that there exist infinitely many primes P  such that 

, iP P n
 are  primes for any k . 

Example 11. Prime equation 2 1 32P P P 
 

From (6) and (7) we have Jiang’s function 

               

2
3

3
( ) ( 3 2) 0

P
J P P


    

. 

Since 3( ) 0J  
 in (2) there are infinitely many pairs of 1P

 and 2P
 prime equations such that 3P

 is prime 

equations. Therefore we prove that there are infinitely many pairs of primes 1P
 and 2P

 such that 3P
 is a prime. 

From (8) we have the best asymptotic formula 

 
2

3
2 1 2 3 3 3

( )
( ,3) , : prime (1 (1)).

2 ( ) log

J N
N P P N P o

N

 


 
   

           

In the same way we can prove 
2

2 3 12P P P 
 which has the same Jiang’s function. 

Jiang’s function is accurate sieve function. Using it we can prove any irreducible prime equations in prime 
distribution. There are infinitely many twin primes but we do not have rigorous proof of this old conjecture by any 
method [20]. As strong as the numerical evidence may be, we still do not even know whether there are infinitely 
many pairs of twin primes [21]. All the prime theorems are conjectures except the prime number theorem, because 
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they do not prove the simplest twin primes. They conjecture that the prime distribution is randomness [12-25], 
because they do not understand theory of prime numbers. 
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After Wiles was about to announce his proof of FLT to the world on June 23, 1993. Jiang wrote this paper. 
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Fermat Last Theorem was Proved in 1991 

 
Jiang, Chun-xuan  

 
P. O. Box 142-206, Beijing, P. R. China 

 
We found out a new method for proving Fermat last theorem (FLT) on the afternoon of October 25, 1991. We 

proved FLT at one stroke for all prime exponents 3p  , It led to the discovery to calculate 

15, 21,35,105,n  
. To this date, no one disprove this proof. Anyone can not deny it, because it is a simple 

and marvelous proof. It can fit in the margin of Fermat book. 
In 1974 we found out Euler formula of the cyclotomic real numbers in the cyclotomic fields [1]. 

                      

1
1

1 1

exp
n n

i i
i i

i i

t J S J




 

 
 

 
 

,                         (1) 

where J  denotes a n - th root of unity, 1nJ  , n  is an odd number, it  are the real numbers. 

iS
 is called the complex hyperbolic functions of order n  with 1n  variables, 

   

1

2
( 1)

1

1 ( 1)
[ 2 ( 1) cos( ( 1) )]j

n

BA i j j
i j

i

i j
S e e

n n











    

,               (2) 
where 

      

1 1 1
1

1 1 1

, ( 1) cos , ( 1) ( 1) sin
n n n

j j j
j j

j j
A t B t t

n n
 

  
  

   


  


  

       
, 

      

1

2

1

2 0

n

i
i

A B





 
.                                                        (3) 

Using (1) the cyclotomic theory may extend to totally real number fields. It is called the hypercomplex variable 
theory [1]. (2) may be written in the matrix form 

1

1

1

1
2

1
3

1 1
2

2 2

1 1 0 0

( 1)
1 cos sin sin

2 2 cos
2 2 ( 1)1 2 sin1 cos sin sin

2exp( )sin( )
( 1) ( 1) ( 1)

1 cos sin sin
2

A

B

B

n n
n

enS
n n n eS

n eS
n n nn

BS
n n n

n n n

  


   


  

 

 
                                       
  








    











, 
(4) 

where ( 1) / 2n  is an even number. 
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From (4) we may obtain its inverse transformation 

1

1

1

1
2

1
3

1 1
2

2 2

1 1 1 1

2 ( 1)
1 cos cos cos

cos
2 ( 1)sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)

0 sin sin sin
2 2

A

B

B

n n
n

e n S
n n ne S

ne S
n n n

B S
n n n

n n n

  


  


  

 

 
                                       
  






 

    







. (5) 
From (5) we have 

          

1

1 1
1 1

, cos ( 1) cosj

n n
BA ij

i j i
i i

ij
e S e S S

n







 
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, 

          

1
1

1
1

sin ( 1) ( 1) sin .j

n
B j ij

j i
i

ij
e S

n










  
                             (6) 

In (3) and (6) it  and iS
 have the same formulas such that every factor of n  has a Fermat equation. Assume 

1 0S 
, 2 0S 

, 
0iS 

 where 
3,4,i  

, 
. 0in S 

 are 2n  indeterminate equations with 1n  
variables. From (6) we have 

           1 2
Ae S S 

, 

2 2 2
1 2 1 22 ( 1) cos .jB j j

e S S S S
n


   

                 （7） 
From (3) and (7) we may obtain the Fermat equation 

           

11

22
2 2

1 2 1 2 1 2 1 2
1 1

exp 2 ( ) ( 2 ( 1) cos ) 1.

nn

j n n
j

j j

j
A B S S S S S S S S

n




 

 
         
 
 
 

 
 (8) 

Theorem. Fermat last theorem has no rational solutions with 1 2 0S S 
 for all odd exponents. 

Proof. The proof of FLT is difficult when n  is an odd prime. We consider n  is a composite number. 

Let in n 
, where in

 ranges over all odd number. From (3) we have 

           

1 1
2

1 1

exp( 2 ) [exp( )]

nf
f

f
n f

j
j f

A B t 


 

 

  
                        (9) 

From (7) we have 

                       

1

2

1 2
1

exp( 2 )

f

f f
n

j
j f

A B S S




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                         (10) 

where 
f

 is a factor of n . From (9) and (10) we may obtain Fermat equation 

                   

1 1
2

1 2
1 1

exp( 2 ) [exp( )]

nf
f

f f f
n f

j
j f

A B S S t 


 

 

    
             (11) 

Every factor of n  has a Fermat equation. From (11) we have 
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1

0 1 2
1

1, 0, exp( )
n

A
nf B B e S S t







      
               (12) 

                 

1

2

0 1 2
1

, 0, exp( 2 ) 1

n

n n
n j

i

f n t t A B S S





      
            (13) 

                 

1
3

3 3 3
1 2 3

13

3,exp( 2 ) [exp( )]

n

nf A B S S t 






     
                (14) 

If 1 21, 0S S 
 and 1 20, 1S S 

, then 
0jA B 

. Euler proved (13), therefore (11) has no rational 

solutions with 1 2 0S S 
 (and so no integer solutions with 1 2 0S S 

) for all odd exponents f . (11) and (13) can 
fit in the margin of Fermat book. 

Let 
3n p

 where p  is an odd prime. From (3) and (7) we may derive Fermat eqations 
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             (15) 
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                      (16) 
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A B S S t t
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
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               (17) 

Euler proved (15) and (16), therefore (17) have no rational solutions with 1 2 0S S 
 (and so no integer solutions 

with 1 2 0S S 
) for any odd prime 

3p 
. (15)-(17) can fit in the margin 

Let 5n p  where p  is an odd prime. From (3) and (7) we may derive Fermat eqations 
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(18)-(20) can fit in the margin. 

Let 
7n p

 where 
p

 is an odd prime. From (3) and (7) we may derive Fermat equations 
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1
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exp( 2 ) [exp )]
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p p p
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i

A B S S t 




 
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                (23) 

(21)-(23) can also fit in the margin. 
Using this method we proved FLT in 1991 [2-5]. 

Let n p  where p  is an odd prime. From (3) and (7) we have 

1

1

2
2 2 2

1 2 1 2 1 2
1

exp( 2 ) 1, 2 cos

p

Bp p
j

i

A B S S e S S S S
p



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Let 
1

1
Ba S e

 and 
1

2
Bb S e

 From (24) we have 

                       
1( )Bp p pa b e 

                                 (25) 

                  

2 2 2 cos 1a b ab
p


  

                                (26) 

The proof of (25) is transformed into studying (26). (26) has no rational solutions with 0ab  ,  

because 

cos
p



 is an irrational number for 
3p 

. Therefore (25) has no rational solutions for  

any odd prime 
3p 

. (25) and (26) can also fit in the margin. 

Remark. If 
0iS 

, where 1, 2,3, , ,i n   then (11)-(23) have infinitely many rational solutions [1]. 
 
Note: 

Let one knew the important results, we gave out about 600 preprints in 1991-1992. There were my preprints in 

Princeton, Harvard, Berkeley, MIT, Uchicago, Columbia, Maryland, Ohio, Wisconsin, Yale, … …, England, 

Canada, Japan, Poland, Germany, France, Finland, … …, Ann. Math., Mathematika, J. Number Theory, Glasgow 
Math. J., London Math. Soc., In. J. Math. Math. Sci., Acta Arith., Can. Math. Bull. (They refused the publicaitons of 
my papers). Both papers were published in Chinese. FLT is as simple as Pythagorean theorem. This proof can fit in 
the margin of Fermat book. We think the game is up. We sent dept of math (Princeton University) a preprint on Jan. 
15, 1992. Wiles claims the second proof of FLT in England (not in U. S. A.) after two years. We wish Wiles and his 
supporters disprove my proof, otherwise Wiles work is only the second and complex proof of FLT. We believe that 
the Princeton is the fairest University and history will pass the fairest judgment on proofs of FLT and other problems. 
We are waiting for word from the experts who are studying this paper. 
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