
The Journal of American Science, 1(2), 2005, Li and Zhan, Study of the Reusable Workflow System

Study of the Reusable Workflow System

Haibo Li1, Dechen Zhan2

1 Centre of Intelligent Computing of Enterprises, School of Computer Science and Engineering, Harbin Institute of
Technology, Harbin, Heilongjiang 150080, China

2 School of Engineer, Northeast Agriculture University, Harbin, Heilongjiang 150030, China
Email: lihaibo@hit.edu.cn; dechen@hit.edu.cn

Abstract: Reusable development can promote the productivity of large workflow systems development.
However it has not precluded developers from designing workflow system tailoring to users’ specific
needs, though workflow management coalition standardized the five kinds of abstract interfaces of
workflow enactment service in workflow reference model. Specific business process characteristics are
still supported by specific workflow system. Method of software reuse is introduced to enhance reusability
of the core of workflow system, i.e. workflow engine. In component environment, general functionalities
of workflow engine are abstracted from business component, resulting in that the reusability of business
component is extended into workflow engine. So two aspects are considered, i.e. component-based
business processes development and reusable workflow engine development. The proposed approach is
supported by a set of composition methods and reuse strategies. Through application and comparison, we
show that different business requirements are met by reusing the workflow engine. [The Journal of
American Science. 2005;1(2):51-60].

Keywords: workflow engine; software reuse; reuse strategy; component

1 Introduction

As a technology for modelling and execution of
business processes, workflow management has emerged
for many years. Workflow management coalition
(WfMC) proposed a reference model (WFMC, 1994), as
a common framework in order to give a guideline for
developing workflow management system. At the heart
of this framework is workflow engine. Five kinds of
interfaces, i.e. modelling tools, client application,
external applications, administration and monitoring
tools, other workflow enactment services are defined for
execution service and used as a standard. However the
definition for these interfaces focus on the syntax and
has no clear enough semantics and usage (Sheth, 1999).
Therefore, different interpretations to the interfaces are
given and different viewpoints are proposed by
developers when they confront with specific
requirement. Heterogeneous business processes
executed by users have their own features, so different
requirements need to be met accordingly. For example,

task allocation is clear in some processes such as
document or order auditing so the processes can be
handled by computer completely, however it is unclear,
such as equipment repair process, in which workers of
different levels for skill must be chosen by supervisor.
Handling key data in some processes, such as storage or
finance management, demands those functionalities
supporting transaction management and exception
handling, so as to enhance reliability of system (Puusjari,
1997). In those timed processes, workflow system must
provide mechanism of event triggering automatically.
From these examples, we can see that features of
processes determine that of the workflow engine. The
numerous commercial workflow management products
also can be found that they all offer their specific
architectures, can integrate application from third part
easily, and can even embed functionality of developing
application to some extent, but these functions can
seldom be utilized completely except for basic ones.

To sum up, in order to customize workflow system
according to business characteristic freely and tailor
some features conveniently without influencing other

http://www.americanscience.org editor@americanscience.org ·51·

mailto:lihaibo@hit.edu.cn
mailto:dechen@hit.edu.cn

The Journal of American Science, 1(2), 2005, Li and Zhan, Study of the Reusable Workflow System

functionalities in system, the core of workflow system,
i.e. workflow engine should be reusable first.
Reusability of workflow engine means that new
workflow engine can be created through reconfiguring,
tailoring and inheriting existing workflow engine, so as
to meet new business requirement. Software component
technology is a way to raise efficiency and system’s
reusability (Batory, 1992; Novak, 1997; Lattanzi, 1998;
Mili, 1997; Rajlich, 1996). So it is an interesting topic
to apply the software component concept and method to
workflow engine development. In order to improve
reusability, many workflow systems support different
open mechanism. Some provide API to developers
(WorkMovr, 2001; Drala, 2001), and some provide
source code to developers, such as Fujitsu (2001) and
Vivtek (2001). Some researchers started with analyzing
architecture of workflow directly (Dragon, 2001; Zhuge,
2003). This article is written in the belief that workflow
is process logic separated from information system. To
discuss the reusability of workflow engine cannot be
independent of the analysis to business component. So
this article starts with some relevant definitions to
business component, then abstracts basic and required
functionalities from business object to comprise
workflow engine.

The motivation of this paper is to change
traditional development approach of workflow system,
to investigate the mechanism of reusability of workflow
engine, and to propose method and strategy to support
the component-based workflow engine development.
Developers can develop a new workflow engine by
reusing an old one, customize, tailor and extend
functions so that specific requirements of different users
can be met. Therefore, the management ideology of
enterprises would be laid out as exactly as possible.
Some unavoidable relevant definitions are provided in
this paper.

In the following section, we first discuss the design
principles and required features of workflow engine,
and then define some conceptions. In section 3, the
composition mode of workflow engine components is
given. Section 5 presents method of reuse a workflow
engine. An application example is shown in section 5,
and Section 6 gives a conclusion.

2 Workflow Engine Component

2.1 Design principles
Almost the definitions for all workflows represent

a workflow management system as automates the
process logic. So automating, dispatching artificially
and controlling process are the most key core function
of a workflow engine. A reusable workflow
management system should be a system whose
functionalities could be extended from the workflow
engine. A reusable workflow engine should have the
power to support process control, further more it is
reusable. The research for reusability of workflow
engine mainly involves reusability of process control.
Aiming at necessity, flexibility and low cost, but
completeness and complexity, only basic functionalities
and features are realized. Control flow among activities,
probing conditions and managing organization are
considered primarily in this paper, while the rest
functionalities, such as event triggering automatically,
transaction management and exception handling are not
involved.

2.2 Definition of workflow

By introducing concepts and methods relating to
software component into workflow engine, generally,
reconfiguration of workflow engine is represented as
“According to specific business requirement, following
specific principle, workflow engine can be converted
from existing form to target”. If a new component C’
can be defined by reusing a certain form of an existing
component C, we say component C is reused by
component C’.

A workflow system usually consists of two parts:
workflow modeling and workflow execution. The
former uses definition tools to generate workflow
specification in some middle language which can be
interpreted by computer finally. Workflow specification
contains a set of data definitions, such as the work list,
the logic sequence between tasks, workflow relevant
data, the role model data and a set of control condition.
All these data comprise the properties and behaviors.
Activity and control structure are denoted by a node
several kinds of routing control nodes respectively. So
we can use a directed acyclic graph (DAG) to represent
its process structure. Arrows in a DAG denote partial
order (i.e., logic order) between nodes. Workflow
engine constructs and executes activities by participant
and determines logic order of activities according to

http://www.americanscience.org editor@americanscience.org ·52·

The Journal of American Science, 1(2), 2005, Li and Zhan, Study of the Reusable Workflow System

some conditional constraints. The part of workflow
execution provides an executable environment for
building, running and managing workflow system. So
the definitions can be summarized as follows.

Definition 1 (Workflow specification). A workflow
specification is denoted as a 5-tuple ws =<
TN,CN,D,O,R >, where

(i) TN={tn1,tn2,…,tnn} is a set of task nodes.
(ii) CN={cn1,cn2,…,cnn} is a set of control nodes.
(iii) D is a set of workflow relevant data (see next

section).
(iv) O is a set of organization model.
(v) R is a superset, R=(DR,CR), where DR is a set

of data dependency and CR is a set of control
dependency (see next section).

Definition 2 (Workflow). A workflow is a 4-tuple,
wf=(id,ws,A,p), where

(i) id is an identifier assigned to the workflow.
(ii) ws is the associated workflow specification.
(iii) A is a set of activities and
(iv) is a set of partial order. p

Definition 2 describes that a workflow system
constructs, executes and controlling routing according
to workflow specification.

2.3 Required features of workflow engine

The definition of workflow from section above is
only a common one without features of software
component. In order to design a completely reusable
workflow engine, we need a further investigation and
start with business component, abstracting the features
of workflow, involving workflow relevant data, data
dependency and control dependency. So some
definitions about business component are presented
below. The application in software component
environment is composed of entities (i.e. business object)
describing business domain. Business object descript
information entity and physical entity with respective
semantics, such as order, report, equipment and staff in
diary business processes. The conception of business
object is different from that of object-oriented in
software engineer domain. It characterizes those
existent business entities in enterprise, not nonobjective
in software systems.

Definition 3 (Business object). A business object is a
6-tuple, can be denoted as bo=(id, A, M, S, δ, ψ), where

(i) id is an identifier assigned to the business
object.

(ii) A is a set of properties ai of bo, (i=1,2,…, m),
aj (bo) denotes property aj of bo.

(iii) M is a set of business operations mi which act
on bo, (i=1,2,…, n).

(iv) S is a state space of bo which contains k states
s1 ,…,sk. sj (bo) denotes state sj, S=φ denotes that bo is a
business object without state. The state of business
object depends on its properties. The transformation of
business object property depends on that of state and the
transformation process from one state to another is
called state transformation.

(v) δ: S→P(2A) is a map function from state to
property. δ(si)=P(ai1 ,ai2 ,…,aiu) or P(Ai) denotes that
state si of bo can be denoted by u properties
Ai={ai1 ,ai2 ,…,aiu}⊆A. P is a set of function or
predication expressions which represents value
characteristics of properties in the state si and constraint
between them.

(vi) ψ:S×M→S is transformation function.
ψ(si,m)=sj denotes that a state si can be transformated to
sj by executing method m in state si. The transformation
set of bo is denoted as ψ(bo), ψij(bo,m) denotes there
exists a m such that ψ(si,m)=sj.

Definition 4 (Business activity). A business activity is a
set of business operations which are executed
uninterruptedly by a specific role r, denoted as a 3-tuple
ba=(r, OP,), where p

(i) r is a set of roles.
(ii) OP is a set of business operations opi (i=1,2,…,

k)
(iii) is a set of partial orders between business

operations.
p

A business activity is composed of a series of
business operations in workflow domain, equivalent to
the set of business operations in component domain.
Start states of an activity are exhibited as start states of
one or more business objects. From start states, different
business operations uninterruptedly transform states of
activities, to target states of activities (i.e. a series of
business objects). So the start and end states determine

http://www.americanscience.org editor@americanscience.org ·53·

The Journal of American Science, 1(2), 2005, Li and Zhan, Study of the Reusable Workflow System

precondition and postpositional conditions respectively,
and simultaneously the routing of business process
depends on certain states.

Definition 5 (Workflow relevant data). Workflow
relevant data can be denoted as a 4-tuple rd=(id, BO, A,
S’), where

(i) id is an identifier assigned to the data.
(ii) BO is a set of business objects containing rd,

which only relates to start, end states and routing
between activities but other states of business objects
interacting with each other.

(iii) A is a set of activities containing business
operations on business objects set.

(iv) S’ is a state space of BO. It is obvisous that S’
only relates to start, end states of activities and routing
states between activities, but other states of business
objects in activity.

Workflow relevant data describes the minimal set
to support control process in workflow system such that
S’ ⊆S, where S is a set of states of business objects in
BO. It also describes properties which only relate to
starting an activity, completing an activity and routing
between activities.

The granularities of data and operation in
workflow domain are larger than those in software
component domain. Here we focus on the consideration
including starting, completing and controlling an
activity. We are only concerned about these aspects in
workflow engine design. The interaction between
business objects in an activity is handled by mechanism
of software component. Workflow relevant data
provides basal data for starting, completing and
controlling activities. In workflow domain, the
generation of an activity state sj depends on the
generation of other activity state si, denoted as sj→si.
Furthermore, state is predication of property, so that the
dependency between properties depends on that of
states. To stand out the dependency between properties,
in workflow domain, we separate property (i.e.
workflow relevant data) from predication representing
state.

Definition 6. Suppose that δ(si)=Pi(Di), δ(sj)=Pj(Dj), the
dependency between si and sj is denoted as Pi(Di)→ Dj ,
means that there exists a data dependency from Di to Dj

on predication Pi, and then generates state si.
Predication Pj is a condition for checking up

validity of Dj because Pj is a predication on Dj. If si is a
start state and si is an end state of an activity, Pi and Pj
are called precondition and postpositional conditions
respectively.

Business process contains a series of activities,
especially a start activity and an end activity. There
exists a partial order between activities, and give any
two activities ai and aj , aip aj is denoted that ai is
executed before aj. This routing between activities is
controlled by a set of predications, denoted as P= {P1,
P2,…,Pn}, where Pi is a condition which must be met
when an activity ai completes and triggers next activity
aj. If there always exists possible partial order between
ai and aj1,aj2,…,ajn, we say that there is a type of control
rule between ai and aj1,aj2,…,ajn. Control rules
determine workflow control routing according to
predication P’, where P’ ⊆P and one type of control
rule forms one type of control structure. The six types of
control structures involving sequence, AND-Split,
And-Join, OR-Split, OR-Join, and LOOP have been
proven effective for business process automation and
have widespread support in current workflow products
(Aalst, 2000). Control structures set is denoted as
CN={SEQUENCE,ANDSPLIT,ANDJOIN,ORSPLIT,OR
JOIN,LOOP}, where
z SEQUENCE: Activities are executed in order

under a single thread of execution, which means
that the succeeding activity cannot start until the
preceding activity is completed. The condition of
routing between activity ai and a j is always true,
denoted as P(ai, aj)=TRUE, and Completed(ai)=
TRUE, where Completed is postpositional
condition for completing activity ai.

z ANDSPLIT: A single thread of control splits into
two or more threads which are executed in parallel
within the workflow, allowing multiple activities to
be executed simultaneously. The condition between
predecessor activity ai and every successor
activities aj1,aj2,…,ajn must satisfy aip aj1 ∧ aip
aj2∧…∧ anp ajn,P1(ai, aj1)= TRUE ∧ P2(ai, aj2)=
TRUE…∧ Pn(ai, ajn)= TRUE, where Pj is a
predication of routing between activity ai and a ji,
and Completed(ai)= TRUE.

z ANDJOIN: Two or more parallel executing

http://www.americanscience.org editor@americanscience.org ·54·

The Journal of American Science, 1(2), 2005, Li and Zhan, Study of the Reusable Workflow System

activities converge into a single common thread of
control. The condition between every predecessor
activities ai1,ai2,…,aik and successor activity aj must
satisfy aj1 p ai ∧ aj2 p ai ∧…∧ajn ap n, and
Completed1(ai1)=TRUE∧Completed2(ai2)= TRUE
∧…∧Completedn(ain)=TRUE, and P1(aj1,ai)= TRUE
∧ P2(aj2,ai)= TRUE…∧ Pn(ajn,ai)= TRUE.

z ORSPLIT: A single thread of control makes a
decision upon which branch to take when
encountered with multiple alternative workflow
branches. The condition between predecessor
activity ai and every successor activities
aj1,aj2,…,ajn must satisfy
Completed(ai)=TRUE,P1(ai, aj1)=FALSE∧ P2(ai,
aj2)= FALSE∧…∧ Pi(ai, aji)=TRUE∧ Pi＋1(ai, aji＋1)=
FALSE ∧ …∧Pn(ai, ajn)= FALSE, must be met.

z ORJOIN: Two or more alternative workflow
branches re-converge to a single common activity
as the next stop within the workflow. No
synchronization is required because of no parallel
activity execution. The condition between every
predecessor activities ai1,ai2,…,aik and successor
activity aj must satisfy there exists only one
aij∈{ai1,ai2,…,aik}, such that Completed(aij)=
TRUE ∧ P(aij,aj)=TRUE.

z LOOP: A workflow cycle involves the repetitive
execution of one (or more) workflow activities

until a condition is met.

Definition 7 (Control dependency). For ∀ai,aj∈A, if a
partial order aip aj or ajp ai can be determined by
predication P, controlled by the six control structures,
there exists control dependency between activities ai

and aj, denoted as ai
P aj.

Control dependency represents that there exists
partial orders between activity notes AN according to
prediction P, controlled by control nodes CN.

Control structures in workflow must meet the
following rules. The three rules are used to guarantee
completeness of process logic, so that deadlock can be
eliminated (Chang, 2002).

Rule 1: An AND-Split control condition should
have its matching AND-Join control condition.

Rule 2: An OR-Split control condition should have
its matching OR-Join control condition.

Rule 3: A non-sequential control structure can be
completely contained in another non-sequential control
structure, but two non-sequential control structures
should not be partially overlapped. Here, we say that
two control structures are partially overlapped if an
activity in one control structure is inside the other
control structure.

The feature of workflow extracted from business
component domain is showed by Figure 1.

Business process

Business activity

Control dependency
Workflow
engine Data dependency

Workflow relevant data
Method other properties Business

object

Interaction mechanism
between business objects

Figure 1. Reusable system supported by workflow

2.4 Divide reusable workflow engine component

To divide component, a common principle which

must be followed is that one component should contain
those business objects with a tight association
(Katharine, 2002). So, to realize the characteristic above,

http://www.americanscience.org editor@americanscience.org ·55·

The Journal of American Science, 1(2), 2005, Li and Zhan, Study of the Reusable Workflow System

reusable workflow engine contains the following
components.
(1) Condition management component. Three kinds

of conditions are involved in workflow engine, i.e.
start condition of activity, completion condition of
activity and transfer condition between activities. It
is possible to probe the value of predications by a
single component, so that specific users can
modify predications to meet their specific
requirement without inflecting other factors.

(2) Control node component. Every routing controls
mentioned above section can be considered as one
control node components. Common characteristics
can be abstracted from these control nodes (Figure
2). At run-time, a control component is loaded into
memory according to workflow definition and runs.

After choosing routing and determining the next
activity, the control component is destroyed from
memory. Control component has two advances.
Firstly, at build-time, to encapsulate control node
can guarantee process completeness (guaranteed by
rule 1, 2, 3). Secondly, at run-time, execution
efficiency can be enhanced because relevant
control node only run when needed for routing and
cost can be cut.

(3) Organization component. Organization
component supports changes of organization and
role, determining participant of an activity and
successive development of other components, such
as resource management component. Workflow
engine push business process by interacting among
components.

+DispatchActivity()

#conditionPreActCompleted : Condition
#conditionPoststarted : Condition
#conditionTransfer : Condition
-numofActivityIn : int
-numofActivityOut : int
- inActivityPtr : Activity
-outActivityPtr : Activity

ControlNode

Sequence AndJoin OrSplit OrJoin Iterative

-conditionqueue : Condition
ConditionManagement

+GetTFofCondition() : bool
+JudgeTF()

-inPredication : String
-outTF : bool

Condition

1
1..*

1

*

AndSplit

-FunctionName : String
-ApplicationName : String
-ApplicationURL : String

Activity

-OrgId : String
-OrgName : String
-SuperiorId: String

Organize

-StationId : String
-StationName : String
-OrgId : String

Station

1
*

-RoleId : String
-RoleName : String

Role

-PersonId : String
-PersonName : String
-RoleId : String

Person

1

*

*

*

**

1

1

Figure 2. Class diagram of reusable workflow engine component

3 Composition of Workflow Engine Components

The composition of components means to compose
their conceptual level, such as the input/output
parameters, restrictions, etc. New component can be

built by the connection between existing control nodes
components.

(1) SEQUENCE structure

The composition of existing control node
components can build a new component C, denoted as

http://www.americanscience.org editor@americanscience.org ·56·

The Journal of American Science, 1(2), 2005, Li and Zhan, Study of the Reusable Workflow System

C=<C1,C2,…,Cn>, where C1,C2,…,Cn must satisfy the
following restrictions:
A. OutActivity(Ci) = InActivity(Cj),i<j, and there does
not existing k, meeting i<k<j.
B. Ci.numofActivityOut = Cj.numofActivityIn

After composition, Component C satisfies:
A. InActivity(C)=InActivity(C1)
B. OutActivity(C)=OutActivity(Cn)
C. C.numofActivityIn = C.numofActivityOut = 1

(2) ANDSPLIT/ ANDJOIN structure

ANDSPLIT/ANDJOIN structure is a control type
of 1 to many. The composition of this type can be

denoted as C=<C0,C1,C2,…,Cn,C’>, where C0 is a
component of ANDSPLIT type and C’ is ANDJOIN. In
C, Ci may be basic component or composition of
components. This composition mode meets the rule 1,
so completeness of control structure can be satisfied
(Figure 3). C0,C1,C2,…,Cn,C’ must satisfy the following
restrictions.
A. OutActivity(C0) = {InActivity(C1), InActivity (C2),…,
InActivity (Cn)}
B. C0.numofActivityOut = n
C. OutActivity(Ci)= InActivity (C’),i=1,…,n
D. Ci.numofActivityOut = 1
E. C’.numofActivityIn = n

 C1

Figure 3. Composition of ANDSPLIT/ANDJOIN structure component

Figure 4. Composition of ORSPLIT/ORJOIN structure component

Figure 5. Composition of ITERATE structure component

After composition, Component C satisfies:

A. InActivity(C)=InActivity(C0)
B. OutActivity(C)=OutActivity(C’)
(1) ORSPLIT/ ORJOIN structure

ORSPLIT/ORJOIN structure is a control type of 1
to many also. The composition of this type can be
denoted as C=<C0,C1,C2,…,Cn,C’>, where C0 is a
component of ORSPLIT type and C’ is ANDJOIN. In C,
Ci may be basic component or composition of
components. This composition mode meets the rule 2,
so completeness of control structure can be satisfied.

See Figure 4.C0,C1,C2,…,Cn,C’ must satisfy the
following restrictions.
A. OutActivity(C0) = InActivity(Ci),InActivity(Ci)
∈{ InActivity(C1),InActivity (C2),…, InActivity (Cn)}
B. C0.numofActivityOut = 1
C. ∃Ci, so that the predicate on P satisfies P=TRUE ,
which are labeled on the arc between C0 and Ci .
D. OutActivity(Ci)= InActivity (C’),i=1,…,n
E. Ci.numofActivityOut = 1
F. C’.numofActivityIn = 1

After composition, Component C satisfies.

C0

Cn

Ci
AND-
JOIN

AND-
SPLIT

C’

C1

C0

Cn

Ci
OR-
JOIN

OR-
SPLIT C’

CmCi C1

http://www.americanscience.org editor@americanscience.org ·57·

The Journal of American Science, 1(2), 2005, Li and Zhan, Study of the Reusable Workflow System

A. InActivity(C)=InActivity(C0)
B. OutActivity(C)=OutActivity(C’)

(2) ITERATE structure

A process is executed repeatedly until a condition
is met (Figure 5). Component of ITERATE structure
must satisfy the following restrictions.
A. OutActivity(Cm) = InActivity (C1)
B. Cm.numofActivityOut = 1
C. C1.numofActivityIn = 1
D. At a time, conditional predication satisfies P=TRUE
after executing Cm.

After composition, Component C satisfies:
A. InActivity(C)=InActivity(C0)
B. OutActivity(C)=OutActivity(C’)

4 Reusability of Workflow Systems

The reusability of workflow system is categorized
into reuse of workflow engine and that of business
components. On one hand, to reuse a workflow engine,
we designed and developed a set of abstract workflow
engine components at first. To meet different
requirements of enterprises to workflow engine, in
future development stage, when developer begins to
build a workflow engine, they only reuse existing
workflow engine, or do some inheritable developments
to meet specific requirement and characteristic of
business process. These succeeding workflow engine
components are all stored into workflow component
repository.

The reuse mode of business component includes
two aspects.

(1)Process reuse. This type of reuse can be divided
into two types further, i.e. complete reuse and partial
reuse. The former reuse a component through a
complete copy, involving not only business, but also
control structure of process. Partial reuse inherits
existing business process partly. Some identifier can be
used to reference existing relevant description of
existing business process, while not copying the whole
business process.

(2)Structure reuse. Developer only inherits
existing structure of business process but business
process. For the reason that the reusable workflow
engine is mainly composed of six types of control nodes,
and that these control node components can be reused to

form a new engine, developer can inherit control
structure of business process conveniently, then
reconfigure the input and output parameters of control
nodes and define new business process rapidly.
Similarly, this kind of reuse can be divided into
complete structure reuse and partial structure reuse.

Because data repository in ERP systems of existing
enterprises are based on relational databases, two
methods for component repository here are proposed
when creating a new component by redefining an
existing component. The first uses relational tables to
store new component. By copying existing data and
appending new to a table, a new component repository
can be realized. The method has a disadvantage of data
redundancy. The other method is to utilize user-defined
language to describe component repository. The
following language is an example.
<Component List>::=COMPONENT<Component id>

REUSEDFROM <ProcessId>
REUSEDTYPER < ALL| PART|ALLSTRUCT|
PARTSTRUCT>
[COMPONENTINHERITED< Component
List,Component type >]
COMPONENT < Component List ,Component type>
END

In the definition above, “REUSEDFROM” denotes
business process to reuse, “REUSEDTYPER” is type of
reuse, “COMPONENTINHERITED” is component
inherited when inheriting partly, “COMPONENT” is
new component. Existing workflow engine component
can be referenced though middle language by this
method.

5 Application

The proposed approach has been applied to the
development of CERP system in many enterprises of
China and several projects of the National High-Tech
Research and Development Plan of China. These
applications are developed in our integrated framework
(Figure 6). This framework has implemented software
reconfigure effectively and enhanced the development
efficiency of enterprise applications. Data for modeling
an ERP system is inputted into modeling tool, called
ERP Modeling which is developed by our team, as
shown on the left part of Figure 6: (1) the modeling tool,
i.e. ERP Modeling used to model applications and
workflow systems; (2) model description exporting

http://www.americanscience.org editor@americanscience.org ·58·

The Journal of American Science, 1(2), 2005, Li and Zhan, Study of the Reusable Workflow System

from ERP Modeling as XML format, including access
control data, function items data and interface items
data; (3) business component repository used to provide
business component and to composite function and
interface item components.

In middle part of Figure 6, workflow engine in this
framework receives model data and is employed to

schedule function item components, interface item
components and different roles so that software systems
can be executed accurately. Workflow Specification
comes from modeling tool and provides information to
workflow execution service. A set of workflow engine
components in every similar domain developed stage is
stored into workflow engine component repository.

Business Analysis Domain Users Operation Domain

Workflow DomainDevelopers Users

Modeling Tool

Schedule C
om

ponents

User Interface

Access Control XML Workflow
Engine

Component
Repository

Workflow
Specification

Function Items XML

Figure 6. Component-based workflow development framework

6 Conclusion

Instead of developing every workflow management
system from the ground up, it should be possible to
come up with a generic and reusable set of functionality
that provides the basic capabilities of a workflow engine.
Its development effectiveness will keep on improving
with the increasing number of the developed systems,
especially in similar domains. Reliability of system
based on this method could be guaranteed. This paper
has focused on the development of such a reusable
workflow engine. At the same time, the reusability of
business component is also discussed.

Comparing with traditional workflow engine
development approaches, reusable workflow engine has
several advantages. (1) The architecture of reusable
workflow engine is oriented from business component,
so their connection is seamless. (2) Not only it is a black

box reuse, but also users can understand its semantics
through the process scenario. (3) Control node
component runs only when routing control is needed
between activities. This characteristic could save
resource and enhance efficiency. (4) Development
experiences can be inherited based on the development
of reusable workflow engine.

The ongoing work is concerns two aspects. The
first is to enrich workflow engine component repository
through developing other business domains. This work
can verify those engine components better. The second
is to introduce knowledge management mechanism into
business component repository, which is more
meaningful work than the current one, in which we
adopt model copy mode to reuse business component.

Acknowledgments

The authors also wish to acknowledge the financial
support of the National High-Tech. R&D Program for

Interface Items XML

Application Data Workflow Related Data Model Data

Execution Service

Application

Business Component Repository

http://www.americanscience.org editor@americanscience.org ·59·

The Journal of American Science, 1(2), 2005, Li and Zhan, Study of the Reusable Workflow System

CIMS, China, Grant 2003AA4Z3210, 2003AA413023
and 2002AA413310.and another cooperative project
from European Union.

Correspondence to:
Haibo Li
Centre of Intelligent Computing of Enterprises
School of Computer Science and Engineering
Harbin Institute of Technology
Harbin, Heilongjiang 150080, China
Working: School of Engineer
Northeast Agriculture University
Harbin, Heilongjiang 150030, China
Telephone: 01186-451-8641-2664
Email: lihaibo@hit.edu.cn

References
[1] A Frame Software. WorkMovr API Set Wverview, Available

from http://www.a-froma.com /HTMDocs /PDF/APIset-pdf,
2001

[2] Sheth A, van der Aalst W, Arpinar I. Processes driving the
networked economy, IEEE Concurrency, July-September,
1999:18-31.

[3] Dragon. A Micro-workflow: A Workflow Architecture
Supporting Compositional Object-oriented Software
Development. Ph.D. thesis, University of Illinois at
Urbana-Champaign, 2001.

[4] Duk-Ho Chang, Jin Hyun Son, Myoung Ho Kim. Critical path
identification in the context of a workflow. Information and
Software Technology 2003;44:405-17.

[5] Drala Software. Drala Workflow Engine. Available from

http://www.dralasoft.com/products/ workflow, 2001.
[6] Batory D, O’Malley S. The design and implementation of

hierarchical software systems with reusable components, ACM
Transactions on Software Engineering and Methodology.
1992;1(4):355-98.

[7] Hai Zhuge. Component-based workflow systems development.
Decision Support Systems. 2003;35:517-36.

[8] Fujitsu Software Corporation. i-Flow Architecture White Paper,.
Available from http://www.i-flow.com, 2001.

[9] Novak Jr. GS. Software reuse by specialization of generic
procedures through views. IEEE Transactions on Software
Engineering 1997;23(7):401-17.

[10] Puusjari J, Tirri H, Veijalainen J. Reusability and modularity in
transactional workflows. Information Systems
1997;22(2/3):101-20.

[11] Katharine Whitehead. Component-based Development. Addison
Wesley Longman, Inc. 1st edition ISBN: 0201675285, 2002.

[12] Hollingsworth D. Workflow Management Coalition: The
Workflow Reference Model. Document Number WFMC-TC00
-1003, Brussels,1994.

[13] Lattanzi M, Henry S. Software reuse using C++ class, the
question of inheritance, Journal of Systems and Software
1998;41:127-32.

[14] Mili R, Mili A, Mittermeir RT. Storing and retrieving software
components: a refinement based system. IEEE Transactions on
Software Engineering 1997;23(7):445-60.

[15] Vivtek, wftk: Open-source Workflow Toolkit. Available from
http:// www.vivtek.com/wftk/, 2001.

[16] Rajlich V, Silva JH. Evolution and reuse of orthogonal
architecture. IEEE Transactions on Software Engineering
1996;22(2):153-7.

[17] van der Aalst WMP, Barros AP, ter Hofstede AHM,
Kiepuszewski B. Advanced workflow patterns. The Seventh
International Conference on Cooperative Information Systems
(CoopIS). 2000:18-29.

http://www.americanscience.org editor@americanscience.org ·60·

mailto:lihaibo@hit.edu.cn
http://www.dralasoft.com/products/ workflow
http://www.vivtek.com/wftk/

	Figure 1. Reusable system supported by workflow
	4 Reusability of Workflow Systems
	6 Conclusion
	Acknowledgments

