Assessment of Lichen Species in a Temperate Region of

Garhwal Himalaya, India

Balwant Kumar

Department of Botany, Kumaun University, Nainital- 263002 (Uttarakhand), India <u>drbalwantkumararya@gmail.com</u>

ABSTRACT: An enumeration of 106 lichen species belonging to 47 genera and 28 families from Baniyakund-Chopta areas of Garhwal is provided. The area is dominated by macrolichens (foliose to fruticose form). The area exhibit the luxuriant growth of corticolous lichens represented by the occurrence of 64% of corticolous (bark inhabiting) lichens followed by 30% of saxicolous (rock inhabiting) and 4% of terricolous (soil inhabiting) lichens. A single species growing on leaves (foliicolous) is also recorded from the area. If we compare the lichen diversity of the study area vis-à-vis other regions, it is about 30% of the Garhwal Himalayas, 20% of the Uttarakhand and 10% of the Himalayas and less than 0.5% of Indian lichen diversity. [The Journal of American Science. 2009; 5(4):107-112]. (ISSN 1545-1003).

Key words: Lichen diversity, phorophytes, substratum, growth forms

INTRODUCTION

Lichens comprise a unique group of plant that consists of two unrelated organism, a fungus and an alga, growing together in a close symbiotic association. The study of lichen remains quite neglected throughout the world, through they together with mosses form dominant organisms in ecosystem covering over 10% of the earth terrestrial habitats, particularly at higher elevations (Nash and Egan 1988). Lichens with cynobacterial blue green symbionts, contribute significantly for forest nitrogen fixation (Slack 1988). Besides many other uses, lichens are also used as pollution monitors. They are the plants that occur in most adverse conditions of climate and substrate. Thus the importance of this group in an ecosystem is very high in its own way. Lichens are just like little sponges that take up everything that comes their way, including air pollution (Fleishner 1994).

Lichens are universally distributed organisms occurring in varied climatic conditions ranging from the poles to the tropics in earth. They may look like crust, spreading rapidly over the surface (crustose lichens) or leafy and loosely attached to the surface (foliose lichens) and branched and shrubby, hanging from tree twigs or branches, with a single attachment (fruticose lichens). The collections were made along the way from Dalkuri to Bhujgali (Chopta) via Chpota and at different localities of the region. Negi (2000) recorded the occurrence of 85 macrolichens in the area. The micro lichens from the area were not listed so far.

MATERIALS AND METHODS

Site Description

The study site Baniyakund-Chopta is situated between 2500m to 3500m (asl) in the Rudraprayag district of Uttarakhand along with Akashkamini valley at 79° - 79° 30'E and 30° 30' – 30^{0} 42' N. The local human population settled in the low land fringe areas comprises semi pastoralists with livestock grazing and agriculture as their dominant land use activities. While low elevation woodlands such as *Quercus* forests are open for fodder and fuel wood collection throughout the year, grazing in the higher elevation forests and grasslands starts in early June, reaching a maximum in July, August and stop in early October. The maximum monthly temperature in the area varies from around 19°C to 37°C from the higher altitude grasslands to the lower elevation Quercus forests respectively during the snow free months of May to October, while the minimum temperature drops as low as -15°C in the alpine grasslands during the months of December to February.

http://www.americanscience.org

americanscience@gmail.com

In general the climate of the Chopta region is less severe summer, more or less higher precipitation and colder or more prolonged winter. The climatic factors i.e. precipitation, temperature, relative humidity and wind, in association with elevation (valley or mountain ranges from foot hills to mountain zones), proximity to Great Himalaya, slope aspect and vegetation type etc, cause variation in climates at local or even micro levels (Gaur 1999). Major output of precipitation is in

the form of rainfall besides occasional occurrence of due hailstorms, fog, frost, snow fall etc. The south east monsoon commences towards the end of June and bursts until the mid of September.

Methodology

The lichen specimens were collected with the help of Chisel and Hammer along with their ecological notes. The type of forest vegetation, host tree type, location of the lichens thallus (on trunk, branch, twigs or leaves, soil and rock substratum); together with altitudes and other ecological notes were recorded. The specimens were collected investigated morphologically, anatomically and chemically at Lichenology laboratory of the National Botanical Research Institute, Lucknow. The collected samples were packed on hard card sheets inside a lichen herbarium packet (17cmX10mm) with details of the locality and are preserved at museum Center for Ecological Studies, Technology India Appropriate Ukhimath (Rudraprayag), Uttarakhand and also preserved at Botany Department, Hemwati Nandan Bahuguna Garhwal University Sirinagar (Garhwal) Uttarakhand. A voucher specimen of each species

Kumar, B.

was also preserved at Herbarium of National Botanical Research Institue, Lucknow (LWG).

Identification of lichen species

The external morphology was studied under dissecting binocular microscope. The anatomy of the thallus and apothecia were studied under compound microscope. The external morphology was examined generally in dry condition but dark brown to bluish specimens of Leptogium were studied in wet condition. The anatomical structures were studied after cutting the section of dry material by microtome and with the help of safety razor blade. The thin dry sections of the thallus and ascocarp were immersed in 90% ethyl alcohol to drive off the intercellular or inter-hyphal air bubbles and the sections were mounted in water or in cotton blue in lactophenol. The colour of medulla. epithecium, hypohtecium, and ascus were recorded. The shape and size of the asci, ascospores and conidia were measured in the sections mounted in water. The measurements of the thallus, medulla, epithecium, and hymenium were generally taken in the sections mounted in cotton blue. The thallus size was measured in centimeter, lobe size and ascocarps in millimeter and thallus medulla, epithecium, hymenium thickness, asci and ascospores size in milimicron. Chemistry of the specimens was included colour spot tests and Thin Layer Chromatography (TLC).

RESULTS

A total of 106 species of lichen specimens from the study area Chopta forest (a purely *Q. semecarpifolia* forest) between 2500m to 3500m altitudes were recorded (Table 1). The specimens were collected in the month of May to October 2006. Marsland Press

Table 1: List of 28 families with 47 genera and 106 species of lichens recorded on different substrates in the Baniyakund-Chopta.

S. No.	Lichen Taxa	Family	Growth Form	Substratum
1	Acarospora chlorophana (Wahlenb, in Ach.) Massal.	Acarosporaceae	Crustose	On rock
2	Acarospora saxicola Fink ex Hedrick	Acarosporaceae	Crustose	On rock
3	Allocetraria stracheyi (Bab.) Kurok. & Lai	Parmeliaceae	Foliose	On rock
4	Aspicilia dwaliensis Rasanen	Hymeneliaceae	Crustose	On rock
5	Buellia leptocline(Flotow) Massal.	Physciaceae	Crustose	On bark
6	Buellia stigmea Tuck.	Physciaceae	Crustose	On rock
7	Bulbothrix bulbochaeta (Hale.) Hale.	Parmeliaceae	Foliose	On bark
8	Bulbothrix meizospora (Nyl.) Hale.	Parmeliaceae	Foliose	On bark
9	Caloplaca pelodella (Nyl.) Hasse	Teloschistaceae	Crustose	On bark
10	Caloplaca sp1	Teloschistaceae	Crustose	On rock
11	Caloplaca sp2	Teloschistaceae	Crustose	On rock
12	Canoparmelia aptata (Krempedh) Elix & Hale	Parmeliaceae	Foliose	On bark
13	Cetrariopsis wallichiana (Taylor) Kurokawa	Parmeliaceae	Foliose	On bark
14	Cetrelia braunsiana (Muell. Arg.) Culb & C. Club	Parmeliaceae	Foliose	On bark
15	Cetrelia cerarioides (Delise ex Duby) Culb & C. Culb	Parmeliaceae	Foliose	On bark
16	Cetrelia pseudolivetorum (Asah) Club & C. Club	Parmeliaceae	Foliose	On bark
17	Cetrelia sanguinea (Schaerer) Club & C. Club	Parmeliaceae	Foliose	On bark
18	Cetrelia sanguinea (Schaerer) Club. & C. Club.	Parmeliaceae	Foliose	On bark
19	Chrysothrix candelaris (L.) Laundon	Chrysothricaceae	Crustose	On bark/rock
20	Chrysothrix chlorina (Ach.) Laundon	Chrysothricaceae	Crustose	On bark
21	Cladonia corymbescens Nyl.	Cladoniaceae	Squamules	On soil
22	Cladonia furcata (Huds) Schrader	Cladoniaceae	Squamules	On bark/rock with moss
23	<i>Cladonia</i> sp.	Cladoniaceae	Squamules	On rock
24	Cladonia squamosa (Scop) Hoffm	Cladoniaceae	Squamules	On bark
25	Dermatocarpon vellereum Zschacke	Dermatocarpaceae	Foliose	On rock
26	<i>Everniastrum cirrhatum</i> (E Fries) Hale ex Sipman	Parmeliaceae	Foliose	On bark
27	Everniastrum nepalense (Taylor) Hale ex Sipman	Parmeliaceae	Foliose	On bark
28	Graphis aicatricosa Nyl.	Graphidiaceae	Crustose	On bark
29	Graphis chlorotica	Graphidiaceae	Crustose	On bark
30	Graphis proserpens Vainio	Graphidiaceae	Crustose	On bark
31	Graphis scripta (L.) Ach.	Graphidiaceae	Crustose	On bark
32	Graphis sikkimensis (Nagarkar & Patw.)	Graphidiaceae	Crustose	On bark
33	Heterodermia diademata (Taylor) D. Awasthi	Phyasciaceae	Foliose	On bark
34	Heterodermia hypocaesia (Yasuda) Awasthi	Phyasciaceae	Foliose	On rock
35	Heterodermia incana (Stirton) D. Awasthi	Phyasciaceae	Foliose	On bark
36	Heterodermia isidiophora (Vainio) Awasthi	Phyasciaceae	Foliose	On bark
37	Heterodermia japonica (Sato.) Swinsc. & Krog.	Phyasciaceae	Foliose	On soil with moss
38	Heterodermia leucomela (L.) Poelt	Phyasciaceae	Foliose	On bark
39	Heterodermia pseudospeciosa (Kurokawa) Culb	Phyasciaceae	Foliose	On bark with moss
40	Heterodermia speciosa (Wulfen) Trevisan	Phyasciaceae	Foliose	On rock
41	Hymenelia sp.	Hymeneliaceae	Foliose	On bark

42	Hypotrachyna awasthiHale & Patw.	Parmeliaceae	Foliose	On rock with
43	Hypotrachyna crenata (Kurok) Hale	Parmeliaceae	Foliose	moss On rock
44	Hypotrachyna exsecta (Taylor) Hale	Parmeliaceae	Foliose	On bark
45	Hypotrachyna scytophylla (Kurok.) Hale	Parmeliaceae	Foliose	On rock
46	Ioplaca pindarensis (Rasanen) Poelt & Hintergger	Teloschistaceae	Crustose	On rock
47	Lecanora achroa (Nyl.) Crombie	Lecanoraceae	Crustose	On bark
48	Lecanora sp	Lecnoraceae	Crustose	On rock
49	Lecidea sp.	Lecideaceae	Crustose	On bark
50	Lepraria lobificans Nyl.	Lichen imperfecti	Crustose	On bark
51	Lepraria sp1	Lichen imperfecti	Crustose	On bark
52	Lepraria sp2	Lichen imperfecti	Crustose	On bark
53		Lichen imperfecti	Crustose	On rock
54	Leptogium askotense D. Awasthi	Collemataceae	Foliose	On bark
55	Leptogium papillosum B. de Lesd Dodge	Collemataceae	Foliose	On bark
56	Leptogium pedicelatum M. P. Jorg	Collemataceae	Foliose	On bark
57	Leptogium trichophorum (Muell.) Arg.	Collemataceae	Foliose	On bark
58	Lobaria retigera(Bory) Trevisan	Lobariaceae	Foliose	On bark
59	Lobaria sp	Lobariaceae	Foliose	On bark
60	Myelochora aurulenta (Tuck) Elix & Hale	Parmeliaceae	Foliose	On bark
61	Myelochora irrugans (Nyl.) Exil & Hale	Parmeliaceae	Foliose	On bark
62	Myelochora xantholepsis (Mont & Bosch) Elix & Hale		Foliose	On bark
63	Ochrolechia rosella (Muell. Arg.) Vers.	Pertusariaceae	Crustose	On bark
64	<i>Opegrapha</i> sp.	Opegraphaceae	Crustose	On Leaf
65	Parmelia squarrosaHale	Parmeliaceae	Foliose	On bark
66	Parmelinella wallichiana (Taylor) Elix & Hale	Parmeliaceae	Foliose	On soil with
67	Parmetroma masetronum (Muell Ara) Hele	Parmeliaceae	Foliose	moss On hork
67 68	Parmotrema mesotropum (Muell. Arg.) Hale	Parmeliaceae	Foliose	On bark
	Parmotrema nilgherrense (Nyl.) Hale	Parmeliaceae		On bark
69 70	Parmotrema saccatilobum(Taylor) Hale		Foliose Foliose	On bark On bark/Soil
	Peltigera polydactyla (Neck) Hoffm	Peltigeraceae		with moss
71	Peltigera rufescens (Weiss) Humb	Peltigeraceae	Foliose	On soil with moss
72	Pertusaria aqussiae Fe	Pertusariaceae	Crustose	On bark
73	Pertusaria leucosorodes Nyl.	Pertusariaceae	Crustose	On bark
74	Phaeophyscia hispidula (Ach.) Moberg	Phyasciaceae	Foliose	On bark
75	Phyllopsora albicans Muell. Arg.	Lecideaceae	Crustose	On bark
76	Physcia dimidiata (Ach.) Nyl.	Physciaceae	Foliose	On bark
77	Porpidia albocoerulescens (Wulfen) Hertel & Knoph in Hertel	Porpidiaceae	Crustose	On rock
78	Porpidia crustulata(Ach.) Hertel & Knoph in Hertel	Porpidiaceae	Crustose	On rock
79	Porpidia macrocarpa(DC) Hertel & Knoph in Hertel	Porpidiaceae	Crustose	On rock
80	Punctelia borreri (Sm) Krog.	Parmeliaceae	Foliose	On bark
81	Punctelia neutralis (Hale) Korg.	Parmeliaceae	Foliose	On rock
82	Punctelia subrudecta (Nyl.) Krog.	Parmeliaceae	Foliose	On rock
83	Pyrenula immersa Muell. Arg.	Pyrenulaceae	Crustose	On bark
84	Pyrenula immissa (Stirton) Zahlbr	Pyrenulaceae	Crustose	On bark
85	Pyxine berteriana var himalaica D. Awasthi	Phyasciaceae	Foliose	On bark
86	Pyxine subcinereaStirton	Physciaceae	Foliose	On bark
00				

88	Ramalina himalensisRasanen	Ramalinaceae	Fruticose	On rock
89	Ramalina roesleri (Hochst) Hue	Ramalinaceae	Fruticose	On bark
90	Ramalina sinensis Jatta	Ramalinaceae	Fruticose	On bark
91	Rimelia reticulata (Taylor) Hale & Fletcher	Parmeliaceae	Foliose	On rock
92	Stereocaulon foliolosum Nyl.	Stereocaulaceae	Foliose	On rock
93	Stereocaulon pomiferum Duvign.	Stereocaulaceae	Foliose	On rock
94	Sticta nylanderianaZahlbr.	Stictaceae	Foliose	On bark
95	Sulcaria sulcata(Lev) Bystr. Ex Brodo & D. Hawkow	Alectoriaceae	Foliose	On bark
96	Umbilicaria badia Frey	Umbilicariaceae	Foliose	On rock
97	Umbilicaria indica Frey	Umbilicariaceae	Foliose	On rock
98	Umbilicaria virginis Schaerer	Umbilicariaceae	Foliose	On rock
99	Usnea aciculiferaVainio	Usneaceae	Fruticose	On bark
100	Usnea eumitrioides Mot.	Usneaceae	Fruticose	On bark
101	Usnea indica Mot.	Usneaceae	Fruticose	On rock
102	Usnea longissima Ach.	Usneaceae	Fruticose	On bark
103	Usnea orientalis Mot.	Usneaceae	Fruticose	On bark
104	Usnea pectinata (Taylor)	Usneaceae	Fruticose	On bark
105	Usnea subfloridana (Stirton)	Usneaceae	Fruticose	On bark
106	Verrucaria acrotella Ach.	Verrucariaceae	Crustose	On rock

DISCUSSION

The most common lichen species growing on different phorophytes belongs to the genera Chrysothrix, Parmelioid, Usnioid and Graphidiaceous lichens while Acarospora, Aspicilia, Umblicaria, Dermatocarpon, Porpidia, Buellia and Caloplaca mostly prefers to grow on rocks. Species of lichen genera Peltigera, Lobaria and Sticta prefers soil for their growth. The lichen flora in the study area exhibits greatest abundance in variety and luxuriance of growth. The lichens in the study area seem to prefer the bark of trees or rock as their substratum. Lichens also occur on soil, decaying wood, mosses and humus. The corticolous lichens are greatly influenced by the physical characters of the bark. Corticolous lichens may be epiphloedal or endophoedal based on their growth above or within the substratum. In epiphloedal lichens or the lichen tissue (especially the algal layer) develops above the outermost corky layer of bark, although few layers of cork are incorporated into the lower portion of the thallus. In endophloedal lichens the thallus crust lies entirely below the cork of periderm. Section of endophloedal crustose lichens together with their bark substrate generally show that the lichen thallus remains to the corky outer periderm by one or many layers of suberised impermeable cork cells. The nature of bark (smooth or rough) and moisture retaining capacity of bark also plays vital role in determining the type of lichen species. Quercus, Rhododendron, Acer spp. and

many other trees, as well as species of shrub and ringal act as favorable substrate for the luxuriant growth of lichens. Together with trees some shrubs of *Berberis* and *Cotoneaster* also provide a suitable substrate for growth of many lichen taxa.

The growth of lichens on rock is based on the physical and chemical characters of the rocks. The hard, permanent, and moist rock preferred by most of the lichen than the rocks which weather soon and allowing less time to the lichen to produce reproductive organs. Proximity of water to substratum also exerts great influence in determination of the type of lichen growth.

The lichen on the rock depends upon whether the rocks are acidic or basic. The exposure and moisture relationship strongly influence the lichen cover on rocks. The boulders along the stream and in open fields and fell fields are suitable habitats for lichens. In the open boulder fields the foliose lichen *Heterodermia* and *Phaeophyscia* occupies the exposed rocks and boulders while humus and soil containing pebbles at the base of boulders in moist places provide a habitat for lichen species *Cladonia* and *Peltigera*. The exposed dry boulders received sunrays throughout the day remains more or less dry and hot and only few dark black *Buellia* and *Acarospora* species able to grow.

The common epiphytic foliose and fruticose genera are *Everniastrum*, *Parmoterma*, *Heterodermia*, *Bulbothix*, *Hypotrachyna*, *Leptogium*, *Parmelia*, *Parmellinella*, *Lobaria*,

http://www.americanscience.org

americanscience@gmail.com

Ramalina, Rimelia, and *Usnea.* These genera colonize on trunk, branches, minor branches and twigs.

The moist shady location in the study area provide suitable habitat for growth of terricolous (soil inhabiting) and muscicolous (moss inhabiting) lichen species of *Peltigera* and *Cladonia*. Vertical face of roads covered with moss and small herbaceous plant provide a moist shady habitat for growth of terricolous and muscicolous lichens. Among different lichen forms the foliose forms dominated the area by 57 species followed by crustose 34 and 11 fruticose and 4 squamules species. Among the different lichen families, the Parmeliaceae exhibit its dominance in the area represented by 15 genera (31.9%) out of the 74 genera of lichens known from the area.

ACKNOWLEDGEMENT

I thankful to Dr. D. K. Upreti, N.B.R.I. Lucknow (UP) for the identification of lichen species and also thankful to Executive Director, Center for Ecological Studies, Appropriate Technology India (A.T. India) Guptakashi, Uttarakhand for providing necessary facilities.

REFERENCES

- Fleishner T L. Ecological costs of livestock grazing in Western North America. Conservation Biology 1994; **8**(3): 633. Gaur R D. Flora of district Garhwal Himaya (with ethnobotanical notes). 1999; 3-4.
- Kumar B. Lichen species distribution, cover and fall in a *Quercus semecarpifolia* (J E Smith) forest of Garhwal Himalaya (Ph. D. Thesis), HNB Garhwal University, Srinagar (Garhwal), India. 2008.
- Nash T H. & Egan R S. The biodiversity of lichens and bryophytes. In: Lichen, Bryophytes and air quality eds. Thomas Nash III & Vilkmar Wirth. Bibl. Carmer in der Gebr. Borntra. Verlag. Berlin, Stuttgart. Lichenol.1988; 30: 11-22.
- Negi, H R. On the pattern of abundance and diversity of macrolichens of Chopta-Tunganath in the Garhwal Himalaya.
- Indian Academy of Sciences 2000; 25 (4): 375-77.
- Slack N G. The Ecological Importance of lichen and Bryophyte. Bib. Lichenol. 1988; 30: 23-53.

http://www.americanscience.org