
Marsland Press Journal of American Science 2010; 6(1): 25-33

http://www.americanscience.org americansciencej@gmail.com 25

Application of String Matching in Internet Security and Reliability

Ali Peiravi

Ferdowsi University of Mashhad
Department of Electrical Engineering, School of Engineering, Mashhad IRAN

Telephone number: (0098) 511-881-5100
Ali_peiravi@yahoo.com

Abstract: In this study the role of string matching algorithms in hardware/software applications in virus scanners or
intrusion detection systems in improving data security over the internet is stressed. The author's contribution to an
architectural design of a new string matching algorithm implemented on an FPGA for improving hardware based
data security over the internet with improved performance over previously published results is reported. This can be
used in applications such as hardware virus scanners or intrusion detection systems to further improve internet
reliability in case of cyber attacks. After indicating the basic measures of intrinsic internet reliability such as MTTF,
MTTR and availability, a new measure is introduced to account for the availability of the internet including the
effect of cyber attacks. The new index that is introduced is a measure of downtime due to a cyber attack and is called
mean down time due to cyber attack ().MCADT Results of empirical measurement of the intrinsic availability of a
sample of 159 internet hosts in Iran using a developed software tool are presented and compared with those of a
similar study over international hosts. [Journal of American Science 2010;6(1):25-33]. (ISSN: 1545-1003).

Key words: Internet reliability, availability, string matching, data security, cyber attack

I. INTRODUCTION

The Internet is completely unreliable. How can
we deal with that? With the rapid growth of the world
wide web and increased reliance on the web for
almost every aspect of man's life today, Internet
reliability is perhaps the most important challenge
that researchers and practitioners face today.

The reliability issues of the world wide web
stem from various underlying factors. The first and
most basic one is the intrinsic reliability that depends
on the hardware topology of the network, the various
computer and communications systems and devices
which make the physical connection possible, and the
protocols and operating system software that make it
operational. The next element of reliability in the
internet is the maintainability of the various
subsystems involved as maintainability is a key
ingredient of reliability.

The real growth of the internet lies in
bandwidth-intensive web content, rich media, and
web and IP-based applications. There are many
challenges facing internet reliability as businesses
move more of their critical functions on-line, and as
consumer entertainment shifts to the internet from
other broadcast media. Leighton (2009) considered
the most serious reliability challenge as the
ownership of the heterogeneous internet
infrastructure by many competing entities with little
incentive to expand capacity.

However, we feel that the most important issue
in the reliability of the internet stems from the fact
that there are as many potential points of attack in it
as there are computers connected to it, making it the
most vulnerable system man has ever put to use in
such a large scale.

The fact that more and more transactions are
being done via the internet has resulted in a wide
spread effort by cyber criminals to attempt to earn
illegitimate income from the internet. Intrusion of
privacy and accessing people's private information
has also been attempted with various motives. There
have also been attempts at other crimes that are
beyond the scope of this paper including espionage,
cyber attacks and even cyber war.

There are various approaches to deal with
internet reliability problems. One is the use of
hardware redundancy. We may consider having
alternate ways to get online for the users, or having
several mirror sites for the servers to allow more
available access of their system to customers as
examples of hardware redundancy. Another means of
improved hardware reliability is the use of hardware
for backing up important information. We may even
rely on public services for backing up our important
work.

A third important point is having a good
connection. This concept refers to what is commonly
called carrier hotels, internet peering points or
co-location buildings. Such co-location buildings
usually sit at major points of internet connectivity,

Application of String Matching in Internet Security and Reliability Ali Peiravi

 26

have redundant power supply connections from the
electricity grid plus backup power in case of blackout.
Such locations offer high availability in the order of
99.999 percent that is equivalent to 5 minutes of
downtime per year [Strom (2008)].

To improve internet intrinsic reliability, three
distinct areas require attention:
1- The terminals and user equipment should be more
reliable. The personal computers, set-top boxes, cable
modems, and routers should have backup batteries to
provide service, and the operating system and
applications software should be free of bugs.
2- Network infrastructure should be built with a
high-availability objective. Individual switches,
cross-connects, multiplexers, transmitters, and all
associated software should have built-in redundancy
such that the network can allow instant rerouting in
case of any equipment or cable failure.
3- The protocols on which the networks and services
operate should provide perfect access to all features
and capabilities of the web.

II. BASIC MEASURES OF RELIABILITY

Reliability is usually defined as the probability of
successful operation of a mission under predefined
operating conditions and for a specified mission time.
There are many different measures used to measure
reliability as presented below.

II.1. Failure Rate and MTTF

The most basic measure of reliability is the failure
rate that indicates the average number of failures per
unit time as follows:

0

1
() [(,) |)]

t

t Lim P System Down in t t t System Up at t
t

λ

∆ →

= + ∆
∆

(1)

In cases where the failure rate is constant
()tλ λ= (2)

Reliability is found from the failure rate function as
follows:

()
R(t)

t dt
e

λ−∫= (3)
For constant failure rate, the reliability is

R(t)
dt te e

λ λ− −∫= = (4)
The next measure of reliability is the mean time to
failure, or the expectation of the stochastic variable

UT that defines the uptime of the system.

0 0

[] () ()
U U

MTTF E T tf t dt R t dt
∞ ∞

= = =∫ ∫ (5)

For a system with exponential probability density

function for UT we have:

0 0

1
[] () t

U U
MTTF E T tf t dt e dtλ

λ

∞ ∞
−= = = =∫ ∫ (6)

II.2. Mean Time to Repair (MTTR)

The next important measure affecting a system's
reliability is its maintainability indicated by mean
time to repair as follows:

0

[] ()D DMTTR E T tf t dt
∞

= = ∫ (7)

II.3. Mean time between failures (MTBF)

Another reliability index used in repairable
systems is the mean time between failures as:

MTTRMTTFMTBF += (8)
This index shows the average time between

successive failures or repairs. Table 1 indicates
typical MTBF values for computers and related
equipment usually used in the internet.

TABLE 1

 MTBF FOR COMMERCIAL COMPUTER EQUIPMENT

MTBF (Hours) Equipment

5000-50000 Personal Computer

20000-30000 Monochrome Display

5000-30000 Color Display

30000-90000 Hard Drive

20000-40000 Floppy Drive

7500-12000 Tape Drive

30000-60000 Compact Disk Drive

75000-125000 DVD Drive

30000-60000 Keyboard

2000-4000 Dot Matrix Printer

30000-40000 Plotter

20000-30000 Modem

50000-500000 Router

20000-40000 Power Supply

II.4. Availability

Another measure of reliability for repairable

Marsland Press Journal of American Science 2010; 6(1): 25-33

http://www.americanscience.org americansciencej@gmail.com 27

systems is availability which takes into account both
MTTF and MTTR as follows:

MTBF
Availability

MTBF MDT
=

+
 (9)

And

MDT MTTR MCADT= + (10)

where MCADT is a new index proposed in this study
to denote the mean downtime due to cyber attacks
such as denial of service or distributed denial of
service, or any other attack which hinders the normal
operation of the system.

II.5. Intrinsic Availability of the Internet

If we consider ideal conditions and no presence of
cyber abnormal activity such as hacking or denial of
service attacks, then

0MCADT = (11)
Then the intrinsic system availability that is the

highest possible level of system reliability is:

MTTRMTTF

MTTF
Ao

+
= (12)

Therefore, the factors that can affect the availability
of the internet in these conditions are just related to
technical and maintenance problems. However, any
attacks on the internet can drastically affect its
performance and such attacks should be considered in
internet reliability by inclusion in MCADT.

III. RELIABILITY OF THE INTERNET

We can obtain a model for the reliability of the
internet if we assume the following simple model in
which the user's facilities, the web server with which
he is communicating, and the rest of the network
which is involved in this connection are modeled as
three separate entities as shown in the reliability
block diagram of Figure 1.

Fig 1- The simplified reliability block diagram of the
internet

Notice that the internet relies on packet switching
to deliver each packet from one point to another point
through various nodes and branches. The availability
of the middle system for each packet transmitted
would be the product of the availabilities of the
facilities in the middle that are involved in the

transmission of that specific packet. The use of
redundancy in the internet and the packet switching
protocol helps the packet travel through some
available path. This helps increase the availability of
the middle system. However, this is not the only
factor involved in the overall availability of internet
service for a given user.

If we assume the availabilities of the user's
facilities or the web client, middle system facilities

and the web server facilities as 1 2 3, ,A A A

respectively, then the internet reliability measure or
intrinsic internet availability for this user will be

1 2 3A A A A= (13)

The typical values of availability are from 0 to 1 with
numbers close to 0.99 or better expected. If we
assume availabilities of 0.99 for each of these parts,
then

3
1 2 3 0.99 0.970299A A A A= = =

However, when there is a cyber attack, the MCADT
will become important, and the associated value of
availability will be reduced drastically. Whether this
happens at the web client, the middle system or the
web server, the overall effect is the same as far as the
user is concerned. He will experience a very low
availability rate that is almost the same as no
availability at all. For example, if the web server's
availability is low, or the web client's availability is
low, we would get a drastic drop in internet
availability:

2
1 2 3 0.99 0.1 0.09801A A A A= = =

Another internet reliability issue is related to
content reliability and security. It should be noted that
the content that we may find available on the internet
may not be reliable. A lot of information is posted on
the internet. However, this does not guarantee that the
content we find is reliable. One should be very
careful and check for the accuracy of what he may
find on the internet. It may also be not secure and
contain viruses, worms, Trojans or other malicious
codes embedded in it.

IV. STRING MATCHING AND INTERNET

RELIABILITY

IV.1. String Matching Algorithms

String matching is simply defined as how to
check whether or not a given string occurs in a given
text. This is a common problem in many applications
such as text processing, virus detection, molecular
biology, intrusion detection, web searching, genetics,
etc.

Web
Client

Middle
System

Web
Server

Application of String Matching in Internet Security and Reliability Ali Peiravi

 28

There are many reported string matching
algorithms. The problem addressed in string matching
is defined as follows. Given a text, T, where T is an
array T[1..n] of characters and a pattern P, where P is
an array P[1..m] of characters with m n< , and
typically m n<< , we wish to know whether P
appears as a substring of T, and if so, where.

The most basic algorithm for string matching is
the naive algorithm or the brute force method in
which there is no need for any preprocessing. In the
brute force algorithm there is checking, at all
positions in the text between 0 and n-m, whether an
occurrence of the pattern starts there or not. Then the
pattern is shifted by exactly one position to the right.
During the search phase, the text character
comparisons can be done in any order.

There are also many other algorithms such as
the Morris-Pratt, Knuth-Morris-Pratt, Galil-Seiferas,
Boyler-Moore, Turbo-Boyler-Moore,
Tunnel-Boyler-Moore, Zhu-Takaoka, Berry-Ravidran,
Smith, Raita, Horsepool, etc. to name only a few. The
details of these algorithms are presented in many
papers and could be pursued by interested readers.

The basic concept behind the naive approach is
character by character matching, shifting the whole
string down by one character against the text when
there is a mismatch and starting again at the
beginning. This requires too many repetitions of
matching of characters making this algorithm have a
time complexity of ((1))O n m m− + .

Since the naive algorithm forgets all information
about previously matched symbols after a shift of the
pattern, it may recompare a text symbol with different
pattern symbols again and again leading to a worst
case complexity of ()O mn where m denotes the

length of the pattern and n denotes the length of the
text in which we are searching.

This could be improved upon by noting that
when a mismatch is detected somewhere in the text,
we have already detected some matched characters.
This could be used to decide where to restart
matching. This is the basis of the Knuth-Morris-Pratt
(1977) algorithm and it solves the problem with n-m
comparisons. The time complexity of
Knuth-Morrsi-Pratt algorithm is ()O m n+ . This

algorithm uses the information gained by previous
symbol comparisons and never compares a text
symbol that has matched a pattern symbol again. The
complexity of the searching phase of the
Knuth-Morris-Pratt algorithm is ()O n . Of course,

this algorithm requires pattern preprocessing with
complexity of ()O m to analyze structure making

the overall complexity ()O m n+ . Since usually

m n< , the complexity of the Knuth-Morris-Pratt

algorithm is approximately ()O n .

Hashing was first proposed by Harrison (1971)
and provides a simple method that avoids the
quadratic number of character comparisons in most
practical situations, and runs in linear time under
reasonable probabilistic assumptions. He proposed a
fast implementation of a test to determine if one
string contains a specified substring. The proposed
hashing technique used the ability to do many
Boolean operations in parallel on a standard computer.
Later, Karp and Rabin (1987) presented an algorithm
where a hash function h is used for strings of length
m. Instead of checking at each position of the text if
the pattern occurs, it is more efficient to check only if
the contents of the window look like the pattern.
Hashing is used to check the resemblance between
these two words. In this algorithm, the preprocessing
has a time complexity ()O m and searching has a

time complexity ()O mn making the overall

expected number of text character comparisons
()O n m+ .

Other algorithms were presented later. For
example, in the Boyer-Moore Algorithm both
character-jump heuristic and looking glass heuristic
are applied. Here the worst case run-time is

(*)O n m + Σ where Σ denoted the alphabet, and

the runtime can be improved to ()O m n+ by using

the good-suffix heuristic.

IV.2. String Matching and Data Security over the
Internet

String matching can be effectively used to
improve data security over the internet to improve
reliability. Goel and Bush (2003) presented a
distributed model for security based on biological
paradigms of epidemiology and immunology
whereby each node in the network has an immune
system that identifies and destroys pathogens in the
incoming network traffic as well as files resident on
the node. In this scheme, each node compiles a list of
pathogens that are perceived as threats by using
information from all other nodes. The signatures are
incorporated into the detector population of the
immune systems to increase the probability of
detection. They clearly state that the detection
scheme is the most critical part for the success of the
proposed system. They examined three separate
schemes for detecting pathogens namely, contiguous
string matching, Hamming distance, and Kolmogorov
Complexity. Brönnimann et al. (2005) studied string
matching in a stream of network packets as part of a
larger system for facilitating network forensics across
and within networks. The proposed system monitored

Marsland Press Journal of American Science 2010; 6(1): 25-33

http://www.americanscience.org americansciencej@gmail.com 29

network traffic, created hash-based digests of payload,
and archived them periodically. A user-friendly query
mechanism provides the interface to answer
post-mortem questions about the payload.

Another application of string matching is in
data mining, mirroring, storage, and content
distribution. Managing large collection of replicated
data in centralized or distributed environments is
very important. It is true that redundancy can be
used to increase the reliability. However,
uncontrolled redundancy would aggravate the
performance of the system in the retrieval phase. It
may even be useless if the returned documents are
obsolete. Document similarity matching algorithms
do not provide the information on the differences of
documents. Moreover, file synchronization
algorithms are inefficient since they ignore the
structural and syntactic organization of documents.

Another application of string matching is in
detection of plagiarism which is of interest to
publishers. There are a variety of methods used in
plagiarism detection. However, the usual trade-off
between speed and reliability still remains.
Mozgovoy et al. (2007) introduced a two-step
approach to plagiarism detection that combines
high algorithmic performance with the quality of
pairwise file comparison. In their proposed system,
a fast detection method is used to select suspicious
files first and then more precise and naturally
slower algorithms are used to get reliable results.

Ayqun (2008) proposed a matching approach
called S2S that is composed of structural and
syntactic phases to compare documents. In this
approach, the documents are first decomposed into
components by syntax in the structural phase and
are compared at the coarse level. The decomposed
documents are processed in the structural mapping
phase based on syntax without actually mapping at
the word level. Then a syntactic matching algorithm
uses a heuristic look-ahead algorithm for matching
consecutive tokens with a verification patch.

V. INTERNET SECURITY

The World Wide Web is constructed from
programs called Web servers and Web browsers.
Many companies use the web for electronic
commerce, but it poses profound security
challenges such as
1- Possible unauthorized access to other files in the
computer system using bugs in the Web server or
CGI scripts.
2- Unauthorized distribution of confidential
information on the server.
3- Interception of transmission of confidential
information.

4- Access to confidential information on the client.
5- Potential threat of specially licensed software
meant to combat internet security issues.

As more corporate computer systems are
connected to the internet and more transactions take
place over computerized systems, the identification
and prevention of cyber misuse becomes
increasingly critical. Owens and Levary (2006)
presented an adaptive expert system for intrusion
detection that uses fuzzy sets with the ability to
adapt to the type and/or degree of the threat.

There is a need for a more intuitive, automated
systems-level approach to determining the overall
security characteristics of a large network. Given
the complex nature of security tools and their
general lack of interoperability, it is difficult for
system designers to make definitive statements
about the nature of their network defense. Rasche et
al. (2007) presented an approach for automatically
verifying the correctness of cyber security
applications through formal analysis guided by
hierarchical models of the network, applications,
and potential attacks.

VI. INTRUSION DETECTION SYSTEMS

The use of Network Intrusion Detection
System (NIDS) has been increasing due to the
rising trend in cyber crimes. Software based
solutions for NIDS are inefficient when they are
employed on high speed high volume networks.
Many researchers have studied hardware solutions
hoping to acquire a much higher efficiency.
However, these solutions pose major problems of
flexibility, reliability, scalability, efficiency, speed
and cost.

Intrusion detection systems (IDS) are software
and/or hardware solutions meant to detect unwanted
attempts at accessing, manipulating or disabling
computer systems through networks. An IDS
consists of several components including sensors to
generate security events, a console to control the
sensors and monitor events and alerts. It also
includes a central engine to record sensed events in
a database. The IDS uses a system of rules to
generate alerts from security events received.

It is very likely that an intruder who breaks into
a computer system may behave much different from
a legitimate user. Lunt et al. (1990) designed and
developed a real-time intrusion-detection expert
system (IDES) that observes user behavior on one
or more monitored computer systems and flags
suspicious events. It monitors the activities of
individual users, groups, remote hosts and entire
systems to detect suspected security violations. The
main feature of IDES is that it adaptively learns

Application of String Matching in Internet Security and Reliability Ali Peiravi

 30

users’ behavior patterns over time and detects any
deviation from this behavior. Their next step was
the development of NIDES that performs real-time
monitoring of user activity on multiple target
systems connected via Ethernet to analyze audit
data collected from various interconnected systems
and search for unusual user behavior.

Popular Intrusion detection systems include
Snort as an open source IDS, OSSEC HIDS as an
open source host based IDS, Fragroute as a network
intrusion detection evasion toolkit, BASE as a basic
analysis and security engine, and Sguil as the
analyst console for network security monitoring.

The most popular one is Snort that is an open
source network intrusion prevention and detection
system (IDS/IPS) written by Martin Roesch at
Sourcefire. It can perform real-time traffic analysis
and packet logging on IP networks. Snort can also
perform protocol analysis and content
searching/matching, detect a variety of attacks and
probes, such as buffer overflows, stealth port scans,
CGI attacks, SMB probes, and OS fingerprinting
attempts. Snort uses a flexible rules language to
describe traffic that it should collect or pass plus a
detection engine that utilizes a modular plug-in
architecture. OSSEC is an Open Source Host-based
Intrusion Detection System that performs log
analysis, file integrity checking, policy monitoring,
rootkit detection, real-time alerting and active
response, and can run on most operating systems.
Fragroute has a simple ruleset language. It can
delay, duplicate, drop, fragment, overlap, print,
reorder, segment, source-route, etc. all outbound
packets.

Choi and Lee (2005) presented a parallel
coordinate attack visualization tool called PCAV for
detecting unknown large-scale attacks including
worms, DDOS, and network scanning. They used
hashing to develop nine attack signatures and their
detection mechanism.

The effectiveness and precision of
network-based intrusion detection signatures can be
evaluated either by direct analysis of the signatures
or by using black-box testing. Recently, several
techniques have been proposed to generate test
cases by automatically deriving mutations of
attacks. Kruegel et al. (2007) proposed an approach
for test case generation by using the information
gathered by analyzing the dynamic behavior of the
intrusion detection system. They applied dynamic
data flow analysis techniques to the intrusion
detection system to identify which parts of a
network stream are used to detect an attack and
how these parts are matched by a signature.

Intrusion detection is an indispensable part of
cyber security. Bhatia et al. (2008) presented the

integration of Host-based Intrusion Detection
System (HIDS) with existing network based
detection on Gen 3 Honeynet architecture involving
the stealth mode operation of HIDS sensor, code
organization to generate HIDS alerts, enhancement
of the functionality of data fusion, and further
visualization on Graphical Analysis Console.

VII. A CONTRIBUTION TO DATA SECURITY

ON THE INTERNET

Proodfoot et al. (2008) proposed a system that
uses a modified version of Snort. Their proposed
system runs Snort in software until it gets to the
pattern matching function and then offloads that
processing to the FPGA. The designed hardware is
claimed to be able to process data at up to 1.7GB/s on
one Xilinx XC2VP100 FPGA. Since the rules are not
coded in hardware, the proposed system is more
flexible than other FPGA string matching designs.
Since their proposed design allows parallel use of
FPGAs to increase speed, it is claimed to be scalable.

A scalable high performance content processor
was designed by the author for storage disks which
could be easily installed in any host as an interface
between the hard disk and the system bus to improve
internet reliability. Moreover, a novel and powerful
exact string matching architecture was presented to
search for several thousand strings at high rates. The
proposed architecture was implemented on a Xilinx
XC4VFX100 Field Programmable Gate Array
(FPGA) and it was shown that the system can search
for over sixteen-thousand 32 byte strings with a speed
near the maximum stated in ATA-7 standard. The
design showed a much better performance as
measured in Throughput/(LogicCells/Char) when
compared with the best existing designs. Later, this
design was upgraded and the matching architecture
was implemented on a Virtex4 FX 100 -11 chip using
Xilinx ISE 10.1i that supports up to 16K single size
signatures of 32 bytes. The design achieves a
Throughput/(LogicCells/Char) of 31.6 that is much
better than any existing system since it only uses
embedded on-chip memory blocks, and the logic
resources required for implementing it are
independent of the number of strings. This
contribution has been reported elsewhere and is
accepted for publication [Peiravi and Rahimzadeh
(2009)].

VIII. MEASUREMENT OF INTERNET

AVAILABILITY

Peiravi and Shahraeeni (2004) developed a Web
Availability Analyzer Software Tool to measure the

Marsland Press Journal of American Science 2010; 6(1): 25-33

http://www.americanscience.org americansciencej@gmail.com 31

availability of the internet as shown in Figure 2. The
tool was run for 90 days to measure reliability data
for 159 Iranian hosts. The hosts chosen included 18
universities, 6 news agencies, 36 internet service
providers, 29 government agencies and the rest were
other public sites. This mix was chosen so as to
obtain an average measure of intrinsic internet
availability in Iran. This unavailability data

measurement was executed from two different points
of connection to the internet to remove any
unavailability data related to the facilities of the
measurement site itself, and purely obtain the
behavior of the hosts under study.

Fig. 2. A sample of WAAT running

The tool generated a log file for each 24 hours.

Later analysis of these log files revealed the
following results as shown in Tables 2, 3 and 4. We
used ping to exclude failures related to intermediate
lines and nodes, and thus eliminated any failures due
to the internet backbone, too.

Table 2 - The mean and median MTTF values

21.56 days Mean MTTF
±0.68 (50% confidence)
±1.82 (95% confidence)
±2.46 (99% confidence)

14.24 days Median MTTF

159 Number of hosts

Availability can be computed from the data shown in
Tables 2 and 3 as shown in Table 4.

Table 3 - The mean and median MTTR values

3.375 days Mean MTTR
 ±0.310 (50% confidence)
 ±0.668 (95% confidence)
 ±0.908 (99% confidence)

1.012 days Median MTTR

159 Number of hosts

Table 4 - The mean and median Availability values
0.865 Mean availability
±0.007 (50% confidence)
±0.012 (95% confidence)
±0.016 (99% confidence)

0.934 Median availability

159 Number of hosts
Long et al. (1995) had reported a similar study with
the following results after surveying 1170 hosts that
were uniformly distributed over the name space and
could respond to RPC polls for 90 days. Their results
are shown in Tables 5 and 6.

Application of String Matching in Internet Security and Reliability Ali Peiravi

 32

Table 5 - The mean and median MTTF values
15.92 days Mean MTTF
±0.28 (50% confidence)
±0.82 (95% confidence)
±1.08 (99% confidence)

5.53 days Median MTTF

28.86 σ

Table 6 - The mean and median MTTR values
1.201 days Mean MTTR
±0.021 (50% confidence)
±0.062 (95% confidence)
±0.082 (99% confidence)

0.3394 days Median MTTR

3500 intervals n
1.885 σ

Availability was computed from the data shown in
Tables 5 and 6 as shown in Table 7.

Table 7 - The mean and median Availability values
0.9260 Mean MTTR
±0.002 (50% confidence)
±0.007 (95% confidence)
±0.009 (99% confidence)

0.9723 Median MTTR

1162 Number of hosts

Table 8 – A comparison of results for the survey on
Iranian hosts and international hosts

Availability MTTR
(days)

MTTF
(days)

Hosts

0.865 3.375 21.56 159 Iranian Hosts
0.9260 1.201 15.92 1162 International

Hosts

Table 8 shows a comparison of the results of the two
studies. This indicates an average lower level of
reliability for Iranian hosts, compared with
international hosts indicating that a lot more work is
needed for Iranian hosts to reach the average
international availability levels.

IX. CONCLUSIONS

In this paper the various issues related to the
reliability of the internet were reviewed. Hardware
redundancy and software issues were presented as
means of improving internets intrinsic reliability. A
new measure was proposed to include down time
due to cyber attacks in internet availability. The
issue of data security that is the next most important
aspect of internet reliability was addressed. Results
of the development of a new string matching
architecture implemented on an FPGA for
implementation in fast hardware based data security

applications such as intrusion detections systems or
virus scanners was presented. Results of actual
measurement of internet availability for hosts in
Iran were presented and compared with
international hosts indicating lower availability for
the Iranian hosts.

Acknowledgement

I would like to express my appreciation for the
sincere efforts of Mr. Muhammad Shahraeeni and
Mr. Muhammad Javad Rahimzadeh for the good
work they performed on their Master's thesis under
my supervision. This work is a continuation of
research carried out here at the Ferdowsi University
of Mashhad and was supported by the Grant No.
4270 (1388/4/28) Project of the Vice Chancellor of
Research and Technology of the Ferdowsi University
of Mashhad.

References
[1] Strom, D., Where businesses go for internet reliability, The

New York Times, October 1, 2008.
[2] Leighton, T., Improving performance on the internet,

Communications of the ACM, Vol. 52, No. 2, pp. 44-51,
2009.

[3] Knuth, D., Morris, J. H., Pratt, V., Fast pattern matching in
strings, SIAM Journal on Computing, Vol. 6, No. 2,
pp.323–350, doi:10.1137/0206024, 1977.

[4] Harrison, M. C., Implementation of the substring test by
hashing, Communications of the ACM, Vol.14, No.12, pp.
777-779, 1971.

[5] Karp, R. M., Rabin, M. O., Efficient randomized
pattern-matching algorithms, IBM J. Res. Dev., Vol. 31, No.
2, pp. 249-260, 1987.

[6] Goel, S. Bush, S. F., Kolmogorov complexity estimates for
detection of viruses in biologically inspired security
systems: A comparison with traditional approaches,
Complexity, Vol. 9, No. 2, pp.54-73, 2003.

[7] Brönnimann, H., Memon, N., Shanmugasundaram, K.,
Lecture Notes in Computer Science 3405, pp. 75-89, 2005.

[8] Mozgovoy, M., Karakovskiy, S., Klyuev, V., Fast and reliable
plagiarism detection system, Proceedings - Frontiers in
Education Conference, FIE, pp. S4H11-S4H14, 2007.

[9] Ayqun, R. S., S2S: Structural to syntactic matching similar
documents, Knowledge and Information Systems, Vol.16,
No. 3, pp. 303-329, 2008.

[10] Owens, S. F., Levary, R. R., An adaptive expert system
approach for intrusion detection, International Journal of
Security and Networks, Volume 1 , Issue 3/4, pp.206-217,
2006.

[11] Rasche, G., Allwein, E., Moore, M., Abbott, B., Model-based
cyber security, Proceedings of the International Symposium
and Workshop on Engineering of Computer Based Systems,
pp. 405-412, 2007.

[12] Lunt, T. F., Tamaru, A. Gilham, F. Jagannathan, R.Neumann,
P. G. Jalili, C., IDES: A progress report, Proc. of the Sixth
Annual Computer Security Applications Conference, 1990.

[13] Choi, H., Lee, H., PCAV: Internet attack visualization on
parallel coordinates, ICICS 2005, LNCS 3783, pp. 454~466,
Dec. 2005.

[14] Kruegel, C., Balzarotti, D., Robertson, W., Vigna, G.,
Improving signature testing through dynamic data flow
analysis, Proceedings - Annual Computer Security
Applications Conference, ACSAC, pp. 53-63, 2007.

[15] Bhatia, J. S. Sehgal, R. Bhushan, B. Kaur, H., Multi layer

Marsland Press Journal of American Science 2010; 6(1): 25-33

http://www.americanscience.org editor@americanscience.org 33

cyber attack detection through honeynet, Proceedings of
New Technologies, Mobility and Security Conference and
Workshops, NTMS 2008, 2008.

[16] Proodfoot, R., Kent K., Aubanel, E., Chen, N., Flexible
software-hardware network intrusion detection system,
Proceedings of the 19th IEEE/IFIP International
Symposium on Rapid System Prototyping - Shortening the
Path from Specification to Prototype, RSP 2008, pp.
182-188, 2008.

[17] Peiravi, A., Rahimzadeh, R. A novel scalable and
storage-efficient architecture for high speed exact string

matching, accepted for publication in ETRI Journal.
[18] Peiravi, A., Shahraeeni, M, Implementation of a

measurement tool for the reliability measurement of the
Web server of Ferdowsi University of Mashhad, A paper
published in Farsi in the Proceedings of the ICEE2004 (12th
Conference on Electrical Engineering, Ferdowsi University
of Mashhad, May 11-13, 2004, pp.50-55, 2004.

[19] Long, D., Muir, A., Golding, R., A longitudinal survey of
internet host reliability, Proc. Symposium on Reliable
Distributed Systems, Sept. 1995.

