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Abstract: In this paper, an indirect boundary element method (IDBEM) is applied to calculate an incompressible 
potential flow around a prolate spheroid using linear boundary elements and such potential flow around a prolate 
spheroid is calculated using different numbers of boundary elements to approximate the body surface.. In this case, 
the indirect boundary element method with dipoles distribution is used. IDBEM is based on the distribution of 
singularities, such as sources or dipoles over the boundary of the body and computes the unknowns in the form of 
singularity strengths. With indirect boundary element method one can choose a singularity type to best model a 
given system. IDBEM is popular due to its simplicity and it is more general and flexible for the solution of a given 
problem. A comparison study between computed results for velocity distribution and analytical results is made and it 
can be seen from tables and graphs that the computed results for velocity distribution are seen to be quite good in 
agreement with the analytical results for the problem under observation. [Journal of American Science 2010; 
6(1):148-156].(ISSN:1545-1003) 
Keyword: indirect direct boundary element method, potential flow, axisymmetric flow, steady flow, prolate 
spheroid. 

Introduction: 
The boundary element method (BEM) is a 

numerical technique consisting of sub-diving the 
surface of the fluid flow field into a series of discrete 
elements over which the function can vary and it has 
been progressing for the last forty years due to its 
simplicity and efficiency. Such method is gaining 
popularity day by day among the computational and 
engineering communities. The term boundary 
element method opened eyes in the department of 
civil engineering, Southampton University, United 
Kingdom (Brebbia,C.A,1978). In literature, these 
methods existed under different names such as ‘panel 
methods’, ‘surface singularity methods’, ‘boundary 
integral equation methods’ or ‘boundary integral 
solutions’. In the past, finite difference method 
(FDM) and finite element method, etc. (Hirt,C.W.et 
al,1978, Markatos,N.G,1983, Demuran,A.O.et 
al,1982 and Ecer,A.,1982) were being used to find 
the numerical solutions of problems in computational 
fluid dynamics. But the boundary element methods 
offer important advantages over the domain type 
methods. One of the advantages is that with boundary 
element methods one has to define the whole surface 
of the body, whereas with domain methods it is 
necessary to discretize the entire flow field. So, it is 
easier to use, economical, cost effective and time 
saving due to small data than the other competing 

computational methods i.e. finite difference and finite 
element methods etc. The most important 
characteristics of these methods are the much smaller 
system of equations and considerable reduction in 
data, which are perquisite to run a computer program 
efficiently. Furthermore, boundary element methods 
are well suited to flow problems with infinite 
domains. The boundary element methods can be 
classified into direct and indirect boundary element 
methods. The direct method takes the form of a 
statement, which provides the values of unknown 
variables at any flow field point in terms of the 
complete set of all the boundary data The equation of 
direct method can be formulated using either as an 
approach based on Green’s function (Lamb,H,1932, 
Milne-Thomson,L.M,1968, Kellogg,O.D,1929) or a 
particular case of the weighted residual methods 
(Brebbia,C.A. and Walker,S,1980). BEMs are 
classified as ‘indirect’ and ‘direct’ methods. The 
indirect method utilizes a distribution of singularities 
over the boundary of the body and computes this 
distribution as the solution of integral equation and 
the equation indirect method can be derived from that 
of direct method. The flow fields around three-
dimensional bodies were calculated by using a lower-
order indirect method (Hess,J.L. and 
Smith,A.M.O,1962,1967). The direct method was 
applied for calculating the potential flow problems 
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(Morino.L.et al,1975). Boundary element methods 
are essential the methods for solving partial 
differential equations (PDEs) arising in problems in 
such diverse topics as stress analysis, heat transfer 
and electromagnetic theory, potential theory, fracture 
mechanics, fluid mechanics, elasticity, elastostatics 
and elastodynamics, etc. (Muhammad,G,.et al,2009). 
These methods are also being used for the solution of 
incompressible flows around complex configurations. 
Thus the boundary element methods are powerful 
numerical techniques receiving much attention from 
computational researchers and engineering 
community, which are offering the numerical 
solutions of a large number of flow problems of 
different types and the computational cost, labor and 
time in these methods are much smaller than other 
computational methods. 

Flow past a prolate spheroid: 
Let a prolate spheroid be generated by rotating 

an ellipse with semi – major axis ‘a’ and semi – 
minor axis ‘b’ about its major axis and let a uniform 
stream of velocity  U  be in the positive direction of z 
– axis as shown in figure (1) (Shah,N.A.,2008) . 
 
 
 
 
 
 
 
 

Figure 1 
The Prolate spheroid is defined by the 

transformation  
z + i r = c cosh ζ  =  c cosh ( ξ + i η ) 
  = c cosh ξ cosh ( i η ) + c sinh ξ sinh ( i η ) 
  = c cosh ξ cos η + i c sinh ξ sin η  
Comparison of real and imaginary parts gives 
 z  =  c cosh ξ cos η ,   r  =  c sinh ξ sin η (1) 
Therefore the curve  ξ  =  ξ 0  is an ellipse in the    
z r – plane whose semi – axes are  

 
⎦
⎥
⎤a  =  c cosh ξ 0 

 

b  =  c sinh ξ 0

    (2) 

and so   ξ  =  ξ 0   is a Prolate spheroid . 

 The stream function  ψ  for a Prolate spheroid 
moving in the negative direction of the z – axis with 
velocity  U  is given by 

ψ = 

1
2 U b 2 ⎝

⎛
⎠
⎞ cosh ξ + sinh 2 ξ ln tanh 

ξ
2  sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  (3) 

Also , the stream function  ψ  for the uniform stream 
with velocity  U , in the positive direction of z – axis 
is given by 

 ψ  =  – 
1
2 U r 2  

Therefore the stream function  ψ  for the streaming 
motion past a fixed Prolate spheroid in the positive 
direction of the z – axis becomes 
ψ = –  

1
2 U r 2 + 

1
2 U b 2 ⎝

⎛
⎠
⎞ cosh ξ + sinh 2 ξ ln tanh 

ξ
2  sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  

  (4) 
which on using (1) becomes 
ψ = –  

 
1
2 U c 2 sinh 2 ξ sin 2 η +  

 

1
2 U b 2 ⎝

⎛
⎠
⎞ cosh ξ + sinh 2 ξ ln tanh 

ξ
2  sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  (5) 

To determine the formula for the velocity , the 
following relation is used (Shah,N.A.,2008) 

V 2 r 2 f ′ ( ζ ) 
–
f  ′ ( 

–
ζ )  =  ⎝

⎛
⎠
⎞ 

∂ ψ
∂ ξ  

 2

 + ⎝
⎛

⎠
⎞ 

∂ ψ
∂ η 

 2

  

 (6) 
Since   f ( ζ )  =  c cosh ( ζ ) 

f ′ ( ζ )  =  c sinh ( ζ )  =  c sinh ( ξ + i η ) ,      
–
f  ′ ( 

–
ζ )  =  c sinh ( ξ – i η )  

and f ′ ( ζ ) 
–
f  ′ ( 

–
ζ )   

 =  c 2 ( sinh 2 ξ cos 2 η + cosh 2 ξ sin 2 η ) (7) 
When   ξ  =  ξ 0 ,  then from (1) , (6) and (7) 

 V 2 c 4 sinh 2 ξ 0 sin 2 η  

( sinh 2 ξ 0 cos 2 η + cosh 2 ξ 0 sin 2 η )  

=  ⎝
⎛

⎠
⎞ 

∂ ψ
∂ ξ  

 2

ξ = ξ 0

 + ⎝
⎛

⎠
⎞ 

∂ ψ
∂ η 

 2

ξ = ξ 0

  (8) 

Now from (5) , we get 
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⎝
⎛

⎠
⎞ 

∂ ψ
∂ ξ  

ξ = ξ 0

  =  – U c 2 sinh ξ 0 cosh ξ 0 sin 2 η + 

U b 2 ⎝
⎛

⎠
⎞ sinh ξ 0 + sinh ξ 0 cosh ξ 0 ln tanh 

ξ 0
2   sin 2 η

a
c + 

b 2

c 2 ln 
a + b – c
a + b + c

  

   (9) 
Since for a Prolate spheroid      a  =  c cosh ξ 0 ,      

b  =  c sinh ξ 0  (10) 

But tanh 
ξ 0
2   =  

a + b – c
a + b + c  =  

b
a + c  (11) 

From (9) , (10) , and (11) , we get 

⎝
⎛

⎠
⎞ 

∂ ψ
∂ ξ  

ξ = ξ 0

  

 =  U sin 2 η 

⎣
⎢
⎡

⎦
⎥
⎤

 – ab + 

b 3

c  + 
ab 3

c 2  ln 
b

a + c
a
c + 

b 2

c 2 ln 
b

a + c

   

 =  U sin 2 η 

⎣
⎢
⎡

⎦
⎥
⎤ 

– cb
a
c + 

b 2

c 2 ln 
b

a + c

   (12) 

and from (5) , (10) , and (11) , we obtain  

⎝
⎛

⎠
⎞ 

∂ ψ
∂ η 

ξ = ξ 0

  =  0 (13) 

Using (12) and (13) , (8) becomes 
V 2 c 4 sinh 2 ξ 0 sin 2 η  

 [ sinh 2 ξ 0 cos 2 η + cosh 2 ξ 0 sin 2 η ]   

 =  
U 2 b 2 c 2 sin 4 η

⎣
⎡

⎦
⎤ 

a
c + 

b 2

c 2 ln 
b

a + c 
 2  (14) 

But from (1) and (2) , we get      
z
a  =  cos η ,     

r
b  =  sin η  (15) 

Using (10) , (15) in (14) , we have 

V 2  =  
U 2 r 2 a 2 c 2

⎣
⎡

⎦
⎤ 

a
c + 

b 2

c 2 ln 
b

a + c 
 2

 ( b 4 z 2 + a 4 r 2 )
  (16) 

Taking square root of (16) , the magnitude of 
exact velocity distribution over the boundary of a 
Prolate spheroid is given by 

V  =  
U a c r

⎣
⎡

⎦
⎤ 

a
c + 

b 2

c 2 ln 
b

a + c  b 4 z 2 + a 4 r 2
  (17) 

Boundary Conditions 
The boundary condition to be satisfied over the 

surface of a Prolate spheroid is 
∂ φp.s
∂ n   =  U ( n̂ . k̂ )  (18) 

where  φp.s  is the perturbation velocity potential of a 

Prolate spheroid and  n̂  is the outward drawn unit 
normal to the surface of a Prolate spheroid 

The equation of the boundary of the Prolate spheroid 

z2

a2 + 
y2

b2 + 
x2

b2  =  1 

Let   f (x, y, z)  =  
z2

a2 + 
y2

b2 + 
x2

b2  – 1 

Then  ∇ f  =  
2 x
b2  î  + 

2 y
b2  ĵ  + 

2 z
a2  k̂  

Therefore    

n̂  =  
∇ f

| ∇ f |  =  

2 x
b2  î  + 

2 y
b2  ĵ  + 

2 z
a2  k̂

⎝
⎛

⎠
⎞ 

2 z
a2  

2

 + 
⎝⎜
⎛

⎠⎟
⎞ 

2 y
b2  

2

 + 
⎝
⎛

⎠
⎞ 

2 x
b2  

2  

Thus n̂ . k̂  = 

2 z
a2

⎝
⎛

⎠
⎞ 

2 z
a2  

2

 + 
⎝⎜
⎛

⎠⎟
⎞ 

2 y
b2  

2

 + 
⎝
⎛

⎠
⎞ 

2 x
b2  

2  

   = 

z
a2

z2

a4 + 
y2

b4 + 
x2

b4

  

Therefore, the boundary condition in (18) takes the 
form 

 
∂ φp.s
∂ n   = U 

z
a2

b4 z2 + a4 y2 + a4 x2

b2 a2

  

  = 
z b2

b4 z2 + a4 (y2 + x2)
       

  (Taking U = 1) (19) 
Equation (19) is the boundary condition, which must 

be satisfied over the boundary of a Prolate spheroid 

For exterior flow for three-dimensional 
problems, the mathematical formulation for indirect 
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boundary element method in terms of doublets 
distribution over the boundary ς of the body is given 
by  

− 
1
2 Φ i + φ ∞ + 

 

∫ ∫
ς–i

  Φ
∂
∂ n ⎝

⎛
⎠
⎞ 

1
4 π r  d ς  =  zi  (20) 

Which is discretized by dividing the boundary of 
the body under consideration into ‘m’ elements and 
finally, it is written in matrix form as   

[ H ] { U }  =  { R } (21) 
Whereas usual [H] is a matrix of influence 

coefficients, {U} is a vector of unknown total 
potentials  Φ p  and  { R } on the R.H.S. is a known 
vector whose elements are the negative of the values 
of the velocity potential of the uniform stream at the 
nodes on the boundary of the body. 

Method of Element Distribution 
The indirect boundary element method is applied 

to calculate the potential flow solution around the 
prolate spheroid for which the analytical solution is 
available. 

Consider the surface of the sphere in one octant 
to be divided into three quadrilateral elements by 
joining the centroid of the surface with the mid points 
of the curves in the coordinate planes as shown in 
figure (2) (Mushtaq,M.et al,2009). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
Then each element is divided further into four 

elements by joining the centroid of that element with 
the mid–point of each side of the element. Thus one 
octant of the surface of the sphere is divided into 12 
elements and the whole surface of the body is divided 
into 96 boundary elements. The above mentioned 
method is adopted in order to produce a uniform 
distribution of element over the surface of the body.  

Figure (3) shows the method for finding the 
coordinate (xp, yp, zp) of any point P on the surface 
of the sphere. 
From figure (3), we have the following equation 

| r p|  =  1 

r p . r 1  =  r p . r 2  

( r 1 x r 2) . r p  =  0 

or in cartesian form 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 

x
2
p + y

2
p + z

2
p  =  1  

xp (x1 – x2) + yp (y1 – y2) + zp (z1 – z2)  =  0 

xp (y1 z2 – z1 y2) + yp (x2 z1 – x1 z2)  

+ zp (x1 y2 – x2 y1)  =  0 
As the body possesses planes of symmetry, this 

fact may be used in the input to the program and only 
the non–redundant portion need be specified by input 
points. The other portions are automatically taken 
into account. The planes of symmetry are taken to be 
the coordinate planes of the reference coordinate 
system. The advantage of the use of symmetry is that 
it reduces the order of the resulting system of 
equations and consequently reduces the computing 
time in running a program. As a sphere is symmetric 
with respect to all three coordinate planes of the 
reference coordinate system, only one eighth of the 
body surface need be specified by the input points, 
while the other seven–eighth can be accounted for by 
symmetry. 

The prolate spheroids of fineness ratios 2 and 10 
are discretised into 24and 96 boundary elements and 
the computed velocity distributions are compared 
with analytical solutions for the prolate spheroids. In 
both cases of spheroids, the input points are 
distributed on the surface of a sphere and the x and y-
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coordinates of these points are then divided by the 
fineness ratios to generate the points for the prolate 
spheroids. The number of boundary elements used to 
obtain the computed velocity distribution is the same 
as are used for the sphere. 

The calculated velocity distributions are 
compared with analytical solutions for the prolate 
spheroid of fineness ratios 2 and 10 using Fortran 
programming. 

 
Table (1): Comparison of the computed velocities with exact velocity over the surface of a prolate spheroid 

with fineness ratio 2 using 24 boundary elements. 

ELEMENT XM YM ZM R = 
(YM)2 + (ZM)2  

COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.321E+00 -.374E+00 .161E+00 .40718E+00 .11669E+01 .11871E+01 
2 -.748E+00 -.161E+00 .161E+00 .22769E+00 .77235E+00 .93409E+00 
3 -.748E+00 .161E+00 .161E+00 .22769E+00 .77235E+00 .93409E+00 
4 -.321E+00 .374E+00 .161E+00 .40718E+00 .11669E+01 .11871E+01 
5 .321E+00 .374E+00 .161E+00 .40718E+00 .11669E+01 .11871E+01 
6 .748E+00 .161E+00 .161E+00 .22769E+00 .77235E+00 .93409E+00 
7 .748E+00 -.161E+00 .161E+00 .22769E+00 .77235E+00 .93409E+00 
8 .321E+00 -.374E+00 .161E+00 .40718E+00 .11669E+01 .11871E+01 
9 -.321E+00 -.161E+00 .374E+00 .40718E+00 .11669E+01 .11871E+01 

10 -.321E+00 .161E+00 .374E+00 .40718E+00 .11669E+01 .11871E+01 
11 .321E+00 .161E+00 .374E+00 .40718E+00 .11669E+01 .11871E+01 
12 .321E+00 -.161E+00 .374E+00 .40718E+00 .11669E+01 .11871E+01 

Table (2): Comparison of the computed velocities with exact velocity over the surface of a prolate spheroid 
with fineness ratio 10 using 24 elements. 

ELEMENT XM YM ZM R = 
(YM)2 + (ZM)2  

COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.321E+00 -.748E-01 .321E-01 .08139E+00 .10315E+01 .10199E+01 
2 -.748E+00 -.321E-01 .321E-01 .04539E+00 .94676E+00 .10071E+01 
3 -.748E+00 .321E-01 .321E-01 .04539E+00 .94676E+00 .10071E+01 
4 -.321E+00 .748E-01 .321E-01 .08139E+00 .10315E+01 .10199E+01 
5 .321E+00 .748E-01 .321E-01 .08139E+00 .10315E+01 .10199E+01 
6 .748E+00 .321E-01 .321E-01 .04539E+00 .94676E+00 .10071E+01 
7 .748E+00 -.321E-01 .321E-01 .04539E+00 .94676E+00 .10071E+01 
8 .321E+00 -.748E-01 .321E-01 .08139E+00 .10315E+01 .10199E+01 
9 -.321E+00 -.321E-01 .748E-01 .08139E+00 .10315E+01 .10199E+01 

10 -.321E+00 .321E-01 .748E-01 .08139E+00 .10315E+01 .10199E+01 
11 .321E+00 .321E-01 .748E-01 .08139E+00 .10315E+01 .10199E+01 
12 .321E+00 -.321E-01 .748E-01 .08139E+00 .10315E+01 .10199E+01 

Table (3): Comparison of the computed velocities with exact velocity over the surface of a prolate spheroid 
with fineness ratio 2 using 96 boundary elements. 

ELEMENT XM YM ZM R = 
(YM)2 + (ZM)2  

COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.177E+00 -.467E+00 .885E-01 .47529E+00 .12038E+01 .12048E+01 
2 -.522E+00 -.399E+00 .785E-01 .40676E+00 .11455E+01 .11521E+01 
3 -.798E+00 -.261E+00 .785E-01 .27264E+00 .94257E+00 .97640E+00 
4 -.934E+00 -.885E-01 .885E-01 .12511E+00 .48460E+00 .57150E+00 
5 -.934E+00 .885E-01 .885E-01 .12511E+00 .48460E+00 .57150E+00 
6 -.798E+00 .261E+00 .785E-01 .27264E+00 .94257E+00 .97640E+00 
7 -.522E+00 .399E+00 .785E-01 .40676E+00 .11455E+01 .11521E+01 
8 -.177E+00 .467E+00 .885E-01 .47529E+00 .12038E+01 .12048E+01 
9 .177E+00 .467E+00 .885E-01 .47529E+00 .12038E+01 .12048E+01 

10 .522E+00 .399E+00 .785E-01 .40676E+00 .11455E+01 .11521E+01 
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11 .798E+00 .261E+00 .785E-01 .27264E+00 .94257E+00 .97640E+00 
12 .934E+00 .885E-01 .885E-01 .12511E+00 .48460E+00 .57150E+00 
13 .934E+00 -.885E-01 .885E-01 .12511E+00 .48460E+00 .57150E+00 
14 .798E+00 -.261E+00 .785E-01 .27264E+00 .94257E+00 .97640E+00 
15 .522E+00 -.399E+00 .785E-01 .40676E+00 .11455E+01 .11521E+01 
16 .177E+00 -.467E+00 .885E-01 .47529E+00 .12038E+01 .12048E+01 
17 -.157E+00 -.399E+00 .261E+00 .47693E+00 .12001E+01 .12059E+01 
18 -.470E+00 -.352E+00 .235E+00 .42289E+00 .11630E+01 .11659E+01 
19 -.703E+00 -.235E+00 .235E+00 .33220E+00 .10325E+01 .10695E+01 
20 -.798E+00 -.785E-01 .261E+00 .27264E+00 .94257E+00 .97640E+00 
21 -.798E+00 .785E-01 .261E+00 .27264E+00 .94257E+00 .97640E+00 
22 -.703E+00 .235E+00 .235E+00 .33220E+00 .10325E+01 .10695E+01 
23 -.470E+00 .352E+00 .235E+00 .42289E+00 .11630E+01 .11659E+01 
24 -.157E+00 .399E+00 .261E+00 .47693E+00 .12001E+01 .12059E+01 
25 .157E+00 .399E+00 .261E+00 .47693E+00 .12001E+01 .12059E+01 
26 .470E+00 .352E+00 .235E+00 .42289E+00 .11630E+01 .11659E+01 
27 .703E+00 .235E+00 .235E+00 .33220E+00 .10325E+01 .10695E+01 
28 .798E+00 .785E-01 .261E+00 .27264E+00 .94257E+00 .97640E+00 
29 .798E+00 -.785E-01 .261E+00 .27264E+00 .94257E+00 .97640E+00 
30 .703E+00 -.235E+00 .235E+00 .33220E+00 .10325E+01 .10695E+01 
31 .470E+00 -.352E+00 .235E+00 .42289E+00 .11630E+01 .11659E+01 
32 .157E+00 -.399E+00 .261E+00 .47693E+00 .12001E+01 .12059E+01 
33 -.157E+00 -.261E+00 .399E+00 .47693E+00 .12001E+01 .12059E+01 
34 -.470E+00 -.235E+00 .352E+00 .42289E+00 .11630E+01 .11659E+01 
35 -.522E+00 -.785E-01 .399E+00 .40676E+00 .11455E+01 .11521E+01 
36 -.522E+00 .785E-01 .399E+00 .40676E+00 .11455E+01 .11521E+01 
37 -.470E+00 .235E+00 .352E+00 .42289E+00 .11630E+01 .11659E+01 
38 -.157E+00 .261E+00 .399E+00 .47693E+00 .12001E+01 .12059E+01 
39 .157E+00 .261E+00 .399E+00 .47693E+00 .12001E+01 .12059E+01 
40 .470E+00 .235E+00 .352E+00 .42289E+00 .11630E+01 .11659E+01 
41 .522E+00 .785E-01 .399E+00 .40676E+00 .11455E+01 .11521E+01 
42 .522E+00 -.785E-01 .399E+00 .40676E+00 .11455E+01 .11521E+01 
43 .470E+00 -.235E+00 .352E+00 .42289E+00 .11630E+01 .11659E+01 
44 .157E+00 -.261E+00 .399E+00 .47693E+00 .12001E+01 .12059E+01 
45 -.177E+00 -.885E-01 .467E+00 .47529E+00 .12038E+01 .12048E+01 
46 -.177E+00 .885E-01 .467E+00 .47529E+00 .12038E+01 .12048E+01 
47 .177E+00 .885E-01 .467E+00 .47529E+00 .12038E+01 .12048E+01 
48 .177E+00 -.885E-01 .467E+00 .47529E+00 .12038E+01 .12048E+01 

Table (4): Comparison of the computed velocities with exact velocity over the surface of a prolate spheroid 
with fineness ratio 10 using 96 boundary elements. 

ELEMENT XM YM ZM R = 
(YM)2 + (ZM)2  

COMPUTED 
VELOCITY 

EXACT 
VELOCITY 

1 -.177E+00 -.934E-01 .177E-01 .95057E-01 .10261E+01 .10205E+01 
2 -.522E+00 -.798E-01 .157E-01 .81353E-01 .10256E+01 .10186E+01 
3 -.798E+00 -.522E-01 .157E-01 .54527E-01 .10027E+01 .10099E+01 
4 -.934E+00 -.177E-01 .177E-01 .25022E-01 .86585E+00 .95627E+00 
5 -.934E+00 .177E-01 .177E-01 .25022E-01 .86585E+00 .95627E+00 
6 -.798E+00 .522E-01 .157E-01 .54527E-01 .10027E+01 .10099E+01 
7 -.522E+00 .798E-01 .157E-01 .81353E-01 .10256E+01 .10186E+01 
8 -.177E+00 .934E-01 .177E-01 .95057E-01 .10261E+01 .10205E+01 
9 .177E+00 .934E-01 .177E-01 .95057E-01 .10261E+01 .10205E+01 

10 .522E+00 .798E-01 .157E-01 .81353E-01 .10256E+01 .10186E+01 
11 .798E+00 .522E-01 .157E-01 .54527E-01 .10027E+01 .10099E+01 
12 .934E+00 .177E-01 .177E-01 .25022E-01 .86585E+00 .95627E+00 
13 .934E+00 -.177E-01 .177E-01 .25022E-01 .86585E+00 .95627E+00 
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14 .798E+00 -.522E-01 .157E-01 .54527E-01 .10027E+01 .10099E+01 
15 .522E+00 -.798E-01 .157E-01 .81353E-01 .10256E+01 .10186E+01 
16 .177E+00 -.934E-01 .177E-01 .95057E-01 .10261E+01 .10205E+01 
17 -.157E+00 -.798E-01 .522E-01 .95386E-01 .10202E+01 .10206E+01 
18 -.470E+00 -.703E-01 .470E-01 .84578E-01 .10247E+01 .10191E+01 
19 -.703E+00 -.470E-01 .470E-01 .66440E-01 .10478E+01 .10150E+01 
20 -.798E+00 -.157E-01 .522E-01 .54527E-01 .10027E+01 .10099E+01 
21 -.798E+00 .157E-01 .522E-01 .54527E-01 .10027E+01 .10099E+01 
22 -.703E+00 .470E-01 .470E-01 .66440E-01 .10478E+01 .10150E+01 
23 -.470E+00 .703E-01 .470E-01 .84578E-01 .10247E+01 .10191E+01 
24 -.157E+00 .798E-01 .522E-01 .95386E-01 .10202E+01 .10206E+01 
25 .157E+00 .798E-01 .522E-01 .95386E-01 .10202E+01 .10206E+01 
26 .470E+00 .703E-01 .470E-01 .84578E-01 .10247E+01 .10191E+01 
27 .703E+00 .470E-01 .470E-01 .66440E-01 .10478E+01 .10150E+01 
28 .798E+00 .157E-01 .522E-01 .54527E-01 .10027E+01 .10099E+01 
29 .798E+00 -.157E-01 .522E-01 .54527E-01 .10027E+01 .10099E+01 
30 .703E+00 -.470E-01 .470E-01 .66440E-01 .10478E+01 .10150E+01 
31 .470E+00 -.703E-01 .470E-01 .84578E-01 .10247E+01 .10191E+01 
32 .157E+00 -.798E-01 .522E-01 .95386E-01 .10202E+01 .10206E+01 
33 -.157E+00 -.522E-01 .798E-01 .95386E-01 .10202E+01 .10206E+01 
34 -.470E+00 -.470E-01 .703E-01 .84578E-01 .10247E+01 .10191E+01 
35 -.522E+00 -.157E-01 .798E-01 .81353E-01 .10256E+01 .10186E+01 
36 -.522E+00 .157E-01 .798E-01 .81353E-01 .10256E+01 .10186E+01 
37 -.470E+00 .470E-01 .703E-01 .84578E-01 .10247E+01 .10191E+01 
38 -.157E+00 .522E-01 .798E-01 .95386E-01 .10202E+01 .10206E+01 
39 .157E+00 .522E-01 .798E-01 .95386E-01 .10202E+01 .10206E+01 
40 .470E+00 .470E-01 .703E-01 .84578E-01 .10247E+01 .10191E+01 
41 .522E+00 .157E-01 .798E-01 .81353E-01 .10256E+01 .10186E+01 
42 .522E+00 -.157E-01 .798E-01 .81353E-01 .10256E+01 .10186E+01 
43 .470E+00 -.470E-01 .703E-01 .84578E-01 .10247E+01 .10191E+01 
44 .157E+00 -.522E-01 .798E-01 .95386E-01 .10202E+01 .10206E+01 
45 -.177E+00 -.177E-01 .934E-01 .95057E-01 .10261E+01 .10205E+01 
46 -.177E+00 .177E-01 .934E-01 .95057E-01 .10261E+01 .10205E+01 
47 .177E+00 .177E-01 .934E-01 .95057E-01 .10261E+01 .10205E+01 
48 .177E+00 -.177E-01 .934E-01 .95057E-01 .10261E+01 .10205E+01 

 
  

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

R

ve
lo

ci
ty

exact values

computed values

 

0.2 0.25 0.3 0.35 0.4 0.45

1.15

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.2

R

 
 

 
 

 
 

ve
lo

ci
ty

exact values

computed values

 
 

 
 

 
 

 
 Figure 4: Comparison of computed and analytical 

velocity distributions over the surface of a prolate 
spheroid using 24 boundary elements with  

fineness ratio 2 

Figure 5: Comparison of computed and analytical 
velocity distributions over the surface of a prolate 

spheroid using 24 boundary elements with  
fineness ratio 10 
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Figure 6: Comparison of computed and analytical 
velocity distributions over the surface of a prolate 

spheroid using 96 boundary elements with  
fineness ratio 2 

 

 

 

 

 

Figure 7: Comparison of computed and analytical 
velocity distributions over the Surface of a Prolate 

spheroid using 96 boundary elements with  
fineness ratio 10 

 
Conclusion 

An indirect boundary element method (IDBEM) 

is applied for calculation of an incompressible 

potential flow around a prolate spheroid. The 

computed results for flow velocities obtained by this 

method are compared with the analytical solutions for 

flow past a prolate spheroid. It is found from tables 

and graphs that the computed results for velocity 

distribution in both cases of prolate spheroids of 

fineness ratios 2 and 10 are seen to be quite good in 

agreement with the analytical results and the 

accuracy of results increases with the rise of number 

of boundary elements and fineness ratio. Indirect 

direct can be very useful in modeling bodies of 

complicated types like airplanes, road vehicles, space 

shuttle, missiles ,ships and submarines, etc.  
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