Effect of foliar spraying with gibberellic acid and/or sitofex on bud behavior, vegetative growth, yield and cluster quality of Thompson Seedless grapevines

Rafaat S.S. Elgendy; Ghada Sh. Shaker and Ola A. Ahmed Vitic. Dept., Hort. Res. Instit., Agric. Res. Centre, Giza, Egypt.

ABSREACT: This investigation was conducted during three consecutive years (2009, 2010 and 2011). The aim of the study was to investigate the effect of foliar application of gibberellic acid (GA₃) and sitofex (CPPU) either in the single or combined form with regard to the concentration and time of application on bud behavior, vegetative growth, cluster weight and fruit quality in Thompson Seedless grape. Sitofex at 3 or 5 ppm and GA₃ at 10 or 20 ppm were assessed individually or combined at three stages: the beginning of vegetative growth, at 75% bloom and at berry set. Remarkable effects on percentages of bud burst and fruitful buds were observed when CPPU at 3 ppm and / or GA₃ at 10 ppm were sprayed at the beginning of vegetative growth. Sprays including the high concentration of each growth regulator (CPPU or GA₃) resulted in appreciable increases in vegetative growth parameters, cluster weight, berry weight and size, berry length and diameter particularly when CPPU and / or GA₃ were sprayed at the beginning of vegetative growth. Application of both CPPU and GA₃ was found to increase TSS and decrease acidity in the berry juice. Generally, it can be said that the spraying sitofex and / or GA₃ at the beginning of vegetative growth at low concentrations (CPPU at 3 ppm or GA_3 at 10 ppm) gave the highest percentages of bud burst and fruitful buds; using a combination of sitofex and GA₃: CPPU at 3 ppm plus GA₃ at 40 ppm resulted in improving vegetative growth, cluster weight and berry quality of Thompson Seedless grapevine. Therefore, it can be recommended not to spray Thompson Seedless grapevines with high concentrations of sitofex or GA₃ to avoid the possible reduction of bud fertility especially where vines are sprayed at bloom or berry set stages.

[Rafaat S.S. Elgendy; Ghada Sh. Shaker and Ola A. Ahmed. Effect of foliar spraying with gibberellic acid and/or sitofex on bud behavior, vegetative growth, yield and cluster quality of Thompson Seedless grapevines. Journal of American Science 2012; 8(5):21-34] (ISSN: 1545-1003). <u>http://www.americanscience.org</u>. 3

Key words: Gibberellic acid, Sitofex, Thompson Seedless grape

1. INTRODUCTION

The grape is one of the most important fruits all over the world. This is due to its high production which gives a high net income to the growers. Thompson Seedless grape is the most profitable fruit in Egypt. Many factors of grape growing enter into the production of quality; some of these affect the vine and its fruit more directly, such as the use of plant growth regulators. Recently, growth regulators are widely used in the field of grape production. In spite of that, very little information are available concerning the effect of some of these growth regulators on bud fertility of grapevines.

The available literature concerning the after effect of some plant growth regulators such as gibberellic acid (GA₃) mentioned that foliar spraying of GA₃ may cause some problems such as inducing a decrease in bud fruitfulness,Jawanda *et al.*, (1974) ;Gloack and Guven (1994) stated that GA₃ played a certain role in bud burst occurring on the shoots in the following year of GA₃ application.

 GA_3 is widely used in vineyards, all over the world, to increase cluster weight, berry weight and size of Seedless cultivars which in turn increase the vine yield ,Miele *et al.*, (2000) and Reynolds and Savigny.,

(2004) found that GA₃ spray after blooming at 15 and 40 ppm increased cluster weight of the grapevines.

Moreover, Ezzahauani *et al.*, (1985);Shaaban *et al.*, (1992) reported that GA₃ increased TSS% in grape juice of Thompson Seedless. With regard to the effect of GA₃ on total acidity percentage, Reynolds and Savigny (2004) treated the vine cultivar Sovereign Coronation and found that all GA₃ treatments decreased the titratable acidity of berry juice.

Sitofex (Forchlorfenuron) is a plant growth regulator of Cytokinin type ,Nickell, 1985 a and b). its physiological effects were cited by Arie et al., (2008) who recorded that CPPU increased the number and density of cells causing an appreciable increase in berry size of Seedless grapes. Application of Sitofex (CPPU) showed promising results, such as increasing berry set and berry size in Thompson Seedless grape.

Retamales *et al.*, (1995) ; Abdul *et al.*, (1998) found that CPPU applied as a post-flowering cluster dip increased the number of clusters in Fujiminon grapevines.

Sitofex has been tried successfully, either alone or combined with other growth substances to improve grape quality, Mervet *et al* (2001).

The purpose of this investigation is to throw some

light on the effect of foliar spraying of GA₃ and / or Sitofex either in the single or combined form on bud behaviour, vegetative growth, cluster weight and fruit quality of Thompson Seedless grape.

2. MATERIALS AND METHODS:

This investigation was carried out during three consecutive years (2009, 2010 and 2011) in a private vineyard located at the 84th kilometer of Cairo Alexandria Desert Road.

2.1.MATERIALS:

2.1.1.Sample:

Eight years old Thompson Seedless grapevines were grown in sandy soil and spaced 1.75 x 2.75 m. The vines were supported by the Gable system. In the last week of December, the vines were pruned to 8 canes of 12 buds each. The vineyard was drip irrigated. All vines received the common cultural practices already applied in the vineyard.

2.2.METHODS:

2.2.1. Design of the experiment:

It was designed according to the randomized block system with three replicates per treatment, five vines each. The work in the first year was considered as a preliminary trial, and then the experiment proceeded with the same manner during the second and third seasons, respectively.

2.1.2. Treatments:

The applied treatments were as follows: 1.Sitofex CPPU at 3 ppm. 2.Sitofex CPPU at 5 ppm. 3.GA₃ at 10 ppm . 4.GA₃ at 20 ppm . 5.GA₃ at 40 ppm . 6.Sitofex CPPU at 3 ppm in addition GA₃ at 10 pm 7.Sitofex CPPU at 3 ppm in addition GA₃ at 20ppm 8.Sitofex CPPU at 3 ppm in addition GA₃ at 40ppm 9.Sitofex CPPU at 5 ppm in addition GA₃ at 20 ppm. 10.Sitofex CPPU at 5 ppm in addition GA₃ at 20 ppm. 11.Sitofex CPPU at 5 ppm in addition GA₃ at 40 ppm

12. Control (untreated vines).

Vines were sprayed at three times as follows:

- 1- Spraying at the beginning of vegetative growth.
- 2- Spraying at 75% bloom.

3- Spraying immediately after berry set.

Grape clusters were picked when the total soluble solids of the control reached 16 - 17% Tourky *et al.*, (1995).

2.1.3. Measurements:

The following parameters were recorded for both seasons:

A-Bud behavior:

1) Bud burst (%): calculated by dividing number of bursted buds / total No. of buds left per vine at pruning time multiplied by 100.

2) Vegetative buds (%): Number of vegetative buds / No. of bursted buds x 100.

3) Fruitful buds (%): Number of fruitful buds per vine / No. of bursted buds x 100.

B-Growth aspects ultimate shoot size:

Length (cm), shoot diameter. Internodes' length prior to the first cluster (at the 3^{rd} or the 4^{th} node) was measured at the cluster ripening stage. The total leaf area of the mature basal 7^{th} and 8^{th} leaves were measured at bi-weekly intervals covering the period from time of spraying till harvesting time, the total surface area of the leaves per vines (m² / vine) was determined as follows: the mean leaf area multiplied by the number of leaves per shoot by number of shoots per vine using leaf area meter, Model Cl 203, U.S.A.

Coefficient of wood ripening: This was calculated by dividing length of the ripened part of the cane by the total length of the cane ,Bourad (1966).

C-Yield and fruit quality:

Clusters were harvested in each season when T.S.S. of the untreated vines reached 16- 17%. At harvest time yield per vine and cluster weight were recorded. From each treatment three samples each containing 100 berries were used for physical and chemical determinations such as berry weight (g), size (cm³) and dimension (cm), percentage of total soluble solids (T.S.S.) (by using hand refractometer), total acidity percentage according to A.O.A.C. (1985) and T.S.S. acid ratio (TSS / acid).

D-Histological studies:

For assessing bud fertility, buds were collected from shoots of the current season representing the control and the best promising treatment to be examined at the end of October in each season. The samples were transferred directly to the laboratory and preserved as soon as possible in F.A.A. solution and kept for 48 hours. The tissues were dehydrated in nbutanol. After embedding in paraffin wax, buds were sectioned longitudinally 12μ thick using a rotary microtome and stained with safran and fast green according to the method of Johansen (1940).

The means representing the effect of the tested treatments were compared by the New L.S.D. method at 0.05 significance according to Snedecor and Cochran (1980).

3.RESULTS AND DISCUSSION 3.1. Effect of foliar application with sitofex and

GA₃ on bud behavior of Thompson Seedless grape: 3.1.1.Bud burst:

Concerning the effect of spraying with sitofex and / or GA₃ on bud burst percentage, of Thompson Seedless grapevines during 2010 and 2011 seasons, it can be noticed from Fig (1) that, slight differences occurred among the treatments under study. However, the single application of GA₃ was shown to increase the percentage of bud burst as compared with the control. Slight differences could be detected among GA₃ concentrations. Spraying GA₃ at 10 ppm gave the highest bud burst percentage ,whereas, GA₃ at 40 ppm gave the lowest one. However, GA₃ at 20 ppm ranked in between in this respect. Similar results were reported by Thomas (1979); Gloack, and Guven (1994) they found that GA_3 at 50 ppm caused a reduction in bud burst percentage. On the other hand, sitofex alone at 3 ppm and 5 ppm slightly increased bud burst percentage over the control in the first and second seasons respectively, the highest values of bud burst percentage were observed with spraying sitofex at 5 ppm. These results agree with those obtained by Famiani et al., (2001) who reported that, the percentages of bud burst of grapevines were not affected by CPPU at 20 ppm sprayed after full bloom.

More remarkable effects were obtained by the combined treatments of CPPU and GA₃ which achieved higher increase in bud burst percentage. The data revealed that, CPPU at 3 ppm plus GA₃ at 10 ppm and CPPU at 3 ppm plus GA₃ at 20 ppm treatment achieved the highest bud burst percentage when applied at the beginning of vegetative growth. Followed by the application at 75% bloom, while, spraying at berry set caused the lowest values of this parameter. The same trend was observed in both seasons. The increment may be mainly due to the benefit of spraying sitofex.

3.1.2. Vegetative buds:

Fig (2) shows the effect of the tested treatments on percentage of vegetative buds in both seasons. Spraying of sitofex alone at 3 ppm to 5 ppm or GA₃ at 10 ppm to 40 ppm gave a slight decrease of percentage of vegetative buds in Thompson Seedless grapevines as compared to the control. Increasing the concentration of either sitofex or gibberellin was followed by a gradual increase in the values of this parameter. Yet, slight increases were noticed by CPPU at 3 ppm plus GA₃ at 20 ppm and CPPU at 3 ppm plus GA₃ at 40 ppm when applied at the beginning of vegetative growth. CPPU at 5 ppm plus GA₃ at 20 ppm and CPPU at 5 ppm plus GA₃ at 20 ppm and CPPU at 5 ppm plus GA₃ at 40 ppm were found to be superior to control since they increased percentage of vegetative buds in the two successive seasons. Also, CPPU and / or GA_3 application at the beginning of vegetative growth resulted in higher values of this estimate as compared to spraying at bloom and berry set stages. The lowest vegetative bud percentages were recorded at berry set stage.

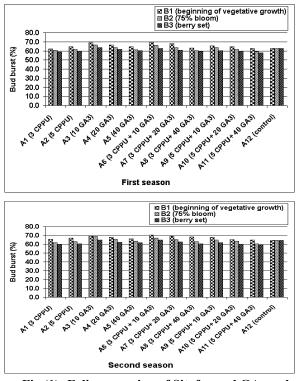


Fig (1): Foliar spraying of Sitofex and GA₃ and their effect on bud burst

3.1.3. fruitful buds:

Data in Fig. (3) and photo (1) show the percentage of fruitful buds as affected by spraying GA_3 and / or sitofex. It was observed that percentage of fruitful buds take a trend reverse to that of vegetative buds.

Data revealed that, spraying grapevines with sitofex or GA_3 increased percentage of fruitful buds as compared to the untreated vines, especially when higher concentrations of sitofex were applied. This result appears fact at spraying was carried out at the beginning of vegetative growth but at berry set stage it low values were obtained at spraying with CPPU at 5 ppm followed by CPPU at 3 ppm. On the other hand, GA_3 was found to increase this parameter as compared with the control. The highest values were obtained when GA_3 was sprayed at the low concentration (10 ppm) at the beginning of vegetative growth followed by those of 75% bloom while at berry set stage GA_3 spraying resulted in the highest reduction in this estimate.

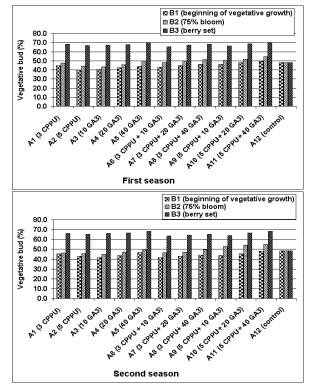


Fig (2): Foliar spraying of Sitofex and GA_3 and their effect on percentage of vegetative buds

The role of gibberellins in adventitious bud development may be via an inhibition of cell division leading to the organization of the new meristem which leads to the initiation of a primordium, Heide (1969).

As for the interaction among different sitofex and gibberellin treatments, the data clearly disclose that distinguished increments took place in both seasons of the study. In other words, the interaction between CPPU and GA₃ CPPU at 3 ppm plus GA₃ at 10 ppm achieved higher increases in percentage of fruitful buds in Thompson Seedless grape when applied at the beginning of vegetative growth, while, spraying at berry set stage caused the lowest values of this estimate in both seasons.

Bigot and Nitsch, (1968) found that timing of GA_3 application was extremely important. Furthermore, Ali and Fletcher (1970) reported that, the efficiency of GA_3 for relating buds depends on the physiological age of the buds. Spraying at 75% bloom stage ranked in between in this connection. Contrary to the above mentioned results, CPPU application at 5 ppm plus GA_3 at 20 or 40 ppm at any date caused a marked decrease in this parameter compared with other treatments for both seasons of this study.

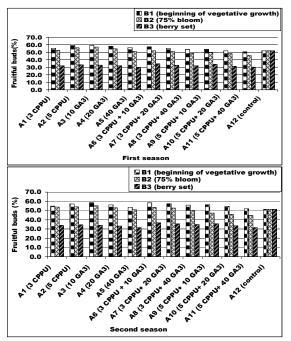


Fig (3): Foliar spraying of Sitofex and GA₃ and their effect on bud fertility

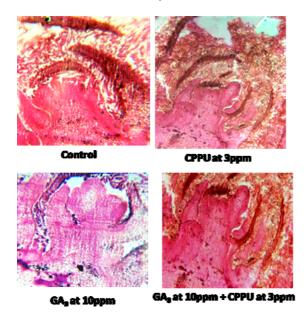


Photo (1): Effect of spraying CPPU and GA₃; the branching cluster primordium appears more pronounced as compared with the control

Anyhow, it was found that all treatments at the berry set stage recorded the lowest values percentage of fruitful buds in both seasons. Concerning the effect of GA_3 when accompanied with sitofex, it was found

that GA₃ at 20 or 40 ppm lessened the effect of sitofex especially, when spraying took place at berry set stage as compared with other stages. Of course, improving bud fertility seems to depend on package of factors among with viticultural practices such as fertilization, pruning, irrigationetc, as to be more effective in improving bud fertility when cluster induction and differentiation occurs through certain phonological stages (flowering, veraison and harvest). Time of cluster induction and initiation of grapevine inflorescence primordia in the buds begins around bloom time and continues almost until it is completed between veraison and harvest, Williams (2000). Therefore, the number of flower primorda per vine is determined during the previous year.

In this respect, the discussion of bud behavior seems to be somewhat difficult since no available information could be obtained from the review concerning the effect of sitofex and / or GA_3 .

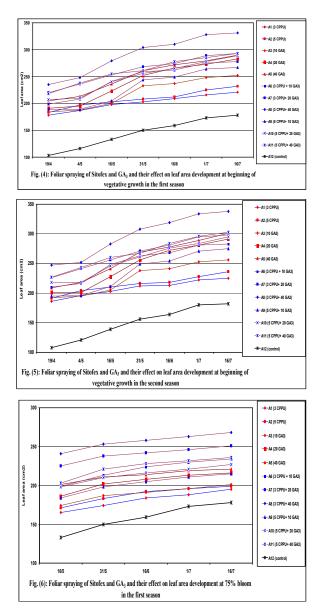
However, the possible interpretation of the remarkable decrease in percentage of fruitful buds and hence in number of clusters in the bud was previous by Hassan (1984) in this study on the effect of spraying some seeded grapevine cultivars with GA₃ at different concentrations and at different stages of the growing season. It is known that spraying GA₃ especially at high concentration and through the stages in which clusters of the following year are being to be formed in the winter buds caused an inhibition of this proton.

3.1.4. Effect of different foliar applications of sitofex (CPPU) and / or GA₃ on vegetative growth: 1- Total shoots length, shoot diameter and internodes' length:

Data concerning the effect of spraying CPPU and / or GA_3 on total shoot length, shoot diameter and internode length of Thompson Seedless grapevines are shown in Table (1 and 2). It is evident from the obtained data that single or combined spraying of both CPPU and GA_3 significantly increased plant growth measurements as compared with control. Increasing concentration of sitofex from 3ppm to 5ppm and GA_3 from 10 ppm to 40ppm resulted in significant increases in shoot length, shoot diameter and internode length. Combined application of both growth regulators was necessary for attaining better vegetative growth.

The data also revealed that CPPU and GA_3 application had a positive effect on vegetative growth especially when applied at the beginning of growth (when the main shoots reached an average of 25 cm length) compared to the other stages in both seasons of this study. A similar trend was noticed as a result of

the interaction between CPPU and GA₃. CPPU at 3 ppm plus GA3 at 40 ppm gave the highest values when applied at the beginning of growth, while CPPU at 3 ppm plus GA₃ at 40 ppm came next. These results obtained under the conditions of this study could be attributed to the enhancing effect of endogenous GA₃ on shoot growth as reported by Nickell (1984). The positive action of GA₃ on vegetative growth was also supported by the results of Grzesik (1992); El – Mogy *et al.*, (1999). The benefit of spraying CPPU on vegetative growth was cited by Arie *et al.*, (2008) who recorded that CPPU increased the number and density of cells. Moreover, Cruz Castillo *et al.*, (2002) observed the stimulation of both cell division and cell expansion


2. Leaf area development:

It can be observed from Fig (4 and 5) that leaf area development was extremely high through the first period of growth from April 19th up to July 16th (at beginning of vegetative growth) during the two studied seasons, followed by a sharp decrease during the second period (75% bloom) Fig. (6 and 7) from May 16th up to July 16th, this decrease continued till it reached its minimal value at the berry set stage from May 31th up to July 16th Fig. (8 and 9).

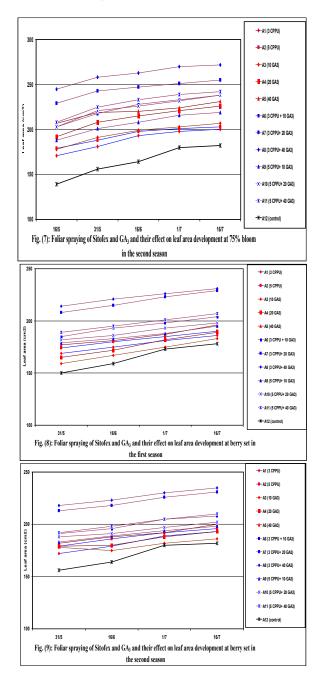
The sharp decrease in leaf area development observed during the second period (75% bloom) from may 16th up to July 16th coincide with the approach of blooming time the period in which temperature always record high degrees. Whereas the minimal values attained at the last period coincided with the beginning of physiological ripening of clusters.

Data also revealed that, leaf area development, in general, was increased on the average as noticed in (3 ppm CPPU plus 40 ppm GA₃) treatment in both seasons. Meanwhile, 5 ppm CPPU plus 40 ppm GA₃ came next in this respect. Data indicated also that, GA₃ treatments increased leaf area development at the beginning of vegetative growth more than that in the other stages. While CPPU came next as compared to the control. Increasing the concentration of either GA₃ or CPPU was followed by a gradual increase in the leaf surface area development.

As for the interaction among different GA_3 and CPPU treatments, the data showed that distinguished increments took place in both seasons of the study at the beginning of vegetative growth stage which is considered as the best for improving this parameter more than that in the other stages. This trend holds true with all treatments, especially with the sole treatments of GA_3 or combined with CPPU.

Many investigations supported the theory that gibberellic acid plays a significant rol in regulating invertase level, Tymowska and Kreis (1998) ;El-Gendy et al., (2006) which is regulated by various phytohormones that in most cases could be related to the increased carbohydrates demand of growth stimulated tissues.

The increase in leaf area development due to the application of sitofex may be ascribed to its positive role in activating the biosynthesis of proteins, RNA and DNA, Nickell(1985a).


3.Wood ripening:-

Data dealing with dynamics of wood ripening are presented in Table (1 and 2). It is clear that sitofex

alone and sitofex plus GA₃ showed the highest coefficient of wood ripening in both seasons. On the other hand control resulted in a remarkable reduction in wood ripening for both seasons of the study. However, it can be observed that sitofex was more effective in this respect followed by sitofex plus GA₃. GA₃ sprayed alone came next in this connection. This result reflects the importance of these treatments as one of the factors affecting the development of wood ripening since these treatments induce early growth and consequently, an earlier wood ripening. Sitofex application was found to increase wood ripening in Thompson Seedless grape when applied at the beginning of growth stage. The highest values were recorded at this stage in comparison with the treatments applied at bloom and fruit set stages. The results obtained in this respect indicated that GA₃ gave the same trend, applying GA₃ at 40 ppm was superior in both seasons to compared with GA₃ at 20 ppm or 10 ppm GA₃. Moreover, spraying at the beginning of growth stage gave the best results, followed by spraying at bloom stage. While, spraying at the berry set stage caused the lowest values of wood ripening. A similar trend was noticed as a result of the interaction between CPPU and GA₃. CPPU at 5 ppm plus GA₃ at 40 ppm and CPPU at 5 ppm plus GA₃ at 20 ppm which increased of wood ripening in Thompson Seedless grape when applied at the beginning of vegetative growth in comparison with the other stages. Impact of different foliar application of sitofex and / or GA₃ on average cluster weight:

It is clear from the data shown in Table (3 and 4) that spraying sitofex at 3 and 5 ppm and GA_3 at 10, 20 and 40 ppm increased significantly the cluster weight of Thompson Seedless grapevines as compared to the control treatment. There was a gradual and significant increase in the cluster weight with increasing concentrations of CPPU from 3 to 5 ppm and GA_3 from 10 to 40 ppm. Combined application of both growth regulators was necessary for attaining higher cluster weight. This increase can be interpreted in view of the fact that these treatments lead to the increase in photosynthetic activity in the leaves. As a consequence of that, immigration of assimilates from leaves towards cluster is enhanced.

The data also revealed that sitofex application had a positive effect on cluster weight especially when applied at the beginning of vegetative growth as compared to the other stages in both seasons of the study. Heavier clusters were attained by the higher CPPU concentration. The same trend was observed in both seasons. The benefit of spraying sitofex on cluster weight was previously reported by Reynolds *et* *al.*, (1992); Abdul *et al.*, (1998); Ezzahauani (2000) ; Elzayat *et al.*, (2004) noticed that cluster weight of ⁽Sovereign Coronation⁾ grapes increased linearly with increasing CPPU concentration. As for GA₃ applications data in Table (3 and 4) showed that application of GA₃ either at 10, 20 or 40 ppm increased significantly cluster weight in comparison with the control,

This results holds true for both seasons. The results

are in harmony with those of Navarro *et al.*, (2001); El-Gendy *et al.*, (2006) who reported that, there was a significant increase in cluster weight after GA_3 application.

The increment may be mainly due to advancing the growing season starting from the beginning of vegetative growth attributed to the acceleration of carbohydrates and proteins synthesis consequently, reflecting their effect by on the availability of more organic nutrients and their movement towards the clusters causing a remarkable increase in berry weight and size.

The interaction between CPPU and GA₃ treatments recorded the maximum of the cluster weight (CPPU at 3 ppm plus GA₃ at 40 ppm). Meanwhile (CPPU at 3 ppm plus GA₃ at 20 ppm) at the beginning of vegetative growth came next. The data go in line with the results reported by Mervat *et al.*, (2001) ;EI-Zayat *et al.*,(2004) who studied the effect of sitofex and its combination with GA₃ on grape cv. Thompson Seedless, the results showed that sitofex applied alone or in combination with GA₃ significantly increased the cluster weight. Meanwhile, the other treatments (CPPU plus GA₃) ranked second with significant increases over the control.

3.1.5. Physical characteristics of berries:

Data in Table (3 and 4) show the effect of the tested treatments on berry weight and size of 100 berries, berry length, diameter and berry index shape in the two seasons of the study spraying sitofex at 3 to 5 ppm and / or GA_3 at 10 to 40 ppm had significantly increased weight, size, length, diameter and berry index shape of berries of Thompson Seedless grapevines as compared the control.

Increasing the concentration of either CPPU or GA₃ was followed by a gradual increase in the physical characteristics of berries. Yet, a slight increase was noticed by sitofex applications than that of GA_3 . The results indicated that applying sitofex at the beginning of vegetative growth increased weight, size, length, diameter and berry index shape of berries more than in the other stages (75% bloom and berry set). In this concern, the increase in these parameters due to application of sitofex might be described to its positive action on enhancing both cell division and cell elongation as well as its great role in activating the biosynthesis of proteins, RNA and DNA, Nickell(1985a). The present results concerning the effect of sitofex on the characteristics of berries are in harmony with those obtained by Sourial *et al* ..(2004); El-zayat et al., (2004);Flaishman et al., (2006); Maha (2008). Moreover, spraying GA₃ at the beginning of vegetative growth stage at 40 ppm was found to

increase significantly these parameters. In this respect, the enhancing effect of GA₃ on the quality of berries may be ascribed to the positive action of GA₃ on stimulating cell elongation process, enhancing the water absorption and stimulating the biosynthesis of proteins which leading to the increase in berry weight, size, length and diameter. These results are in agreement with those obtained by Dokoozlian *et al.*, (2001);Reynolds and Savigny (2004);Abd-Elgawad (2007) who reported that, GA₃ sprayed at 15 and 40 ppm caused a significant increase in berry volume and berry dimensions in comparison with those of control in both cultivars Thompson Seedless and Flame Seedless.

As for berry shape it was significantly increased by spraying CPPU and / or GA₃ compared with the untreated vines and it is also obvious that berry shape showed a linear increase from the onset of berries. This trend holds true with all treatments. The results obtained may be attributed to the stimulation of CPPU to periclinal berry growth resulting in a proportionally greater increase in berry diameter than berry length. In contrast, GA₃ treatments stimulated anticlinal growth, resulting in elongated berries. Berries of CPPU treated grapevines were more spherical than those of GA₃. The shape of berries becomes more global rounder when treated with cytokinins, Dokoozlian et al, (1994): Retamales et al,(1995); Mervet et al., (2001); Flaishman etal (2006).

Concerning the interaction among different CPPU and GA₃ treatments, the data clearly disclosed that distinguished increments took place in both seasons of the study. In other words, the interaction between CPPU and GA₃ (CPPU at 3 ppm plus GA₃ at 40 ppm) and (CPPU at 3 ppm plus GA₃ at 20 ppm) came next at berry set which is considered as the best in improving these parameters. The data go in line with the results reported by Dokoozlian *et al.*, (1994),Mervet *et al*.,(2001) who studied the effect of CPPU and its combination with GA₃ at 40 ppm and / or CPPU at 3 and 5 ppm on grape cv. Thompson Seedless. The results showed that sitofex alone or in combination with GA₃ significantly increased berry growth.

3.1.6. Chemical characteristics of berries:

The data regarding the effect of sitofex, GA_3 and their interaction on TSS, acidity and TSS / acid ratio in the berries of Thompson Seedless grapevines in both seasons are presented in Table (5 and 6). It is apparent that the single application of sitofex (CPPU) increased the percentage of total soluble solids and lowered the total acidity of the juice as compared with the control.

In this respect, 5 ppm CPPU gave generally better results as it increased TSS and reduced acidity than the lower concentration. The results agree with those obtained by Cai et al.,. (1996) that showed that CPPU increased soluble solids content in (Fujiminori) grape and Nie et al., (2000) in Langan. Cv. Shixia Moreover, Duane and Greene(2001) noticed that the total soluble solids of (Macintosh) apple were increased by spraying CPPU. As for the effect of CPPU on juice acidity, it took an opposite trend to that noticed with TSS. GA₃ foliar application was found to increase TSS percentage and decrease total acidity in berry juice. Increasing the concentration of GA₃ was followed by a gradual increase in TSS and a decrease in acidity. Moreover, GA₃ at 40 ppm gave generally better results and reduced acidity more than the lower concentration.

These results confirm those findings obtained by Shaaban *et al* .,(1992) who reported that manipulation with GA_3 resulted in an increase in TSS% in grape juice of Thompson Seedless and Reynolds and Savigny (2004) who found that GA_3 sprayed at 15 and 40 ppm on 'Sovereign Coronation' caused a slight increase in degrees Brix.

These findings could be due to the enhancing effect of GA_3 on increasing leaf area and amount of assimilates directed to the berries, Mostafa (1989). However, the effect of GA_3 on reducing acidity was given by Mahmoud *et al.*, (1989); Singh *et al.*, (1994); Reynolds and Savigny (2004) who pointed out that GA_3 application resulted in a decrease in the total acidity percentage of berry juice.

More pronounced effects were obtained by combined treatments of CPPU and GA3 which achieved higher increase in TSS percentage and decreases in acidity. The data revealed that, CPPU at 3 ppm plus GA₃ at 40 ppm and CPPU at 5 ppm plus GA₃ at 40 ppm treatments achieved the highest TSS and lowest acidity without any significant differences among treatments in both seasons. Abdul et al., (1998) found that the combined treatment CPPU and GA₃ reduced titratable acidity and increased TSS of ⁽Fujiminori⁾ grape. However, significant differences were noticed among treatments regarding the effect of application data on TSS and acidity, in the two seasons under study, Moreover, spraying at the beginning vegetative growth stage gave the best results, while, spraying at the berry set stage recorded the least values of theses parameters. The increase in TSS as a result of spraying at the beginning of vegetative growth stage as compared to other stages can be interpreted in view of the fact that in this stage surface area and shoot length were increased leading

to the increase in photosynthetic activity of leaves. As a consequence of that, immigration of assimilates from leaves towards berries is enhanced.

TSS / acidity:

Data shown in Table (5 and 6) revealed that CPPU at 3 ppm concentration significantly decreased this ratio compared to the control. This decrease showed an opposite trend to CPPU concentrations in the first season, whereas the differences between CPPU at 3 to 5 ppm were insignificant in the second season. Concerning GA₃ application data revealed that, increasing concentration of GA₃ from 10 to 40 ppm resulted in significant increases in TSS / acidity in both seasons. The results are in line with those obtained by Tambe (2002) who studied the effect of Gibberellic acid at 7, 10, 20, 30 or 40 ppm on Thompson Seedless cv. and found GA₃ caused an increase in the values of TSS / acid ratio.

The data also indicated that spraying CPPU and / or

 GA_3 had a positive effect on TSS / acidity especially when applied at the beginning of vegetative growth stage compared to the other stages in the two seasons. A similar trend was noticed as a result of the interaction between CPPU and GA₃. CPPU at 3 ppm plus GA₃ at 40 ppm and CPPU at 5 ppm plus GA₃ at 40 ppm gave the highest values but without significant differences between them. This result may be ascribed to the higher concentration of sitofex.

From the foregoing results, it can be concluded that, the spraying at the beginning of vegetative growth with sitofex and / or GA_3 at lowest concentrations (CPPU at 3 ppm or GA_3 at 10 ppm) gave the highest increase of bud burst and fruitful buds percentage using a combination of CPPU at 3 ppm plus GA_3 at 40 ppm resulted in improving vegetative growth, cluster weight and berry quality in Thompson Seedless grapevines.

	Internodes' length Average shoot diameter					ot diameter		Average shoo				Average leaf area	e grome		coefficient of wood ripening								
Treat ments	DI	D2	D3	M e a n (A)	D 1	D 2	D 3	Mean (A)	DI	D2	D3	Mean (A)	DI	D2	D3	Mean (A)	DI	D2	D3	Mean (A)			
A1 (3 CPPU)	6	7	6	6	0 8	0 7	0 6	0.7	208	189	179	192	221.0	195.0	183.0	199.67	0.88	0.81	0.75	0.81			
A2 (5 CPPU)	7	7	7	7	0 9	0 8	0 7	0.8	279	218	188	228	252.0	201.0	186.0	213.00	0.92	0.83	0.78	0.84			
A3 (10 GA3)	6	7	6	6	0 6	0 6	0 6	0.6	224	203	181	203	232.0	199.0	189.0	206.67	0.82	0.76	0.68	0.75			
A4 (20 GA3)	7	7	6	7	0 7	0 6	0 6	0.6	298	229	219	249	283.0	216.0	190.0	229.67	0.84	0.79	0.73	0.79			
A5 (40 GA3)	8	8	6	7	1 0	0 9	0 6	0.8	315	236	228	260	290.0	221.0	196.0	235.67	0.86	0.81	0.73	0.80			
A6 (3 CPPU + 10 GA3)	10	9	8	9	1 1	0 9	0 8	0.9	243	209	191	214	278.0	234.0	204.0	238.67	0.69	0.65	0.61	0.65			
A7 (3 CPPU + 20 GA3)	11	10	9	1 0	1 2	1 0	0 9	1.0	278	213	202	231	293.0	251.0	229.0	257.67	0.72	0.68	0.62	0.67			
A8 (3 CPPU + 40 GA3)	12	11	9	1 1	1 4	1 1	1 1	1.2	378	275	253	280	331.0	268.0	231.0	276.67	0.76	0.70	0.65	0.70			
A9 (5 CPPU + 10 GA3)	8	8	5	7	0 9	0 8	0 6	0.8	321	226	208	252	267.0	215.0	195.0	225.67	0.79	0.71	0.65	0.72			
A10 (5 CPPU + 20 GA3)	10	9	5	8	1 0	0 9	0 6	0.8	348	239	225	271	289.0	227.0	198.0	238.00	0.81	0.74	0.68	0.74			
A11 (5 CPPU + 40 GA3)	11	10	6	9	1 2	0 .9	0 7	0.9	312	255	239	291	293.0	236.0	207.0	245.33	0.83	0.77	0.71	0.77			
A12 (contr ol)	4	4	4	4	0 5	0 5	0 5	0.5	149	149	149	149	178.0	178.0	178.0	178.00	0.59	0.59	0.59	0.59			
Mean s(B)	8	8	6		0 9	0 8	0 7		279	220	205		267.25	220.08	198.83		0.79	0.74	0.68				
new L.S.D. (0.05) :																							
new L.S.D. (A) =	2				0 3				29				37.00				0.11						
new L.S.D. (B) =	1			0 1					12				14.80		0.04								
new L.S.D. (AXB)	3		0 5						49					62.90					0.19				

Table (1): Foliar spray	of Sitofex and / or GA ₃ and their effect on vegeta	ative growth at the first season

(AAB) B1 (beginning of veget

http://www.americanscience.org

B2 (75% bloom) B3 (berry set)

	Intern	odes'	lengti			Avera dia	ge sho meter	ot		Ave	rage shoot length			A	verage leaf area			coefficient	of wood ripening	
Treatments	DI	D 2	D 3	M e a n (A)	D 1	D 2	D 3	M e a n (A	D 1	D 2	D3	Mean (A)	D 1	D2	D3	Means(A)	DI	D2	D3	Mean (A)
A1 (3 CPPU)	7	7	6	7	1 0	0 8	0 7	0 8	2 2 5	1 9 6	185	202	2 2 5 0 0	200.0	193.00	206.00	0.89	0.84	0.78	0.84
A2 (5 CPPU)	8	9	8	8	1 0	0 .9	0 8	0 9	2 8 3	2 1 0	193	229	2 8 3 0	219.0	198.00	230.67	0.93	0.86	0.79	0.86
A3 (10 GA3)	7	8	7	7	0 8	0 7	0 7	0 7	2 3 5	2 0 8	186	210	2 3 5 0	203.0	196.00	230.67	0.85	0.80	0.70	0.78
A4 (20 GA3)	8	8	7	8	0 9	0 7	0 7	0 8	3 0 5	2 3 8	226	256	3 0 5 0 0	238.0	202.00	245.00	0.87	0.81	0.75	0.81
A5 (40 GA3)	8	8	8	8	1 1	1 1	0 8	1 0	3 4 2	2 4 9	232	274	3 4 2 0 0	242.0	210.00	251.67	0.89	0.83	0.75	0.82
A6 (3 CPPU + 10 GA3)	11	9	9	1 0	1 2	1 0	0 9	1 0	2 6 0	2 1 5	198	224	2 6 0 0 0	207.0	186.00	216.33	0.72	0.70	0.62	0.68
A7 (3 CPPU+ 20 GA3)	12	1	1 0	1 1	1 3	1 1	1 1		2 9 5	2 2 6	207	243	2 9 5 0	226.0	193.00	236.67	0.75	0.72	0.64	0.70
A8 (3 CPPU+ 40 GA3)	13	1	1 0	1 1	1 4	1 2	1 1		3 2 8	2 8 6	265	293	3 8 5 0 0	231.0	200.00	244.00	0.78	0.73	0.68	0.73
A9 (5 CPPU+ 10 GA3)	10	8	8	9	1 0	0 8	0 7	0 8	3 3 0	2 3 8	213	260	3 3 0 0 0	238.0	208.00	243.00	0.81	0.75	0.69	0.75
A10 (5 CPPU+ 20 GA3)	11	8	8	9	1 1	0 9	0 8	0 9	3 6 7	2 5 9	238	288	3 6 7 0 0	255.0	231.00	261.33	0.84	0.76	0.71	0.77
A11 (5 CPPU+ 40 GA3)	12	1 0	9	1 0	1 2	1 0	0 8	1 0	3 8 5	2 7 6	255	305	3 2 8 0 0	272.0	235.00	281.67	0.86	0.79	0.73	0.79
A12 (control)	5	5	5	5	0 4	0 4	0 4	0 4	1 5 5	1 5 5	155	155	1 5 5 0	182.0	182.00	182.00	0.61	0.61	0.61	0.61
Means(B)	9	9	8		1 0	0 9	0 8		2 9 3	2 3 0	213		2 7 3 5 8	226.08	202.83		0.82	0.77	0.70	

Table (2): Foliar spraying of Sitofex and / or GA3 and their effect on vegetative growth at the second season

new L.S.D. (A) 3

new L.S.D. (B) 1

44 57.80 new L.S.D. (AXB) = 5 0.3

B1 (beginning of vegetative growth) B2 (75% bloom) B3 (berry set)

http://www.americanscience.org

26

10

3 4

. 6 0

0.14

0.2

0.1

Table (3): Foliar spraying of Sitofex and GA3 and their effect on cluster weight and physical characteristics of berries at the first season

1		Average	e cluster weight		Avera	re weight o	of 100 ber	rries	Ave	rage size o	f 100 herr	ies	Δ.	verage berr	v length			Average b	erry dian	ieter			Berry shape i	ndex
Treatments	D1	D2	D3	Mean (A)	D1	D2	D3	Mean (A)	D1	D2	D3	Mean (A)	D1	D2	D3	Mean (A)	D1	D2	D3	Mean (A)	D1	D2	D3	Mean (A)
A1 (ð CPPU)	550	525	512	529	215.6	209.2	203.2	209.3	210	200	190	200	1.85	1.83	1.81	1.83	1.45	1.43	1.41	1.43	1.28	1.28	1.28	1.28
A2 (5 CPPU)	592	548	526	555	237.2	228.8	223.2	229.7	220	210	210	213	1.90	1.83	1.81	1.85	1.55	1.53	1.52	1.53	1.23	1.20	1.19	1.20
A3 (10 GA3)	650	560	548	586	249.2	230.0	221.6	233.6	240	220	210	223	1.85	1.80	1.78	1.81	1.52	1.38	1.35	1.42	1.22	1.30	1.32	1.28
A4 (20 GA3)	758	580	560	633	263.2	249.2	248.4	253.6	250	240	240	243	1.90	1.85	1.80	1.85	1.43	1.42	1.40	1.42	1.33	1.30	1.29	1.31
A5 (40 GA3)	783	638	625	682	299.6	291.6	251.2	280.8	280	280	240	267	1.90	1.88	1.84	1.87	1.45	1.44	1.40	1.43	1.31	1.31	1.31	1.31
A6 (3 CPPU + 10 GA3)	700	645	629	658	264.0				250		200		1.88				1.44					1.29	1.31	1.30
A7 (3 CPPU+ 20 GA3)	775	718	689	727	291.2	265.6			275	255	250	260	1.95	1.95	1.90		1.45		1.42	1.44		1.35	1.34	1.35
A8 (3 CPPU+ 40 GA3)	788	730	716	745 536	314.0	304.8		298.4 217.5	290 200	260	200	250	2.00	1.98	1.97		1.48	1.47	1.42	1.46		1.35	1.39	1.36
A9 (5 CPPU+ 10 GA3) A10 (5 CPPU+ 20 GA3)	650	638	615	634	254.0	246.8	234.8	245.2	235	200	200	220	1.84	1.80	1.81	1.83	1.46	1.42	1.40	1.45	1.26	1.27	1.29	1.27
A11 (5 CPPU+ 40 GA3)	700	688	671	686	263.6	258.0	247.6	256.4	250	245	240	245	1.87	1.86	1.84	1.86	1.50	1.48	1.46	1.48	1.25	1.26	1.26	1.26
A12 (control)	485	485	485	485	173.2	173.2		173.2		160	160	160	1.57	1.57	1.57	1.57	1.34	1.34	1.34	1.34	1.17	1.17	1.17	1.17
Means(D)	666	607	591		254.0	244.9	232.7		238	227	213		1.86	1.84	1.81		1.46	1.43	1.41		1.27	1.29	1.29	
new L.S.D. (A) = new L.S.D. (B) = new L.S.D. (AXB)	18 7 31				9. 3. 15.8				1 24				0.0 0.03				0.0 0.0 0.09				0.12	0.07 0.03		

Table (4): Foliar spraying of Sitofex and GA3 and their effect on cluster weight and physical characteristics of berries at the second season

Treatments Average cluster weight					Average we	ight of 100 be	rries	Average siz	e of 100 ber	ries	Average b	erry length		Averag	e berry diameter			Berry	shape index					
	Dí	D2	D3	Mean (A)	D1	D2	D3	Means(A)	D1	D2	D3	Mean (A)	D1	D2	D3	Mean (A)	D1	D2	D3	Mean (A)	D1	D2	D3	Means(A)
AI (3 CPPU)	590	558	532	560	234.8	229.0	224.0	229.3	225	220	220	222	1.87	1.85	1.83	1.85	1.55	1.45	1.45	1.48	1.21	1.28	1.26	590
A2 (5 CPPU)	610	565	548	574	258.2	251.0	236.8	248.7	250	245	230	242	1.95	1.87	1.85	1.89	1.56	1.55	1.55	1.55	1.25	1.21	1.19	610
A3 (10 GA3)	678	608	546	611	262.0	239.6	235.2	245.6	255	230	230	238	1.93	1.90	1.88	1.90	1.54	1.40	1.40	1.45	1.25	1.36	1.34	678
A4 (20 GA3)	810	625	590	675	265.6	258.0	253.6	259.1	255	250	245	250	1.96	1.91	1.85	1.91	1.50	1.44	1.42	1.45	1.31	1.33	1.30	810
A5 (40 GA3)	826	679	639	715	306.0	299.6	267.2	290.9	280	280	255	272	2.20	1.95	1.84	2.00	1.47	1.47	1.45	1.46	1.50	1.33	1.27	826
A6 (3 CPPU + 10 GA3)	763	675	658	699	276.4	273.6	265.6	271.9	260	260	260	260	1.94	1.90	1.88	1.91	1.45	1.43	1.43	1.44	1.34	1.33	1.31	763
A7 (3 CPPU+ 20 GA3)	805	728	705	746	298.0	282.8	272.0	284.3	280	270	260	270	1.98	1.97	1.92	1.96	1.47	1.45	1.44	1.45	1.35	1.36	1.33	805
A8 (3 CPPU+ 40 GA3)	823	756	729	769	316.0	310.8	284.0	303.6	290	290	275	285	2.50	2.05	1.99	2.18	1.54	1.53	1.46	1.51	1.62	1.34	1.36	823
A9 (5 CPPU+ 10 GA3)	618	550	537	568	238.0	235.2	219.6	230.9	225	220	210	218	1.90	1.87	1.82	1.86	1.46	1.43	1.42	1.44	1.30	1.31	1.28	618
A10 (5 CPPU+ 20 GA3)	715	651	639	668	262.4	252.8	238.0	251.1	250	240	220	237	1.94	1.89	1.83	1.89	1.46	1.45	1.45	1.45	1.33	1.30	1.26	715
A11 (5 CPPU+ 40 GA3)	735	703	688	709	273.2	268.8	253.6	265.2	260	250	230	247	1.95	1.90	1.85	1.90	1.57	1.53	1.48	1.53	1.24	1.24	1.25	735
A12 (control)	510	510	510	510	180.0	180.0	180.0	180.0	165	165	165	165	1.63	1.63	1.63	1.63	1.32	1.32	1.32	1.32	1.23	1.23	1.23	510
Means(D)	707	634	610		264.2	256.8	244.1		250	243	233		1.98	1.89	1.85		1.49	1.45	1.44		1.28	1.34	1.29	707
new L.S.D. (0.05) : new L.S.D. (A) = new L.S.D. (B) = new L.S.D. (AXB)	15 6 26 B1 (beginning of vegetative growth)				11.2 4.5 19.0	B2 (75% bloom)			11 4 19 B3 (berry set)				0.03 0.01 0.05				0.04 0.02 0.07				0.06 0.02 0.10			

Table (5): Foliar spraying of Sitofex and GA₃ and their effect on chemical characteristics of berries at the first season

Treatments		ss				Acidity				TSS/acid	ratio	
Treatments	D1	D2	D3	Means(A)	D1	D2	D3	Means(A)	DI	D2	D3	Means(A)
A1 (3 CPPU)	18.2	18.0	17.5	17.9	0.59	0.60	0.69	0.63	30.8	30.0	25.4	28.7
A2 (5 CPPU)	18.3	18.6	18.6	18.5	0.56	0.57	0.59	0.57	32.7	32.6	31.5	32.3
A3 (10 GA3)	18.6	18.3	18.1	18.3	0.57	0.59	0.60	0.59	32.6	31.0	30.2	31.3
A4 (20 GA3)	19.1	18.9	18.5	18.8	0.55	0.56	0.57	0.56	34.7	33.8	32.5	33.6

http://www.americanscience.org

A5 (40 GA3)	19.5	19.0	18.8	19.1	0.50	0.53	0.56	0.53	39.0	35.8	33.6	36.1
2 (6 6 6 7	17.4	15.0	10.0		0.50		0.50	0.00	57.0	55.6	33.0	36.1
A6 (3 CPPU + 10 GA3)	19.5	19.0	18.8	19.1	0.54	0.55	0.56	0.55	36.1	34.5	33.6	34.7
A7 (3 CPPU+ 20 GA3)	19.8	19.6	19.2	19.5	0.53	0.54	0.55	0.54	37.4	36.3	34.9	36.2
A8 (3 CPPU+ 40 GA3)	20.1	19.8	19.6	19.8	0.51	0.53	0.54	0.53	39.4	37.4	36.3	37.7
A9 (5 CPPU+ 10 GA3)	18.9	18.8	18.5	18.7	0.55	0.55	0.56	0.55	34.4	34.2	33.0	33.9
A10 (5 CPPU+ 20 GA3)	19.8	19.5	19.0	19.4	0.51	0.53	0.55	0.53	38.8	36.8	34.5	36.7
A11 (5 CPPU+ 40 GA3)	20.1	19.6	19.4	19.7	0.50	0.52	0.53	0.52	40.2	37.7	36.6	38.2
A12 (control)	16.9	16.9	16.9	16.9	0.73	0.73	0.73	0.73	23.2	23.2	23.2	23.2
Means(B)	19.1	18.8	18.6		0.55	0.57	0.59		32.1	33.9	34.7	
new L.S.D. (0.05) :												
new L.S.D. (A) =	0.3				0.05				1.7			
new L.S.D. (B) =	0.1				0.02				0.7			
new L.S.D. (AXB) =	0.5				0.09				2.9			
	B1(beginning of vegetative growth)					B2 (75% bloom)			B3 (berry set)			

Table (6): Foliar spraying of Sitofex and GA3 and their effect on chemical characteristics of berries at the second season

				seed	Jua se	ason						
_	1	85				Acidity				TSS/acid	ratio	
Treatments	Di	D2	D3	Means(A)	D1	D2	D3	Means(A)	Di	D2	D3	Means(A)
A1 (3 CPPU)	18.5	18.3	17.8	18.2	0.56	0.58	0.68	0.61	33.0	31.6	26.2	30.3
A2 (5 CPPU)	18.8	18.4	18.0	18.4	0.56	0.57	0.59	0.57	33.6	32.3	30.5	32.1
A3 (10 GA3)	18.8	18.6	18.3	18.6	0.56	0.56	0.59	0.57	33.6	33.2	31.0	32.6
A4 (20 GA3)	19.5	19.0	18.8	19.1	0.54	0.55	0.56	0.55	36.1	34.5	33.6	34.7
A5 (40 GA3)	19.7	19.5	19.1	19.4	0.53	0.53	0.55	0.54	37.2	36.8	34.7	36.2
A6 (3 CPPU + 10 GA3)	19.9	19.8	19.0	19.6	0.53	0.54	0.56	0.54	37.5	36.7	33.9	36.0
A7 (3 CPPU+ 20 GA3)	20.1	20.0	19.5	19.9	0.50	0.52	0.55	0.52	40.2	38.5	35.5	38.0
A8 (3 CPPU+ 40 GA3)	20.3	20.3	19.8	20.1	0.49	0.51	0.54	0.51	41.4	39.8	36.7	39.3
A9 (5 CPPU+ 10 GA3)	19.1	18.8	18.5	18.8	0.55	0.56	0.56	0.56	34.7	33.6	33.0	33.8
A10 (5 CPPU+ 20 GA3)	20.2	19.6	18.9	19.6	0.50	0.52	0.56	0.53	40.4	37.7	33.8	37.3
A11 (5 CPPU+ 40 GA3)	20.4	20.1	20.0	20.2	0.49	0.50	0.50	0.50	41.6	40.2	40.0	40.6
A12 (control)	16.5	16.5	16.5	16.5	0.75	0.75	0.75	0.75	22.0	22.0	22.0	22.0
Means(B)	18.8	19.0	19.3		0.58	0.56	0.55		32.9	34.7	35.7	
new L.S.D. (0.05) :												
new L.S.D. (A) =	0.2				0.04				1.3			

 new LS.D. (h) =
 0.1
 0.2
 0.5

 new LS.D. (AXB) =
 0.3
 0.1
 2.2

 B1 (beginning of vegativire growth)
 B2 (5% bloom)
 B3 (berry set)

4. REFRENCES

- Abdel Gawad, S. S. (2007). Early production of grapes for export. Ms. C. thesis, Fac. Agric., Al -Azhar Univ., pp_
- Abdul, A. H.; Zhang Shang Long; Chen Da Ming, 2 Chen Lu Rong, Chen Kung Song; Xu Chag Jie and Chen Zhi Hui (1998). Effect of CPPU, GA3 treatments on fruit development of Fujiminon grape and possible mechanisms involved. Scientia Agricultura Sinica 31 (1) 92 - 94. (Hort. Abst., 68: 10403).
- 3. Ali, A. and R. A. Fletcher (1970). Hormonal regulation of apical dominance in soybean, Can. J. Bot., 48: 1989 - 1994.
- A.O.A.C.(1985). Association of Official agriculture 4. Chemists. Official methods of analysis. Washington D. C., U. S. A. p 382.
- Arie-Ben, R. ; Sarig, P. ; Cohen-Ahdut, Y. ; Zutkhi, 5. Y.; Sonego, L.; Kapulonov, T. and Lisker, N. (2008). CPPU and GA₃ effects on pre and post-harvest quality of seedless and seeded grapes. Acta Horticulturae, 463: 432 - 438.
- Bigot, C. and J. P. Nitsch (1968). Effct du moment de 6. L'application d'acide gibberellique ou de 2,6-diamino purine sur la neoformation des bourgeons chez Begonia rex Putz, Comptes Rendus 267 (D): 619-621.
- 7. Bourad, J. (1966). Recherches physiologiques sur la vinge et en particuliere a joutment des serments. Thesis Sc. Nat Bordeaux (France), pp 34.
- 8 Cai L.H., Hu Chun Gen and Luo Zheng Rong (1996). Study on the effect of several plant growth regulators on the grape berry size and quality. South China fruits 25 (2): 45 – 47. (Hort. Abst., 67: 242).
- 9. Cruz-Castillo, J. G. ; Woolley, D. J. and Lawes, G. S. (2002). Kiwifruit size and CPPU response are influenced by the time of anthesis. Scientia Horticulturae, 95: 23 - 30.
- 10. Dokoozlian, N. K.; N. C. Ebisuda and J. M. Hashim (2001).Gibberellic acid bloom sprays reduce fruit set and improve packable yield of ^(Autumn Royal) table grapes, J. of Amer. Pomol. Soc., 55 (1): 52 57.
- 11. Dokoozlian, N. K.; Moriyama, M. M and Ebisuda, N. C. (1994). For chlorfenthuron (CPPU) increases the berry size and delays the maturity of Thompson Seedless grapes. International Symposium on table grape production, 63 - 68.
- 12. Duane, W. Greene (2001). CPPU influences fruit quality and fruit abscission of (McIntosh) apples. Hort Science. 36 (7): 1292 - 1295.
- 13. El Gendy, Rafaat S. S; Mervat, A. Ali, and F. M. El - Morsi (2006). Improving bunch quality of Early Superior grape cultivar by $B - The application of GA_3$ and hand thinning of berries. Egypt. J. of Appl. Sci., 21 (10a): 232 - 250.
- 14. El Mogy, M.; Mostafa, F. M. A. and Mervat, A. Abd El – Kerim (1999). Studies on the after effect of Gibberellic acid on vegetative growth, yield and berry quality of Thompson Seedless grapevines. J. Agric. Sci. Mansoura Univ., 24 (11): 6839 - 6849.

- 15. Elzavat, H. E.; Hanaa, A. El Helw, Isis, A. Rizk (2004). Effect of gibberellic acid and forchlorfenuron (CPPU) application on preserving Thompson Seedless grape bunches quality after storage. J. Agric. Sci. Mansoura Univ., 29 (4): 1971 - 1983.
- 16. Ezzahauani, A. (2000). Effect of forchlorfenuron (CPPU) and girding on table grape cultivars (perlette) and (Italia). Jouranal - International - des - Sciences de - la - vigne - et - ou - vin., 34 (2): 57 - 60.
- 17. Ezzahouani, A. A. M. Lasheen and L. Walali, (1985). Effect of gibberellic acid and girdling on ^(Thompson Seedless) grapes in Morocco. Hort. Abst. 55 (11): 8526.
- 18. Famiani, F., E. Antognozzi, A. Tombesi, S. Moscatello, A. Battistelli (2001). CPPU induced alterations in source - sink relationships in Actinidia Deliciosa.VIII International Symposium on Plant Bioregulation in Fruit Production. Acta Horticulturae 463.
- 19. Flaishman, M. A., Shargal, A., Shlizeman, L., Sern, R. A., Lev – Yadun, S. and Groft, G. (2006). The synthetic cytokinins CPPU and TDZ prolong the phase of cell division in developing pear (Pyrus communis L.) fruits. Acta Hort. 671: 1x Inter. Pear Symp.
- 20. Gizesik, M. (1992). Factors influencing the effectiveness of growth regulators in nursery production. Hort. Abst. 62 (12): 10256.
- 21. Gloack, A. and A. Guven, (1994). Effect of gibberellic acid on the fruit morphology and physiology of grapes (Vitis vinifera L. cv. Sultanna). Hort. Abst. 64 (7): 5327.
- 22. Hassan, F.F. (1984). Effect of foliage spraying with GA₃ on some morphological, agrobiological, histogical and physiological aspect in some seeded grape varieties. Ph.D. thesis, Vassil Kolorov Inst., Plovdiv, Bulgaria. Cwritten in Bulgaria.
- 23. Heide, O. M. (1969). Non reversibility of gibberellin - induced inhibition of regeneration in Begonia leaves, Plant Physiol., 22: 671-679.
- 24. Jawanda, J. S.; Singh, R. and Pal, N. (1974). Effect of growth regulators on floral bud drop. Fruit characteristics and quality of Thompson Seedless grapes (Vitis vinifera L.) Vitis, 13 (3): 215 - 221.
- 25. Johansen, D. A. (1940). Plant micro technique Mc. Grawhill Book Co. Inc. N. Y
- 26. Maha, M. A. (2008). Physiological studies on yield and fruit quality of some seedless grapevine cultivar: Ph. D. Thesis, Fac. Agric., Assiut Univ., pp 261.
- 27. Mahmoud, M. M., K. L. Ahmed Amen, A. M. El -Sese and A. A. Abd - El - Ghany, (1989). The productivity of grapevines as affected by GA3 and / or Ethephon. Assiut J. Agric. Sci. (20): 95 - 104.
- 28. Mervet, A. K.; Ali, Alia, H. Ibrahim and Isis, A. Rizk, (2001). Effect of sitofex (CPPU) on yield and bunch quality of Thompson Seedless grapevines. Egypt. J. Agric. Res., 79 (2) 531
- 29. Miele, A.; Rizzon, L. A. and Dall Agnol, I. (2000). Effect of plant growth regulators on the size of grapes

cv. Italia grape and on the must composition. Revista Brasileira de Fruticultura, 22 (2): 272 – 276 (c.f. Hort. Abst. 82: 7849).

- Mostafa, F. M. A., (1989). Studies on physiological effects of GA₃ and ASA (Ascorbic acid) on new inter specific fungus – resistant grape varieties. Ph. D. Dissertation. Bonn, University, F. Germany.
- Navarro, O. M.; Retamales, A. J. and Defilippi, B. B. (2001). Effect of cluster thinning and the application of synthetic cytokinin (CPPU) on the quality of (Sultanina) table grapes treated with two sources of gibberellins. Agricultura Tecnica, b1 (1): 15 – 25, 11 ref.
- Nickell, L. G., (1984). Concepts and practice of use of plant growth regulating chemicals in viticulture. Plant Growth Regulating Chemicals. Vol. (1): 156 – 161. CRC. Pres. Inc. Boc. Raton. Florida.
- Nickell, L. G. (1985 a). New growth regulator increases grape size. Plant Growth Reg. Soc. Amer. 12, 1-7.
- Nickell, L. G. (1985 b). Effect of N (2chloro 4 pyridyl) – N – phenylurea on grapes and other crops. Plant Growth Reg. Soc. Amer. 13, 236 – 241.
- 35. Nie Lei, W.; Feng, H.; Nie Lei, L.; Wen, T. L.; Feng, H. J. (2000). Experiment of using CPPU for increasing production and fruit quality for Longan. China – Fruits, (1): 24 – 25.
- 36. Retamales, J. ; Cooper, T. ; Bangerth, F. and Collejas, R. (1995). Effect of CPPU and GA₃ applications on the development and quality of table grape cv. Sultanina. Revista Fruticola, 14 (3): 89 – 94. Chile. C. F. Hort. Abst.., 65: 9604.
- Reynolds, A. G. and Savigny, C. D. (2004). Influence of girdling and gibberellic acid on yield components, fruit composition, and vestigial seed formation of (Sovereign Coronation) table grapes. Hort Science. 39 (3): 541 – 544 (c,f. Hort. Abst. 93: 475).
- Reynolds, A. G.; Wardle, D. A.; Zurowski, C. and Looney, N. E. (1992). Phenylurea CPPU and thidiazuron affect yield components, fruit composition

and storage potential of four seedless grape selections. Journal of the American Society for Horticultural Science. 117 (1) 85 – 89. (Hort. Abst., 63: 3339).

- 39. Shaaban E. A., M. M. El Tanaby and M. M. Nageib, (1992). Effect of GA₃ and Vapor Gard on yield and fruit quality of ^(Thompson Seedless) grapevine. Assiut J. Agric. Sci. 20 (1): 3 14.
- Singh, S.; Singh, I. S and Singh, D. N. (1994). Effect of GA₃ on ripening and quality of grape (*Vitis vinifera* L.). Orissa J. of Hort. 22 (1/2): 66 – 70 (c.f. Hort. Abst. 66: 8487).
- Snedecor, G. W. and W. G. Cochran (1980). Statistical methods. 7th Ed. Iowa State Univ. press, U. S. A.
- Sourial, G. F.; G. F. Ghobrial; R. A. Al Ashkar and A. M. Yousef (2004). Effect of some sitofex and culture treatments on yield and quality of Roumi Red grapes. Zagazig J. Agric. Res., 31 (6): 2635 – 2658.
- Tambe, T. B. (2002). Effect of gibberellic acid in combination with <u>brassinosteroid</u> on berry size, yield and quality of Thompson Seedless grapes. Journal of Maharashtra Agricultural Universities. 27 (2): 151–153 (e.f. Hort. Abst. 89: 4213).
- Thomas, C. M. (1979). Biochemistry and Physiology of Plant Hormones. Springer – Verlag Inc. N. T. pp 90 – 147.
- 45. Tourky, M. N.; El Shahat, S. S. and Rizk, M. H. (1995). Effect of Dormex on fruit set, quality and storage life of Thompson Seedless grapes (Banati grapes). J. Agric. Sci. Mansoura Univ., 20 (12): 5139 – 5151.
- Tymowska, L. Z. and M. Kreis (1998). The plant invertases physiology, biochemistry and molecular biology. Advances in Botanical Research 28, 71 – 117.
- Williams, L. E. (2000). Bud development and fruitfulness of grapevine, in Raisin Production Manual.
 L. P. Christensen (ED), pp 24 – 29. University of California Division of Agriculture and Natural Resources, Oakland.

3/13/2012