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1. Introduction 
 

The mathematical formulation of physical 
phenomena, population genetics, mechanics and 
contact problems in the theory of elasticity, often 
involves singular integral equation with different 
kernels. The monographs [1-6] contain many 
different SRs for different kinds of integral 
equations, in one, two and three dimensional. In 
addition, in [7, 8] using Krein’s method, Mkhitarian 
and Abdou obtained many SRs for the FIE of the 
first kind with logarithmic kernel and Carleman 
function, respectively. 
Consider the MIE 
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( ) ( )( ) y ,y,y  yy ,x  ,x ,x  xx 321321 ==                (1.1)   

 
under the condition 
 

( ) ( )tPdx t,x Φ
Ω 

=∫                        (1.2) 

 
The integral equation (1.1), under the condition (1.2), 
can be investigated from the mixed contact problem 

of a rigid surface ( ) G,v,G  is the displacement 

magnitude and v  is the Poisson’s coefficient, having 

an elastic material occupying the domain Ω, where Ω 
is the domain of integration with respect to position, 
through the time t; t [ ] 1T,T,0 <∈ .  The given 

function ( )t,xf  is the sum of two functions, the first 

function ( )tδ  represents the displacement of the 

surface, under the action of the pressure of 

(1.2) ( ) [ ] 1T,T,0t,tP <∈ , and the second function 

( )xf1  describes the basic formula of the surface. 

Here, λ, 21 λ and λ  are constants, may be complex, 

and having many physical meanings. The unknown 
function ( )t,xΦ , represents the normal stresses 

between the layers of the two surfaces. The known 

function 
λ

yx
k

-
 is the kernel of position and has a 

singular term, while ( )  τt  F -  is the kernel of 

Volterra integral term in time, and represents the 
resistance of the layer of the surface against the 
pressure ( ) t P . 

 
In order to guarantee the existence of a unique 
solution of (1.1), we assume the following 
conditions: 
 
(i) The kernel of the position 

 1 2 3,    ,  ,   
x y

k x x x x x



 and ( )321 y,y,y  yy = , 
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satisfies in ( ) Ω L2 , the condition 

1
22

  
      ,

x y
k dx dy A

 

 
 

 
   ( A: constant ) 

 
(ii) The positive continuous function 

( ) [ ] [ ]( )  T,0  T ,0   C   τt  F ×∈- , and satisfies 

,BτtF <-  B is a constant, for all 

values ( ) [ ] T,0  τ,t ∈ , T ˂ 1. 

 

(iii) The given function ( )t,xf  with its first partial  

derivatives are continuous and belong to the class 
( ) [ ] T,0  C Ω L2 ×  , where   

( ){ } ,τd dx τ,xf  max f 
t 

0 

22

T  t  0C  L2
∫

≤≤×
=  

 
(iv) The unknown function ( ) t,x Φ  satisfies Hölder 

condition with respect to time and Lipschitz  
condition with respect to position. 

 
In this work, a numerical method is used to transform 
the MIE (1.1) into SFIEs of the first kind. In 
addition, the potential theory method, Fourier 
transformation method, orthogonal polynomial 
method and Krein’s method will be used  to establish 
many theorems for obtaining  the SRs of the SFIEs 
(2.1), under the condition (2.3), in one, two and three 
dimensional in the space  [ ] [ ] 1T, T,0  C  Ω L2 <× ; 

Ω is the domain of integration with respect to 
position.  The kernel of position of (2.1) will take the 
following forms: logarithmic form, Carleman 
function, elliptic and potential kernels, and 
generalized potential kernel.  Moreover, many 
important new cases will be discussed here. 

 
2. System of Fredholm integral equations 
 

If we divide the interval [0,T], 0 ≤ t ≤ T ˂1as 

Tt t t  0 i10 =<<<≤  , when t  t = , 
i  2,..., 1, 0,  = , the MIE (1.1) takes the form 

 

       1
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0

                   p
j j j
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( )0  p,0h >→                                                     (2.1) 

 

where j  j  0 hmaxh  ≤≤=  and j1  jj t-th += , 

Here, we used the following notations 
 

( ) ( ) ( ) ( ) ( ) x f t ,x f, y  Φ t,y  Φ,F  tt   F j ,j  ===-

                                                                              (2.2) 
 

The values ju  and the constant p  depend on the 

number of derivatives of ( )  τt   F -  with respect to t, 

see [9, 10].  Also, the boundary condition (1.2) 
becomes 

( ) N ,,2 ,1 ,0,Pdx x φ
Ω    

 ==∫  

                                                                 (2.3) 
The formula (2.1) represents SIEs of the first kind, 
where it’s solution depends on the kind of the kernel 

x y
k


  and the domain of integration Ω. In the next 

applications we will neglect the error term ( ) h O 1p+
 . 

 
3. Theorems of spectral relationships 
 

In this section, we obtain the SRs of the SFIEs in 
one, two and three dimensional using different 
domains and suitable methods. 
 
3.1 SIEs with logarithmic kernel 

 

Consider  SFIEs  of the first kind,  
 

     
 1  1

2  , 1 1  1
0

        
            j j j

j

x y x y
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   (3.1) 
 

( ) ( )
λ

y-x
z,du iuzexp 

u

utanh

2

1
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== ∫

∞

∞-
 

 
under the conditions 
  

( )
 Pdx xφ

1   

1  =∫- 
                                           (3.2) 

 
The kernel of  SFIEs  (3.1) can be written in the form 
(see [11]) 
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If ∞→λ  , and z is very small, so that zz    tanh  , 

then we may write 


 4

ln,  ln 
4

tanh ln  ddyx
z              (3.4) 

 
Hence, we have 
 

     
 1  1

2  , 1 1  1
0

    [ ln       - d ]      [ ln       - d ]      j j j
j

uF x y y dy x y y dy f x 
 



       


  

                                                                              (3.5) 
 

Let ( ) ( ) [ ] 0 n, 1 ,1   x, xcosn cos x T 1
n ≥-∈= -  denotes 

the Chebyshev polynomials of the first kind, while  

( )
( )[ ]

( ) 0  n,
xcossin

 xcos  1  n   sin
 x U 1

1

n ≥
+

= -

-

, denotes the 

Chebyshev polynomials of the second kind. It is well 
known that ( ){ }  x T n  form an orthogonal sequence of 

functions with respect to the weight 

function ( ) 2
1

  x1  2 -- , while ( ){ }  x U  n  form an 

orthogonal sequence of functions with respect to the 

weight function   2
1

  1  2x . It appears reasonable to 

attempt a series expansion to ( ) x Φ  in Eq. (3.1) in 

terms of Chebyshev polynomials of the first kind. 
This choice is not arbitrary since one can identity a 
portion of the integral as the weight function 
associated with  ( ) x Tn . 

 
For convenience, we use the orthogonal polynomials 
method with some well known algebraic and integral 
relations associated with Chebyshev polynomials see 

[12,13]. Thus, in this aim, we represent ( ) x Φ , 

( ) x f , in the following forms 

 

( ) ( )∑
∞

=-
=

0n
nn2

 x Ta
x1

1
xΦ



 ,   ∑=
2

nn

x - 1 

 T f
   ) x ( f 

                                

                                                                   (3.6) 
Using the above expressions of (3.6) in (3.5) we have 
the following: 

 

Theorem 1: The SRs of the MIE (3.1), under the 
conditions (3.2), when the kernel takes a logarithmic 
function are given as :   
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                                                                              (3.7) 
Different new cases can be established from (3.7) as 
the following:   
(1)  Differentiating (3.7) with respect to x, we get 
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                                                                              (3.8) 
Hence we get: 
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2 , 12 2 1  1
 0

  
  0

1  1

jn n
j j

J
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u F
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                                                                              (3.9) 
 
Thus, the result of (3.8) leads to the SRs of the SFIEs  
with Cauchy kernel. While (3.9) leads, directly to the 
fact   
 

( )
0

y-1  x-y 

dy1 

1- 2
=∫ .  

 
    

(2)  If   m2n = ,  
2αsin

2ηsin
y,

2αsin

2ξsin
x == , 

( ) πα,αη , ξα- =≤≤ , in (3.7) , we have  the 

following SRs 
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(4)  Using the following relations 
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 the formula (4.8) leads to  the following SRs 
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           (3.13)  

 
 

Here, in (3.13) we obtain the SRs  of the integral operator with Hilbert kernel for different values of 

  ,,2 ,1 ,0j,n  and n j = . 

     
3.2 SIEs with Carleman function 
 

The importance of Carleman function came from the 

work of Arutiunion [14], who has shown that, the 

contact problem of the nonlinear theory of plasticity, 

in its first approximation reduce to FIE of the first 

kind with Carleman function. If we consider, in the 

formula  (3.1) the following singular kernel 

    ,  0   1;    1, 1 
vx y

k x y v



      , we have the 

following SFIEs: 

     
 1  1

2 , 1 1  1
0

           
v v

j j j
j

u F x y y dy x y y dy f x  

 


       


  

                                                               (3.14) 

To obtain the solution of the formula (3.14), we 

assume and represent the unknown and known 

functions, respectively in the following form: 
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                                                               (3.15) 

Here, ( )xC v
n2  are Gegenbauer polynomials, nka   are 

the unknown coefficients and nf  are the known 

coefficients. Using the potential theory method [3], 

and the following relations [12] 

1. ( ) ( ) ( )[ ],  x C x C  x v 2xC n
1v

2n
1v
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v
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+
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+
- -=  
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where ( ) x Γ  is the Gamma function and 

( )1.;.;.;.,.,F23  is the Generalized hypergeometric 

function, we have the following: 
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Theorem 2: The SRs of the MIE (3.1), under the 

condition (3.2), when the kernel takes the Carleman 

function form are 
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3.3. SIEs with potential kernel in finite domain 
 

Assume the domain of integration Ω , in (2.1), in the 

form ( ){ :Ωz,y,x Ω ∈= } 0z ,a yx 22 =≤+  and 

the kernel takes the potential function form 

( ) ( ) ( )[ ] 2
1 22  ηy  ξ-x   η-y ,ξx k

-
-+=- .  Hence, 

we have the  SFIEs  with potential kernel. Using the 

polar coordinates and then, using the separation of 

variables, the  SIFs  (2.1), yields     
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where ( )z;c;b,aF  is the Gauss hypergeometric 

function, ( )xΓ  is the Gamma function and ( )xJn  is 

the Bessel function, the  SFIEs  (3.18) takes the form 
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∞
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0 mmm dur uJ ρ uJρ r π2 ρ,r K  
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Eq. (3.19) represents SFIEs of the first kind with 

kernel (3.20) takes a form of Weber-Sonien integral 

formula. 

Assume the solution of (3.19), at 1a= , in the form 
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where ) y (P n2  is the Legendre polynomial. Then, 

using potential theory method [3] and orthogonal 

polynomials method [15], we obtain the following: 
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Theorem 3: The SRs of the SFIEs (3.1), under the condition (3.2), when the kernel takes a potential function form 

(3.20) are 
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 , and    ) ,( xPm
  is a Jacobi polynomial. 

 
3.4 SIEs with generalized potential  kernel in finite domain 
 

When the modules of the elasticity of the contact problem is changing according to  1v0   ,εKσ v
i0i <≤= , where 

iσ and iε are the stress and strain rate intensities, respectively, while K0 and v  are the physical constants, see [5]. 

For this, the kernel of Eq. (2.1) takes the form 
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The kernel of Eq. (3.23) is called the generalized potential kernel. 

Using (3.23) in (2.1) where, ( ){ } 0z ,a y x  : Ω   z ,y ,x  Ω 22 =≤+∈=  ,we can arrive to the following SFIEs. 
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The kernel of (3.25) takes a generalized form of Weber-Sonien integral formula. 

Representing the unknown functions )(m
jZ  and the known functions   rg m)(

 , respectively in the Jacobi 

polynomials form 
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Then, using Krein’s method, see [5], we can obtain the following: 
 
Theorem 4: The SRs of the SFIEs (3.1), under the condition (3.2), when the kernel takes a generalized potential 
function form are: 
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Many special cases can be derived from (3.25) as the following: 
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Theorem 5:   The SRs of SFIEs (3.1), under the condition (3.2) for the complete elliptic kernel can be obtained in 
the form: 
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is a Legendre polynomial )                                  (3.29) 

 
The importance of the integral equation with complete elliptic kernel came from the work of Kovalenko [17], who 
developed the FIE of the first kind for the mechanics mixed problem of continuous media and obtained an 
approximate solution for the FIE of the first kind with complete elliptic kernel. 
 
 
(iv) Potential kernel, ν=0.5 

 

 
                                 Fig. 5, m=0.1                                 
                                   
 

 
                                 Fig. 6, m=50. 
 
 
 
 
 

 (v) Generalized potential kernel 
 

                   
                        Fig. 7, m=50, ν=0.2 
 
 

 
                     Fig.8  , m=120, ν=o.4          
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                     Fig. 9, m=200, ν=0.01 

 
                   Fig.10  , m=120,ν=o.5   
      
Many important spectral relations can be derived and 
established from the formula (3.25), for different 
values of , 0   1v    and for higher order 

  ,,2 ,1 ,0j   ,m j = . 

 
4. Conclusion and results 

 

From the above results and discussion, the following 
may be concluded  
(1) The contact problem of a rigid surface of an 
elastic material, when a stamp of length a2  is 
impressed into an elastic layer surface of a strip by a 
variable ( ) 1Τt0,tΡ ≤≤≤ , whose eccentricity of 

application ( )te , see [ 11], becomes special case of 

this work.  
(2) The numerical method used transforms the MIE 
into SFIEs. 

(3) The SFIEs depends on the number of 
derivatives of ( )τ,tF  with respect to time 

[ ] 1Τ,Τ,0t,t ≤∈   . 

(4) The displacement problems of anti plane 
deformation of an infinite rigid strip with width 

a2  , putting on an elastic layer of thickness  h  
is considered as a special case of this work when 

1t = , ( ) 1τ,tF = , ( ) Ηt,xf =  and    xx  1, . 

Here, Η  represents the displacement magnitude 
and ( )xψ  the unknown function represents the 

displacement stress, see [18]. 
(5) The problems of infinite rigid strip with 
width a2  impressed in a viscous liquid layer of 
thickness h , when the strip has a velocity 
resulting from the impulsive force 

1i,eVV iwt
0 -== -  , where  0V  is the constant 

velocity , w  is the angular velocity resulting 
rotating the strip about z-axis  are considered as 
special case of this work , when ( ) =τ,tF  

constant  and 1t = , see [18] . 
(6) In the above discussion (4) and (5) and when 

∞→h  , this means that the depth of the liquid 
(fluid mechanics ) or the thickness of elastic 
material (contact problem ) becomes an infinite . 
(7) The three kinds of the displacement problem, 
in the theory of elasticity and mixed contact 
problems, which discussed in [11,18] ,are 
considered special cases of this work . 
(8) The generalized potential kernel represents a 
Weber-Sonin integral formula (3.25) and 
represents a non homogeneous wave equations. 
The kernel (3.25) can be written in the Legendre 
polynomial form as follows 
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(9)   Taking in mind the basic relations of Bessel 
function, the generalized potential kernel (3.25) 
satisfies the following nonhomogeneous wave 
equation 
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(10) This paper is considered as a generalization of 
the worker of the contact problems in continuous 
media for the Fredholm integral equation of the first 
and second kind when the kernel takes the following 
forms: Logarithmic kernel, Carleman kernel, elliptic 
integral kernel, and potential kernel. Moreover the 
contact problem which leads us to the integro-
differential equation with Cauchy kernel is contained 
also as a special case, see [1].  Also in this work the 
contact problems of higher-order (m  1) harmonic 
are included as special cases, see [1-8, 11-15, 17-19]. 
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