
Journal of American Science, 2012;8(5) http://www.americanscience.org

607

Enhanced Two Sliding Windows Algorithm For Pattern Matching (ETSW)

Mariam Itriq1, Amjad Hudaib2, Aseel Al-Anani2, Rola Al-Khalid2, Dima Suleiman1

1.Department of Business Information Systems, King Abdullah II School for Information Technology, The
University of Jordan, Amman 11942 Jordan

2.Department of Computer Information Systems, King Abdullah II School for Information Technology, The
University of Jordan, Amman 11942 Jordan

r.khalid@ju.edu.jo

Abstract: In this paper, we propose a string matching algorithm - Enhanced Two Sliding Windows (ETSW),
which made an improvement on the Two Sliding Windows algorithm (TSW). The TSW algorithm scans the
text from both sides simultaneously using two sliding windows. The ETSW algorithm enhances the TSW’s
process by utilizing the idea of the two sliding windows and focusing on making comparisons with the pattern
from both sides simultaneously. The comparisons done between the text and the pattern are done from both
sides in parallel. The experimental results show that the ETSW algorithm has enhanced the process of
pattern matching by reducing the number of comparisons performed. The best time case is calculated and

found to be while the average case time complexity , where m is the pattern length

and n in the text length. [Mariam Itriq, Amjad Hudaib, Aseel Al-Anani, Rola Al-Khalid, Dima Suleiman. Enhanced Two Sliding Windows
Algorithm For Pattern Matching (ETSW). J Am Sci 2012;8(5):607-616]. (ISSN: 1545-1003).
http://www.americanscience.org. 64

Keywords: Pattern matching; Two Sliding Windows algorithm; string matching; Berry-Ravindran
algorithm.
1. Introduction

Pattern matching is a fundamental theme
in various applications such as text processing,
searching, computational biology and disease
analysis. Pattern matching concentrates on finding
all the occurrences of a pattern of length m in a text
of length n. Many researchers have introduced and
developed pattern matching algorithms to improve
the search process of finding the pattern by
decreasing the number of character comparisons
(Horspool, 1980; Sheik et al., 2004; Ping and Jiang,
2011; Tarhio, 1993; Claude et al., 2012). Extensive
analysis and comparisons on the performance of
the algorithms have been conducted.

In this paper, we propose a pattern
algorithm: the Enhanced Two Sliding Windows
(ETSW). The ETSW algorithm made an
over the TSW algorithm, since the TSW algorithm
focused on scanning the text from both sides
simultaneously while the pattern is scanned only
one side. On the other hand, the ETSW algorithm
concentrates on both the pattern and the text to be
scanned from both sides simultaneously. The
algorithm uses two sliding windows, to search the
from both sides in parallel. Comparisons done with
the pattern are also done from both sides
simultaneously. The length of each window is m
which is the same length as the pattern. The text is
divided into left and right parts and the pattern is
divided into left and right parts. Each part of the
of length while each part of the pattern is of

length . The ETSW algorithm finds either

first occurrence of the pattern in the text through
left window or the last occurrence of the pattern
through the right window. The experiments
showed that the ETSW algorithm reduced the
of comparisons needed to search for a pattern in a
Comparing the number of comparisons made by
ETSW with other algorithms such as TSW, KMP,
BoyerMore, BruteForce and Berry-Ravindran
that our new algorithm’s results were the
2. Related Works

Many researchers have introduced various
algorithms to find the exact pattern matching by
making use of windowing technique whose length
equal to the pattern length. Each algorithms (Kim
Kim, 1999; Lecroq, 2007; Franek el al., 2007;
Crochemore el al., 1994; Ahmed el al., 2003; He el
2005; Sheu el al., 2006)[14-20] aim to improve the
performance and the efficiency by minimizing the
number of comparisons between the characters of
text and that of the pattern. Al-Emary and Japer,
proposed an algorithm to improve the search
(El emery and Jaber, 2008). In the preprocessing
phase, they split the unchangeable text into n equal
parts depending on the length of the text and then
construct n tables. Each table consists of two
for each part of the text, the first one is the words’
length and the second one is the start position of
word in the text classified by the same length. The
algorithm searches for the words that consist of the
same length in each table. The overall complexity

Journal of American Science, 2012;8(5) http://www.americanscience.org

608

the preprocessing phase is O(n*nlogn) while the
whole complexity for the searching phase
where ∑ is the number of character comparison
done in each row, the worst case.

Devaki-Paul algorithm (DP), results in
better performance and efficiency (Devaki and
Paul, 2010). Before starting the search, the
algorithm requires a preprocessing of the pattern
which prepares a table of occurrences of the first
and the last characters of the pattern in the given
input text. The search phase uses the table to find
the probability of having an occur rence of a
pattern in the given input text and find if the
probability will lead to successful or unsuccessful
search. The time complexity of the preprocessing
phase of the DP algorithm is O(m) while the time
complexity of the search phase is directly
proportional to the total number of occurrences of
the first and the last characters of the pattern in
the given input text. Boyer-Moor’s string matching algorithm
(BM) uses two shift functions: the bad-character
shift and the good-suffix shift (Hudaib et al.,
2008)(Boyer and Moore, 1977). In BM, the pattern
is scanned from right to left, in case of a mismatch
the pattern is shifted with the maximum value
taken between the two shift functions. The worst
case time complexity and the best performance are
O(mn) and O(nm-1) respectively. An alternative way
to compute the shift table in Boyer-Moor’s string
matching algorithm, Yang Wang proposed a new
method to obtain the shift through array
suffixLength (Wang, 2009). The new method is more
straightforward and preserves the high
performance of BM. For a pattern of length m,
Yang’s method has a O(m) complexity in both
space and time. Knuth, Morris and Pratt (KMP)
algorithm compares the text with the pattern from
left to right (Knuth, Morris, 1977). The complexity
of the pr-processing phase is O(m) while the
running time is of O(n+m).

TSW scans the text from both sides
simultaneously (Hudaib et al., 2008). It uses two
sliding windows; each window has a length that is
equal to the pattern length. The first window is aligned
with the left end of the text while, the second window
is aligned with the right end of the text. Both windows
slide in parallel over the text until the first occurrence
of the pattern is found or until both windows reach the
middle of the text. To get better shift values during the
searching phase, TSW utilizes the idea of the Berry-
Ravindran bad character shift function (Berry and
Ravindran, 1999). In TSW, the best time complexity
is O(m) and the worst case time complexity is
O(((n/2-m+1))(m)). The pre-process time complexity
is O(2(m-1)).
3. The Enhanced Two Sliding Windows (ETSW)
algorithm

The Enhanced Two Sliding Windows
algorithm (ETSW) scans the text as well as the
pattern from both sides simultaneously in order to
improve the search process. The ETSW algorithm
uses two sliding windows to search the text from
both sides in parallel. Comparisons done with the
pattern is also done from both sides
simultaneously. The length of each window is m
which is the same length as the pattern. The text is
divided into left and right parts, and the pattern is
also divided into left and right parts. Each part of
the text is of length while each part of the

pattern is of length . There are two

windows: the first window starts scanning the text
from the left so we name it the left window, and the
second window starts scanning the text from the
right; so we name it the right window. Both
windows slide in parallel. In each side of the text,
the pattern is compared with the text from both the
left and the right sides of the pattern
simultaneously.

ETSW algorithm stops when one of the
two sliding windows finds the pattern or the
pattern is not found within the text string at all.
The ETSW algorithm finds either the first
occurrence of the pattern in the text through the
left window or the last occurrence of the pattern
through the right window. Both the TSW (Hudaib et al., 2008) and
the ETSW algorithms utilize the idea of BR bad
character shift function (Tarhio and Ukkonen,
1993) to get better shift values during the searching
phase. BR algorithm provides a maximum shift
value in most cases without losing any characters.
Therefore, the number of comparisons to
determine the amount of shift in both algorithms is
the same. The main difference between the TSW
algorithm (Hudaib et al., 2008) and the Enhanced
TSW algorithm is that the comparisons made to
find if there is a match between the pattern and the
text in the TSW are done only from the left side of
the pattern while in the new Enhanced TSW
algorithm the comparisons are done from the left
and right sides of the pattern in the same time.
This addition to the old algorithm decreases the
search time and the number of comparisons done.
3.1. Pre-processing phase

The pre-processing phase as in TSW
algorithm generates two arrays nextl and nextr,
array is a one-dimensional array. The shift values
the nextl array are calculated according to Berry-
Ravindran bad character algorithm (BR) (Boyer
Moore, 1977) as in equation (1). The shift values
needed to search the text from the left side. The
values of the nextr ar ray that are needed to search
text from the right side are calculated according to
TSW shift function as in equation (2). During the

Journal of American Science, 2012;8(5) http://www.americanscience.org

609

searching process, the nextl and the nextr arrays
be invariable.

)1(

]0[

]1[][

]1[

2

1

1

min],[

Otherwise

bpif

abipipif

ampif

m

m

imbashiftl

CharBad

)2(

]0[

]1[][

]1[

2

1

))2((

1

min],[

Otherwise

bpif

abipipif

ampif

m

imm

m

bashiftr

CharBad

The pre-processing phase is the same in

both TSW and ETSW algorithms while the
searching phase is being enhanced in ETSW.
3.2. Searching phase:

In the ETSW algorithm, the text string is
scanned from two directions from left to right and
from right to left. In mismatch cases, during the
searching process from the left, the left window is
shifted to the right, while during the searching
process from the right, the right window is shifted
to the left. Both windows are shifted until the
pattern is found or the windows reach the middle
of the text. The algorithm used for searching uses four
pointers, two for each window. The left window
uses the L and temp_newlindex pointers while the
right window uses the R and temp_newrindex
pointers, (Figure 1).

At the beginning of the algorithm, in each
window, the first character of the pattern is
compared with the corresponding character of the
text while at the same time the last character of the
same pattern is also compared with the
corresponding character of the text. This primary
step will reduce the number of comparisons done
later in the left and the right windows. We will
discuss searching by the left and right windows.
3.2.1. Left_window search process

While searching the left window, the L and
temp_newlindex pointers are used to compare the
and the pattern, the L pointer points at the last
character of the pattern and the temp_newlindex
at the first character of the pattern, the
characters of both the text and the pattern are
compared. If a mismatch occurs in one of the
a shift occurs according to the Berry-Ravindran
character algorithm (BR). In case of a match the

pointers will move. The L pointer will move to the
and the temp_newlindex will move to the right
time a match occurs the pointers move until they
the middle of the pattern or the L pointer is less
or equal the temp_newlindex ,in either case the
is found.
3.2.2. Right_window search process

While searching the right window, the R
and temp_newrindex pointers are used to compare
the text and the pattern, the R pointer points at the
first character of the pattern and the
temp_newrindex points at the last character of the
pattern, the corresponding characters of both the
text and the pattern are compared. If a mismatch
occurs in one of the pointers a shift occurs
according to the Berry-Ravindran bad character
algorithm (BR). In case of a match the two pointers
will move. The R pointer will move to the right and
the temp_newrindex will move to the left .Each time
a match occurs the pointers move until they reach
the middle of the pattern or the R pointer is greater
than or equal to the temp_newrindex ,in either case
the pattern is found. The algorithm searches the left and the
right windows in parallel. (Figure 1)

3.3. Working Example

In this section we will present an example
to clarify the ETSW algorithm.
Given:
Pattern(P)=”GAATCCAT”, m=8
Text(T)=”GAATAGCTTCATAACGATAATTTGAGAG
AGAGAATCCATCGATTAT”,n=47

 Pre-processing phase

Initially, shiftl = shiftr = m+2 = 10.
The shift values are stored in two arrays

nextl and nextr as shown in Figure 3(a) and Figure
3(b) respectively.

Figure 3. The nextl and nextr arrays

Journal of American Science, 2012;8(5) http://www.americanscience.org

610

L=m-1; //text index used from left
R=n-(m-1)-1; //text index used from right
Tindex=0;//text index used to control the scanning process

While (Tindex<=)

Begin
 foundleft = false;
 foundright = false;
 l=m-2 ; // pattern index used at left side from the end of the pattern
 r=0; // pattern index used at right side from the beginning of the pattern
 temp-lindex=temp-rindex=0;//keep record of the text index where the pattern match the text during
comparison temp_newlindex=0; // pattern index used at left side from the beginning of the pattern
 temp_newrindex= (m-1); // pattern index used at right side from the end of the pattern

 if (P[m-1]=T[L] and p[0]=T[L-m+1])
 begin
 temp-lindex=L;
 L=L-1;
 temp_newlindex++;
 while ((l>=0 and P[l]=T[L]) and (P[temp_newlindex]=T[L-l+ temp_newlindex]))
 { L=L-1, l=l-1; temp_newlindex++;
 if ((L-l+ temp_newlindex) >=L)
 {foundleft = true; exit from while loop;}
 } //search from left
 end

 if (P[0]=T[R] and p[temp_newrindex]=T[L+m-1])
 begin
 temp-rindex=R;
 R=R+1;
 temp_newrindex--;
 while((r<m and P[r]=T[R]) and P[temp_newrindex]=T[R+ temp_newrindex-r])
 { R=R+1, r=r+1; temp_newrindex --;
 if (R+ temp_newrindex-r<=R)
 {foundright = true; exit from while loop;}
 } //while

 } //search from right
 end

 if (foundright) {display “match at right: "+ temp-rindex) ; exit from outer loop;}
 if (foundleft) {display “match at left: "+ temp-lindex –m +1); exit from outer loop;}
 //exit in case if we search for one occurrence the first or last one
 R= temp-rindex; //to avoid skipping characters after partial matching at right
 L=temp-lindex; // to avoid skipping characters after partial matching at left
 if(not foundleft and not foundright){ display (“not found”); exit from outer loop;}
 L=L+get(shiftl);//from pre-processing step
 R=R-get(shiftr);//from pre-processing step
 Tindex= Tindex+1;
 End;

Figure 1. ETSW Algorithm

Journal of American Science, 2012;8(5) http://www.americanscience.org

611

Figure 2. Working Example

To build the two next arrays (nextl and

nextr), we take each two consecutive characters of
the pattern and give it an index starting from 0.
For example for the pattern structure
GAATCCAT, the consecutive characters
GA,AA,AT,TC,CC,CA and AT are given the
indexes 0,1,2,3,4,5 and 6 respectively.

The shift values for the nextl ar ray are
calculated according to Equation (1) while the
shift values for the nextr array are calculated
according to Equation (2).

 Searching phase

The searching process for the pattern P is
illustrated through the working example as shown
in Figure 2.

First attempt:

In the first attempt (see Figure 2(a)), we
align the first sliding window with the text from
the left. In this case, comparisons are made
between the text character located at index 0
(character G) with the leftmost character in the
pattern (character G). At the same time,
comparisons are made between the text character
at index 7 (character T) with the rightmost
character in the pattern (character T). As a result,
a match occurs so we continue by comparing the
text character at index 1 (character A) with the
second leftmost character in the pattern
(character A). At the same time, we compare the
text character at index 6 (character C) with the
pattern character at index 6 (character A). Since there is a mismatch at index 6,
(where a match must occur in both comparisons);
the pattern should be shifted. Therefore to
determine the amount of shift (shiftl) we will do
the following:

a) Take the two consecutive characters from the
text at index 8 and 9 which are (T and C)
respectively.

b) We find the index of TC in the pattern which
is 3. c) Since we search the text from the left side we
use nextl array, and shiftl= nextl[3] = 5

Therefore the window is shifted to the
right 5 steps.

As explained in the example the number
of comparisons needed to determine if there is a
match or not is two; this is because two character
comparisons between the text and the pattern are
performed at the same time as seen in the if
statement in Figure:

Using TSW algorithm we need 5
comparisons.

Second attempt:

In the second attempt (see Figure 2 (b)),
we align the second sliding window with the text
from the right. In this case, a match occurs
between the text character at index 46 (character
T) and the rightmost character in the pattern
(character T) while there is a mismatch between
the text character at index 39 (T) and the leftmost
character in the pattern (character G);therefore
we take the two consecutive characters from the
text at index 37 and 38 which are (C and A)
respectively. To determine the amount of
shift(shiftr), we have to do the following: a) We find the index of CA in the pattern which

is 5.
b) Since we search the text from the right side we

use nextr array, and shiftr= nextr[5]=7.
Therefore the window is shifted to the left 7 steps.

As explained in the example the number
comparisons needed to determine if there is a

Journal of American Science, 2012;8(5) http://www.americanscience.org

612

or not is one; while by using TSW algorithm we
3 comparisons.

Third attempt:

In the third attempt (see Figure 2(c)), a
mismatch occurs from the left between the text
character at index 12 (character A) and the
rightmost character in the pattern (character T)
while there is a match between the text character
at index 5 (character G) and the leftmost
character in the pattern (character G)); therefore
we take the two consecutive characters from the
text at index 13 and 14 which are (A and C)
respectively, since AC is not found in the pattern,
so the window is shifted to the right 10 steps.

Fourth attempt:

We align the leftmost character of the
pattern P[0]with T[32]. A comparison between the
pattern and the text characters leads to a complete
match at index 32. In this case, the occurrence of
the pattern is found using the right window. The
number of comparisons needed to determine if
there is an exact match is 4; while by using TSW
algorithm we need 8 comparisons.

4. Analysis

Preposition 1: The space complexity is
O(2(m-1)) where m is the pattern length.

Preposition 2: The pre-process time
complexity is O(2(m-1)).

Lemma 1: The worst case time complexity

is O(((n/2- +1))())

Proof: The worst case occurs when at
each attempt, all the compared characters of both
pattern sides matched the cor responding text
characters except the pattern character indexed

, and at the same time the shift value is equal

to 1.
Lemma 2: The best case time complexity

is O().

Proof: The best case occurs when the
pattern is found at the first index or at the last
index (n-m),in this case the number of
comparisons made to compare m pattern
characters are .

Lemma 3: The Average case time

complexity is .

Proof: The Average case occurs when the
two consecutive characters of the text directly
following the sliding window is not found in the
pattern. In this case, the shift value will be (m+2)

and hence the time complexity is .

5. Results and Discussions
To demonstrate the working process of the

ETSW algorithm, several experiments have been
done using Book1 from the Calgary corpus to be the
text. Book1 consists of 141,274 words (752,149
characters).

The experiments compare the ETSW with
the TSW algorithm taking into account many
variables depending on the pattern length and the
pattern position in the text. The searching process is
performed from the left and the right sides of Book1.
Comparisons done with the pattern is also done
from both sides simultaneously. The pattern is
found wither it is located at the beginning of the text,
at the middle of the text or even at the end of the text.
Figure 4 and Table1 show the results of comparing
ETSW and TSW algorithms. In Table 1 the first
column displays the pattern length while the second
column displays the number of words for each pattern
length.

For example, 1988 words of length 7 were
taken. It can be noticed that the number of attempts
and comparisons made by TSW is 9341 and 10263
respectively. While the number of attempts and
comparisons made by ETSW for the same pattern
length is 9341 and 9118 respectively. This is a
considerable reduction in the number of comparisons
made by ETSW.

This can be explained since the pattern in
the ETSW algorithm is being compared from the left
and right sides at the same time. Both TSW and
ETSW uses two sliding windows which explain why
the number of attempts made by the two algorithms
are the same.

Figure 4. The average number of comparisons for
patterns with different lengths

Journal of American Science, 2012;8(5) http://www.americanscience.org

613

Table 1. The average number of attempts and
comparisons for patterns with different lengths

Pattern
length

Number
 Of

 Words

TSW ETSW

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

4 8103 3904 4213 3904 3875

5 4535 4456 4896 4456 3549

6 2896 7596 8311 7596 7633

7 1988 9341 10263 9341 9118

8 1167 10056 11087 10056 10115

9 681 9538 10538 9538 9590

10 382 9283 10272 9283 9339

11 191 5451 5967 5451 5482

12 69 6384 7168 6384 6433

13 55 7947 8673 7947 7986

14 139 19437 21319 19437 19535

15 32 19682 21739 19682 19782

16 10 20029 21596 20029 20092

17 3 21897 25404 21897 22147

Table 2. The number of attempts and comparisons
performed to search for the first appearance of
selected pattern from the beginning of the text

Pattern
length

Index

TSW ETSW

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

4 67 25 29 25 26
5 33 11 15 11 12
6 82 23 28 23 25
7 39 11 17 11 13
8 99 21 28 21 24
9 260 51 65 51 54

10 590 105 120 105 109
11 189 35 47 35 39
12 2401 363 402 363 368

Tables 2-4 display the pattern length, the

index, number of comparisons and attempts made by
TSW and ETSW. These results are needed to search
for the first appearance of the pattern at the
beginning, middle and at the end of Book1. Table 2
shows patterns of different lengths located at the
beginning of the text in Book1. For example, it took
the TSW 28 comparisons to find a pattern of length 8
located at index 99. On the other hand, it took the
ETSW 24 comparisons to locate the same pattern.
Table 3 shows patterns of different lengths located at
the middle of the text of Book1. For example, 100526
comparisons are made by TSW to locate a pattern of
length 7 located at index 380422. Noticeably, less

number of comparisons (90905) are made by ETSW
to locate the same pattern. Table 4 shows patterns of
different lengths located at the end of the text. For
example, the pattern of length 7 located at index
689847 was located by TSW after 20962
comparisons and located by ETSW after 18897
comparisons.

Table 3. The number of attempts and comparisons
performed to search for the first appearance of a
selected pattern from the middle of the text

Pattern
length

Index TSW ETSW

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

4 380375 134763 150571 134763 136198
5 380438 115397 129100 115397 116800
6 380416 100903 112695 100903 102153
7 380422 89959 100526 89959 90905
8 380409 80905 90538 80905 81888
9 380471 73553 82269 73553 74371

10 380537 67377 75237 67377 68116
11 380548 62139 69407 62139 62806
12 380568 57793 64663 57793 58453

Table 4. The number of attempts and comparisons
performed to search for the first appearance of a
selected pattern from the end of the text

Pattern
length

index TSW ETSW

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

4 689749 28062 31392 28062 28393
5 689788 24020 26957 24020 24349
6 689795 21044 23605 21044 21323
7 689847 18706 20962 18706 18897
8 689928 16768 18885 16768 16989
9 689942 15256 17123 15256 15463

10 689974 13922 15574 13922 14090
11 690033 12910 14486 12910 13047
12 690041 11982 13498 11982 12145

Table 5 and table 6 show the average

number of comparisons and attempts needed to
search for the first and the middle appearance of 100
words selected from Book1. The results of taking 100
words are similar to that of taking a single word with
different lengths.

The ETSW algorithm finds the pattern with
minimum effort. In case of a complete mismatch, as
in Table 7, the average number of comparisons and
attempts of the ETSW algorithm is the minimum.

Table 8 and Figure 5 show the average
number of attempts and comparisons for patterns
with different lengths, performed by ETSW
algorithm and other algorithms. ETSW algorithm has
the minimum average number of comparisons and
attempts among all other algorithms. The results are

Journal of American Science, 2012;8(5) http://www.americanscience.org

614

expected because ETSW has the following
advantages over the other algorithms: It searches the
text from both sides at the same time; it also
concentrates on comparing the pattern form both its
sides simultaneously. In case of a mismatch the
pattern is shifted by a value that ranges from 1 up to
m+2 positions based on the BR shift function.

Table 5. The average number of attempts and
comparisons performed to search for (100)
selected from the beginning of the text

Pattern
length

Number
of

words

TSW ETSW

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

4 100 143 157 143 145
5 100 185 206 185 187
6 100 227 255 227 230
7 100 347 388 347 351
8 100 504 568 504 510
9 100 670 750 670 677

10 100 1160 1290 1160 1170
11 100 622 705 622 628
12 100 865 972 865 878

Table 6. The average number of attempts and
comparisons performed to search for (100)
selected from the middle of the text

Pattern
length

Number
of words

TSW ETSW

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

4 100 2726 2959 2726 2737
5 100 13965 15140 13965 11618
6 100 16682 18317 16682 16771
7 100 27267 30095 27267 26242
8 100 27830 30915 27830 28015
9 100 33929 37200 33929 34069

10 100 29676 32817 29676 29845
11 100 23195 24646 23195 23242
12 100 26806 30222 26806 27009

Table 7. The number of attempts and comparisons
performed to search for a set of patterns that do
exist in the text

Pattern
length

TSW ETSW

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

4 129670 132754 129670 129696
5 113866 122233 113866 114063
6 99610 106441 99610 99783
7 88628 94812 88628 88818
8 77846 79928 77846 77881
9 72504 77837 72504 72668

10 66400 70297 66400 66497
11 60880 63549 60880 60961
12 57088 61118 57088 57196

These advantages have a considerable effect
on the number of comparisons and attempts in most
cases. On the other hand, the largest number of
attempt and comparisons are performed by BF(Brute
Force algorithm) because in case of a mismatch, it
shifts the pattern one position to the right.

TSW searching results are better than that of
KMP, BF, BM and BR. This is because TSW
searches the text from both sides while all other
algorithms search the text from one side. TSW
searching results is close to ESTW. The number of
comparisons of ETSW is less than that of TSW
because of the additional feature of comparing the
pattern from both sides.

ETSW best performance compared to TSW
is seen when we search for the first appearance of
a selected pattern from the end of the text. The
number of comparisons in TSW is m where the
number of comparisons in ETSW is .

Table 9 and Figure 6 show the average
number of comparisons and attempts performed to
search for a set of patterns that do not exist in the
text that is there is a complete mismatch. ETSW
algorithm is the minimum.
6. Conclusion

In this paper, we presented a new pattern
matching algorithm the Enhanced Two Sliding
Windows (ETSW) algorithm. This algorithm
enhances the performance of the previous Two
Sliding Windows (TSW) algorithm. Both ETSW
and TSW algorithms employs the main idea of BR
by maximizing the shift value and using two
sliding windows rather than using one sliding
window working in parallel, to scan all text
characters. In both algorithms, two arrays are
used to store the calculated shift values for the two
sliding windows . Each array is a one dimensional
array of length (m-1). The main difference
between TSW and ETSW which added value to
ETSW is that comparisons made to find if there is
a match between the pattern and the text in the
TSW are done only from the left side of the
pattern while in the new Enhanced TSW
algorithm the comparisons are done from the left
and right sides of the pattern at the same time.
This enhancement decreases the number of
comparisons performed and the search time. The performance of ETSW is evaluated
by using a text string and various set of patterns.
Searching the text from both sides, and comparing
the pattern from both sides simultaneously gives
ETSW algorithm a preference over the TSW and
other well known algorithms.

In future researches, we intend to
the idea of the enhanced two sliding windows
algorithm on other algorithms such as KMP and

Journal of American Science, 2012;8(5) http://www.americanscience.org

615

Table 8. The average number of attempts and comparisons for patterns with different lengths

Pattern
length

Number of
words

TSW ETSW BR KMP BM BF

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

4 8103 3904 4213 3904 3875 6409 7039 35946 36972 9549 10055 36029 37056
5 4535 4456 4896 4456 3549 9577 10645 61500 63460 13435 14246 61685 63645
6 2896 7596 8311 7596 7633 10898 12173 79064 81663 14793 15749 79353 81952
7 1988 9341 10263 9341 9118 11953 13345 97291 100722 15797 16817 97667 101100
8 1167 10056 11087 10056 10115 13256 14807 117903 122341 17190 18314 118360 122799
9 681 9538 10538 9538 9590 14149 15892 136829 142234 18145 19403 137387 142793

10 382 9283 10272 9283 9339 14127 15799 148359 154279 18048 19254 148997 154917
11 191 5451 5967 5451 5482 12808 14243 144335 149852 16449 17477 145007 150525
12 69 6384 7168 6384 6433 9598 10923 114781 120531 12074 13001 115338 121088
13 55 7947 8673 7947 7986 10334 11370 133469 140255 13422 14176 133952 140739
14 139 19437 21319 19437 19535 19548 21673 265189 275981 25075 26603 266460 277257
15 32 19682 21739 19682 19782 19817 22384 277260 288103 24791 26609 278900 289750
16 10 20029 21596 20029 20092 26086 28644 391604 403333 33423 35146 393580 405313
17 3 21897 25404 21897 22147 22554 28148 334855 347547 26266 30016 336367 349060

Figure 5. The average number of comparisons for patterns with different lengths

Table 9. The number of attempts and comparisons performed to search for a set of patterns that do not exist
text

Pattern
length

TSW ETSW BR KMP BM BF

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

A
tt

em
p

ts

C
o

m
p

ar
is

o
n

s

4 129670 132754 129670 129696 130003 133090 768769 777901 192750 194978 768769 777941
5 113866 122233 113866 114063 115997 130327 768768 777900 155232 165498 768768 777940
6 99610 106441 99610 99783 101610 113474 768767 777899 130572 138714 768767 777939
7 88628 94812 88628 88818 90409 100959 768766 777898 111651 118515 768766 777938
8 77846 79928 77846 77881 78016 80319 768765 777897 101486 103024 768765 777937
9 72504 77837 72504 72668 74049 83339 768764 777896 86940 92798 768764 777936
10 66400 70297 66400 66497 69760 76152 768763 777895 82517 86563 768763 777935
11 60880 63549 60880 60961 66286 70597 768762 777894 77424 79823 768762 777934
12 57088 61118 57088 57196 62142 69466 768761 777893 70058 74553 768761 777933

Journal of American Science, 2012;8(5) http://www.americanscience.org

616

Figure 6. The number of comparisons Performed to search for a set of patterns that do not exist in the text

References
1. El Emary I. and Jaber M. A New Approach for Solving

String Matching Problem through Splitting the
Unchangeable Text. World Applied Sciences Journal
2008; 4(5): 626-633.

2. Devaki Pendlimarri and Paul Bharath Bhushan Petlu.
Novel Pattern Matching algorithm for Single Pattern
Matching. International Journal on Computer Science
and Engineering (IJCSE) 2010; 2(8): 2698-2704.

3. Hudaib A., Al-Khalid R., Suleiman D., Itriq M. and
Al-Anani A. A Fast Pattern Matching Algorithm with
Two Sliding Windows (TSW). Journal of Computer
Science 2008; 4 (5): 393-401.

4. R. S. Boyer and J. S. Moore. A fast string searching
algorithm. Communications of the ACM 1977;
20(10):762-772.

5. Yang Wang. On the shift-table in Boyer-Moore's
String Matching Algorithm. JDCTA 2009; 3(4): 10-
20, doi: 10.4156/jdcta,.

6. Knuth, D.E., J.H. Morris and V.R. Pratt. Fast pattern
matching in strings. SIAM J. Comput. 1977; 6(2):323-
350.

7. Berry, T. and S. Ravindran. A fast string matching
algorithm and experimental results. Proceedings of the
Prague Stringology Club Workshop ’99, Liverpool
John Moores University 1999; pp: 16-28.

8. Tarhio, J., Ukkonen, E. Approximate Boyer-Moore
String Matching. SIAM J. Comput. 1993;22(2):243-
260.

9. Horspool, R. N. Practical fast searching in strings.
Software-Practice and Experience 1980;10(6):501–
506.

10. Sheik, S.S., Aggarwal, Sumit K., Poddar, Anindya,
Balakrishnan, N. and Sekar, K. A FAST Pattern
Matching Algorithm.. Journal of Chemical Information
and Computer Sciences 2004; 44 (4):1251-1256.

11. Ping Zhang, Jiang Hui Liu. An Improved Pattern
Matching Algorithm in the Intrusion Detection
System. Applied Mechanics and Materials 2011; 48-
49:203-207.

12. Tarhio J.. A Boyer-Moore Approach for Two-
Dimensional Matching. Report UCB/UCD 93/784,
Computer Science Division, University of California,
Berkeley 1993.

13. Claude, F., Navarro, G., Peltola, H., Salmela, L. and
Tarhio, J. String matching with alphabet sampling.
Journal of Discrete Algorithms 2012; 11: 37-50.

14. Kim S., Kim Y. A fast multiple string-pattern
matching algorithm. in: Proc. 17th AoM/IAoM
Conference on Computer Science 1999; San Diego,
CA, 17: 44-49.

15. Lecroq, T..Fast exact string matching algorithms.
Information Processing Letters 2007; 102(6): 229-235.

16. Franek, F., Jennings, C.G., Smyth, W.F. A simple fast
hybrid pattern-matching algorithm. J. Discrete
Algorithms 2007; 5(4): 682–695.

17. Crochemore, M., Czumaj, A., Gasieniec, L.,
Jarominek, L., Lecroq, T., Plandowski,, W., Rytter, W.
Speeding up two string matching algorithms.
Algorithmica 1994; 12(4): 247-267.

18. Ahmed M., Kaykobad M., and Chowdhury R.A.. A
New String Matching Algorithm. presented at Int. J.
Comput. Math. 2003; 80(7): 825-834.

19. He, L., Fang, B. and Sui, J. The wide window string
matching algorithm. Theoretical Computer Science
2005; 332(1–3):391–404.

20. Sheu T.F., Huang N.F. and Lee H.P. A Time and
Memory Efficient String Matching Algorithm for
Intrusion Detection Systems. IEEE Proceedings of
Global Telecommunications Conference
(GLOBECOM'06), San Francisco, USA 2006; pp. 1-5.

4/27/2012

