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Abstract: In this paper a quantitative discussion on a theory describing the relationship between the 
continuity and momentum equation in two dimensional flow together with the momentum equation in 

vectorial form: qgpdt
dq 2∇++−∇= μρρ , on expanding ( )q.* ∇∇  in cylindrical polar 

coordinates, the end result proved to be Euler equation. [The Journal of American Science. 2009;5(2):74-
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1.0 Introduction: 

A more detailed view of the fluxes across the parcel can be obtained within a reasonable space of 
text of we restrict our attention to two dimensions. We can then write the equations for the component and 
look closely at the change in these components. 

We consider planar view of a parcel unit depth. Assume ρ is constant across the parcel, so we can 
write for the mass of the parcel, δμ = zyx δδρδρδν = . In the two-dimensional flow, each component 
of velocity can vary in both x and y  directions. We can approximate those velocity changes across our 
incremental parcel by a Taylor expansion. In this case we will consider the base values of qualities such as 
pressure and velocity to be the value of the center of the parcel and expand around these values. Note that 
value of the corner, x  , could also be assured as base values. Since the parcel is 
infinitesimal with respect to mean flow scales. The magnitudes of these values are uniform across the 
parcel in the limit

=

0

y = z 0=

→δν . We are writing the incremental change at the point, we need not be zero. 
Again we look at the total change in the density and the scope of the parcel as it instantaneously occupies 
the point ( x , ). We can derive the continuity equation in a slightly different manner, by considering a 
specific infinitesimal parcel in a Largrangian sense. The derivation will illustrate the close connection 
between Largrangian and Eulerian perspectives and we will send up with the familiar Eulerian expression. 
Starting with the Langrangian perspectives we consider a very small parcel such that

y

0→δν , with no 
sinks or sources. We then follow the particular parcel that experiences volume and density changes with 
respects to five only field varcash will vary infinitesimal across the small dimensions of the parcel. Then 
the statement for the constant mass of fluids parcel, then the statement, for the constant mass of this parcel 
ρδν is completely expressed in the five derivatives, D(( ρδν )/ t∂ ) 0= . However, when the parcel 
moves through the fluid, to volume must distorts and changes due to the changing forces in the thus field. 
The derivative which separated into density and volume changes by using the chain rule for differentiation. 
In the end, the derivative can be converted to the Eulerian expression. 
 
2.0 Mathematical Analysis 

The differences between the various derivatives can be explained in a more formal manner as 
follows: 

Let consider a fluid particle moving with a load velocity; 
q= +υi j κων +         1 
and let the change of the property xbb (= , y , ) of the particle be investigated. The change 

in b with time and position may be expressed as  
tz,
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With (3) we can direct operation of b∂ in new coordinates. 
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Which the law of conservation of mass has already been presented in a form applicable to a 
control volume may be rewritten as: 
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=
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ndsq
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Application of the divergence 
(2) theorem to the surface integral 
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The equation (9.0) is known as the equation f continuity. It is the differential form of the law of 
conservation of mass written in form of the flow field. 

Equation (9.0) is now rewritten in detail in the three most continuity used coordinate systems. 
In Cartesian coordinates 
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In cylindrical coordinates 

0)()(1)(
=

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

z
pqzpq

rr
rpqr

r
d

t
p

θ
θ

     11  

In spherical coordinates 
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In some particular cases equation of continuity assumes simpler form given in Cartesian 
coordinates. 
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Now, for momentum, Newton’s second law of motion states that the rate of change of momentum 
of a thermodynamics system equals the sum total of the forces acting on the system. 

∫ ∫ ∫+=
v v s

Tdsgpdvpqdv
Dr
D

       14 

When g is a general body force per unit mass, 
 and T is the system boundary for x-component Equation 14 becomes 
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The Reynolds transport theorem may now be applied to the left-hand side of this equation 
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The stress term Tu inside the surface integral is now written in terms of its components to yield 
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where the divergence theorem has been used again 
By subtraction of equation 16 and 17 into equation 15 yields 
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Becomes 
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Similarly for the y- and Z- Components 
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 21 
The . ∇ g term vanishes for incompressible flows. Hence the thermodynamic presume may be define for an 
incompressible fluid as the average normal stress: 

3
zzyyxx TTT ++

=ρ         22 

It is customary to separate out the pressure terms from the total stress 
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. ijij τ+∂+ p- ij T         23 

And ijij Σ∂= μτ  equation 23 is written in tensor form as 
T=-p + τ          24 
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Equation 23 is used to modify the momentum equation by subtraction 8 from 20. 
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This may be put in symbolic compact form. 
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The expression for the stress and the rate of strain component in several coordinate system are now written 
down. 
In Cartesian coordinates of q=iu + jv + kw 
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In cylindrical coordinates zzr qeqeq ++= 99req  
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In spherical coordinates q = φφqeqeqe rr ++ 99  
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Equation 29-31 may be used to eliminate the stress components from the differential momentum equation 
25-27 
Becomes 
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Equ. 32 constitute a system of three nonlinear second order partial differential equation. The proper 
boundary conditions for the velocity on a rigid boundary are: 0== tn qq  
Where qn is the minimal component of the velocity relative to the solid boundaries and qr is its tangential 
component. These conditions are also termed the non-peneuration (qn = 0) and no-slip (qt = 0) viscous 
boundary conditions. 
Equation 3.2 becomes 
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If is the Laplacian operator applied to the velocity vector in Cartesian coordinates. By expanding 
 in cylindrical polar coordinates and using (13) we obtain 
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By repeating the for spherical coordinate, we obtaqin, 
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By substituting 0=μ  in the navier-stokes equating which is called momentum equation (3.2) – (3.7) we 
obtain an equation 
 

ρρρ ∇−= gDt
Dq

         38 

 
This is called the Euler equation.  
 
 
3.0 Discussion 

Solutions of the momentum equation result in velocity vectors  and pressure q ρ  which satisfy 
both the momentum equation and the continuity equation. Given such a combination, [ .q ρ ], we can 
check whether it constitutes a solution by substitution into the equations. How to find such a solution is 
another matter and any general step leading toward this goal is useful. For two dimensional flows it is 
possible to eliminate the continuity equation from the system of equations by using only functions which 
satisfy the continuity equation. This elimination is a formal step toward a solution and functions which 
affect this elimination and the stream functions. 

And if the flow is defined as two dimensional when its description in Cartesian coordinates shows 
no z-component of the velocity and no dependence on the z-coordinate. Such a flow can be described in the 

 plane, show a flow pattern identical to that in the 0=z 0=z  plane. The 0=z  plane is therefore called 
representative plane. 
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The figure 1.0 shows a representative plane for two-dimensional flow, with four streamlines 

denoted by the letters A, B, C, D. the whole pattern may be shifted 
In the z-direction parallel to itself. Thus the streamlines also represent stream sheets, i.e barriers 

which are not crossed by the flow. The Mass flux entering at the left, between, say, streamlines A and B 
must therefore come out at the right side without change. Because the distance between the two streamlines 
accommodating this mass flux seems in the drawing to increase, the mass flux seems per unit Cross section 

q..ρ , must decrease from left to right. There is therefore some relation between the convergence and 
divergence of stream lines and the vector q.ρ . Furthermore, because stream sheets are not crossed by the 
flow, each sheet represents a certain mass flux per unit depth of stream sheet taking place below it i. 
flowing between it and some particular stream sheet representing zero flux. 

This mass flux is called the stream function and it is denoted by ϕ  

( )(upy∂=∂ )ϕ  

( )(vpx∂−= ) 
From which follows 

y
xu
∂
∂

=λ ,  
x

v
∂
∂−

=
ϕρ  

Using planne polar coordinate in the representative plane and letting. 
ϕϕϕ dAB +=  

( )( ρϕ rqrdqd =  

)( )( ρϕ qqrdd −=  
From which follows 

θ
ϕρ
∂
∂

=
r

qr
1

,  
r

q
∂
∂−

=
ϕθρ  
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