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Abstract: The chaotic behavior of monthly precipitation time series is investigated using the phase-space 
reconstruction technique and the principal component analysis method. A hydrological time series, monthly 
precipitation series of 50 years (with a total of 600 values) observed on hills in middle region of Sichuan, 
China, is studied. Relationship between embedding dimension m  and correlation dimension 2D  is 
discussed and saturation correlation dimension, minimum embedding dimension and Kolmogorov entropy 
are calculated, that is, 02.42 =D , 19=m  and 25.0=k . Meanwhile, primary component analytic 
method (PCA) is applied to validate its chaotic character and result shows forecasting length for this 
precipitation time series should be less than 4.0 months. Thus, chaotic analysis on precipitation time series 
provides a scientific gist for precipitation forecasting. [Nature and Science, 2004,2(2):45-51] 
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1  Introduction 
 

The science of chaos is a burgeoning field, and 
the available methods to investigate the existence of 
chaos in time series are still in a state of infancy. 
However, the considerable attention that the theory has 
received in almost all fields of natural and physical 
sciences has motivated improvements in existing 
methods for the diagnosis of chaos and the proposal of 
new ones. The methods available thus far are the 
correlation dimension method (Grassberger, 1983a, 
1983b), the nonlinear prediction method (Farmer, 
1987; Casdagli, 1989; Sugihara, 1990) including 
deterministic versus stochastic diagram (Casdagli, 
1991), the Lyapunov exponent method (Wolf, 1985), 
the Kolmogorov entropy method (Grassberger, 1983c), 
the surrogate data method (Theiler, 1992), and the 
linear and nonlinear redundancies (Palus, 1995; 
Prichard, 1995). Among these the correlation 
dimension method has been the most widely used one 
for the investigation of deterministic chaos in 
hydrological phenomena (Hense, 1987; 
Rodriguez-Iturbe, 1989; Sharifi, 1990; Berndtsson, 
1994; Jayawardena, 1994; Puente, 1996; Sangoyomi, 

1996; Porporato, 1996, 1997; Sivakumar, 1998, 1999a; 
Sivakumar, 2000). In the present study, the correlation 
dimension method is employed, and the presence of a 
low-dimensional attractor (a geometric object which 
characterizes the long-term behavior of a system in the 
phase space) is taken as an indication of chaos. 

It is relevant to note that the application of chaos 
identification methods, particularly the correlation 
dimension method, to hydrological time series and the 
reported results have very often been questioned 
because of the fundamental assumptions with which 
the methods have been developed, that is, that the time 
series is infinite and noise-free. Important issues, in 
the application of chaos identification methods to 
hydrological data, for example, data size, noise, delay 
time, etc., and the validity of chaos theory in 
hydrology have been discussed in detail by Sivakumar 
(2000) and therefore are not reported herein. It is 
relevant to note, however, that the studies by 
Sivakumar (1999, 2000) reveal that the presence of 
noise in the data does not significantly influence the 
correlation dimension estimates (though it 
significantly influence the prediction accuracy 
estimates). This suggests that the correlation 
dimension may be used as a preliminary indicator to 
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identify the existence of chaos in the monthly 
precipitation time series. In this thesis, according to 
precipitation time series of Sichuan middle part in 
upper regions of Yangtze, from 1953 to 2002 (Figure 
1), from the view of correlation dimension D2 and 

Kolmogorov entropy, regulation of precipitation 
formation and evolution is discussed, and then PCA is 
applied to validate chaotic feature of precipitation time 
series.

 
Figure 1  Precipitation Series of Hills Region in Middle Sichuan of China 

 
2   Analysis of Chaotic Time Series 
 
2.1  Reconstruction of the phase space 

For a scalar time series tx , where Nt ,,2,1 L= , 
the phase space can be reconstructed using the method 
of delays (Takens, 1980). The basic idea in the method 
of delays is that the evolution of any single variable of 
a system is determined by the other variables with 
which it interacts. Information about the relevant 
variables is thus implicitly contained in the history of 
any single variable. On the basis of this an 
“equivalent” phase space can be reconstructed by 
assigning an element of the time series tx  and its 
successive delays as coordinates of a new vector time 
series 

( ){ }τττ 12 ,,,, −−−−= mttttt xxxxY L              (1) 

where ( ) tmNt ∆−−= /1,,2,1 τL , m  is the 

dimension of the vector tY , also called the embedding 
dimension, and τ  is a delay time taken to be some 
suitable multiple of the sampling time t∆  (Packard, 
1980; Takens, 1980). Take a scalar time series 

nxxx ,,, 21 L  in system phase-space as an example. 
Supposing its dimension d  is 1, its dimension of 
embedding phase-space should be 3. If here 4=m , 

4321 ,,, xxxx  forms the first vector 1Y  of a 
four-dimensional state space and then moving right 
one step, 5432 ,,, xxxx  forms the second vector 2Y . 
Just do in the same way, lYYYY ,,,, 321 L  forms the 
time series of reconstruction phase-space. 
2.2  Correlation dimension method 

The goal of determining the dimension of an 
attractor is that the dimensionality of an attractor 
furnishes information on the number of dominant 
variables present in the evolution of the corresponding 
dynamical system. Dimension analysis will also reveal 
the extent to which the variations in the time series are 
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concentrated on a subset of the space of all possible 
variations. The central idea behind the application of 
the dimension approach is that systems whose 
dynamics are governed by stochastic processes are 
thought to have an infinite value for the dimension. A 
finite, noninteger value of the dimension is considered 
to be an indication of the presence of chaos. 

Correlation dimension is a measure of the extent 
to which the presence of a data point affects the 
position of the other point lying on the attractor. The 
correlation dimension method uses the correlation 
integral (or function) for distinguishing between 
chaotic and stochastic behaviors. The concept of the 
correlation integral is that an irregular-looking process 
arising from deterministic dynamics will have a 
limited number of degrees of freedom equal to the 
smallest number of first-order differential equations 
that capture the most important features of the 
dynamics. Thus, when one constructs phase spaces of 
increasing dimension for an infinite data set, a point 
will be reached where the dimension equals the 
number of degrees of freedom and beyond which 
increasing the dimension of the representation will not 
have any significant effect on the correlation 
dimension. 

According to the embedding theorem of Takens 
(1980), to characterize a dynamic system with an 
attractor dimension d , an ( )12 += dm -dimensional 
phase space is required. However, Abarbanel  (1990) 
suggested that dm >  would be sufficient. For an 
m -dimensional phase space the correlation function 
( )rC  is given by 

( ) ( ) ( )∑
≤≤≤

∞→
−−

−
=

ji Nji
jiN

YYrH
NN

rC
, 11

2lim      (2) 

where H is the Heaviside step function, with 
( ) 1=uH  for 0>u , and ( ) 0=uH  for 0≤u , 

where ji YYru −−= , N  is the number of point on 
the reconstructed attractor, r  is the radius of the 
sphere centered on iY  or jY . 

If the time series is characterized by an attractor, 
then for positive values of r  the correlation function 
( )rC  is related to the radius r  by the following 

relation: 
 

( ) 2

0

D

N
r

rrC α
∞→

→
≈                        (3) 

where α  is a constant; and 2D  is the 

correlation exponent or the slope of the ( )rClog  

versus rlog  plot is given by: 

( )

∞→
→

=

N
r

rlog
rCloglimD

0

2                     (4) 

The slope is generally estimated by a least 
squares fit of a straight line over a certain range of r , 
called the scaling region. For a finite data set, such as 
the precipitation data series, it is clear that there is a 
separation r  below which there are no pairs of point; 
that is, it is “depopulated.” At the other extreme, when 
the value of r  exceeds the set diameter, the 
correlation function increases no further; that is 
“saturated.” Therefore, for a finite data set, the region 
sandwiched between the depopulation region and the 
saturation region is considered as the scaling region. A 
somewhat  better  way  to identify  the  scaling  
region is to estimate  the  local  slope  given  by 

( ) ][log/][log rdrCd . 
To observe whether chaos exists, the correlation 

exponent (or local slope) values are plotted against the 
corresponding embedding dimension values. If the 
value of the correlation exponent is finite, low, and 
noninteger, the system is considered to exhibit 
low-dimension chaos. The saturation value of the 
correlation exponent is defined as the correlation 
dimension of the attractor. The nearest integer above 
the saturation value provides the minimum number of 
phase spaces or variables necessary to model the 
dynamics of the attractor. On the contrary, if the 
correlation exponent increases without bound with 
increase in the embedding dimension, the system 
under investigation is considered as stochastic 
(Fraedrich, 1986). 
2.3  Principal component analysis (PCA) 

PCA is the most widely used method of 
multi-variate data analysis owing to the simplicity of 
its algebra and its straightforward interpretation 
(Cerón, 1999). However, it is a newly proposed 
method (Lv, 2002) in organizing noise and chaos. The 
step of this method is as follows: 

Supposing a scalar time series is nxxx ,,, 21 L , 
after reconstructing phase-space (embedding 
dimension is m , and delay time is τ ), matrix 

( )( )1 −−=× dnlY ml  is formed: 



Nature and Science, 2(2), 2004,Men, Zhao and Liang, Chaotic Analysis on Monthly Precipitation 

http://www.sciencepub.net                                              editor@sciencepub.net ·48·



















=



















=

+

+
×

lnll

m

m

ml

Y

Y
Y

l
xxx

xxx
xxx

l
Y

M

L

MMMM

L

L

2

1

2
1

1

132

21

2
1

11  

Calculate covariance matrix ml
T

mlmd YY
l

A ××× =
1

 

and its eigenvalue ( )mii ,,3,2,1  L=λ  and 
eigenvector ( )miUi ,,3,2,1  L= , then order them 

mλλλ ≥≥≥ L21  in descending sequence. 
Eigenvalue and eigenvector is called primary sector. 

Sum of all eigenvalue γ  is ∑
=

=
d

i
i

1

λγ . Chart of i  

and ( )γλ /ln i  is called primary spectrum. Primary 
spectrum of noise, which is parallel to x  axis, is 
quite different from that of chaotic serial, which is a 
line across fixed dot with negative slope. 
2.4 Kolmogorov entropy 

Another important index of chaotic feature is 
Kolmogorov entropy, which provides upper and lower 
range of average amount of information in unit time. 
Generally, for a sequential system, 0=K ; for a 
stochastic system, ∞=K . When ∞<< K0 , 
system is a chaotic system, and the bigger K  is, the 
more serious the degree of chaos is. Formula proposed 
by Grassberger-Procaccia algorithm is: 

( )
( )21

2

2 ln1
rC

rC
K

m

m

+

=
τ

                  （5） 

Where: τ  is delay time, ( )rCm  is the value of 
( )rC  when embedding dimension of phase-space is 

m , ( )rCm 1+  is the value of ( )rC  when embedding 

dimension of phase-space is 1+m .  
Choice of τ  and m  is key to calculation of 

dimension, index and entropy. In application, we need 
to consider dimension of embedding phase-space as 
well as τ  which has better simulating effect. 

In theory, when ∞→m , KK →2 . In fact, 
when m  is somewhat value, 2K  tends to be stable 
and this stable value can be used as estimating value of 
K . 
 
3  Result and Analysis 
 
3.1  Correlation dimension calculation 

LnC(r) versus lnr is shown in Figure 2. Figure 2 
is obtained by using formula (2) and (4). Form the 
Figure 2, the scaling region is existed; herein the 
precipitation series has chaotic character. The slope of 
the line in scaling region is the correlation dimension. 
The relationship between the correlation dimension 
values and the embedding dimension values is shown 
in Figure 3. It can be seen that the correlation 
dimension value increases with the embedding 
dimension up to a certain value and then saturates 
beyond that value. The saturation of the correlation 
dimension beyond a certain embedding dimension 
value is an indication of the existence of deterministic 
dynamics. The saturated correlation dimension is 
about 4.02 ( 02.42 =D ), and the embedding 
dimension 19=m . The finite and low correlation 
dimension is an indication that the precipitation series 
exhibit chaotic behavior.
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Figure 2  LnC(r) versus lnr plot 
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Figure 3  Relationship between embedding dimension and correlation dimension 

 

 

Figure 4  Relationship between embedding dimension and PCA 
 
3.2  Principal component analysis method 

The relationship between embedding dimension 
value and the PCA value is shown in Figure 4. Figure 
4 is plotted by the method of principal component 
analysis. Principal spectrum of precipitation series is a 
line across fixed dot with negative slope. It further 
validates that precipitation time series has chaotic 
character. 
3.3  Kolmogorov entropy calculation 

The relationship between the embedding 
dimension value and the Kolmogorov entropy value is 

shown in Figure 5. The Kolmogorov entropy value is 
calculated by formula (5). With the increasing of 
embedding dimension value, Kolmogorov entropy 
value k  tends to be stable and when the embedding 
dimension value is about 20, that is ( ) 201 =+m , 
Kolmogorov entropy comes to saturation, that is, 

( )0 25.0 >=K . This data also indicates the chaotic 
feature of precipitation time series of hills region in 
middle Sichuan of China. K/1  shows that 
predictable length of this system is 4.0 months. 
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Figure 5  Relationship between embedding dimension and kolmogorov entropy 
 
4  Conclusion 
 

Correlation dimension 4.022 =D  and 
Kolmogorov entropy 250.k =  are achieved by 
reconstructing phase-space. Primary component 
analysis further validates the chaotic feature of 
precipitation time series of Sichuan middle part in 
upper regions of Yangtze and the reciprocal of 
Kolmogorov entropy tells us predicting length of 
precipitation time series should be 2 to 3 years instead 
of long-term prediction, which provides scientific gist 
for determining length of predicting period.  
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