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Abstract: In this paper a new method for estimating the parameters of chirp signals (LFM signals) is 
provided. It is based on an especial quadratic form transform and cross-spectral ESPRIT method. 
Compared with general approaches, the method here has many prominent virtues such as low complexity, 
low computational cost and working in relatively low SNR almost without any prior information about 
coloured noise. The correctness and the validity of the new approach are verified by computer emulations. 
[Nature and Science. 2005;3(1):75-80].  
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1 Introduction 
Chirp parameter estimation is a well-known 

problem in signal processing community. Chirp signals 
occur in many applications, e.g., radar, sonar, 
bioengineering, gravity waves and seismography. 
Various spectral analysis techniques have been used to 
perform chirp signals estimation and detection. Most are 
based on the maximum likelihood (ML) principle [1]. 
However, the accuracy of ML strongly depends on the 
grid resolution in the search procedure. The 
computational burden may be too high to obtain 
reasonable accuracy. There are other procedures to this 
problem. Such as phase unwrapping [2, 3], which is 
simple but only suitable for estimation of mono-chirp 
signal under higher signal-to-noise-ratio (SNR) 
environment; Wigner-Ville distribution (WVD)[4], 
which is poor in estimation  of  multi-chirp signals 
because of Cross-term interferences; Radon transform 
applied to the Wigner-Ville distribution of the signals 
(RWD) was suggested in [5], which can be directly 
extended to the analysis of multi-component chirp 
signals, but it also has the disadvantage of high 
complexity. 

In this paper a cross-spectral ESPRIT method 
based on quadratic form transform for detecting and 
estimating chirp signals is presented. First, using 
quadratic form transform [6] we can convert 
nonstationary chirp signals into stationary state. Then 
the cross-spectral method [7] idea is introduced in 
ESPRIT [8] to produce a cross-spectral ESPRIT method. 

Last, the cross-spectral ESPRIT method is applied to 
process the stationary signal after the quadratic form 
transform. Replacing the two-dimensional search with 
mathematical operation, the method in this paper is 
considerably simpler to implement than ML or RWD. 
Because of the appliance of the cross-spectral ESPRIT 
method, it has another advantage that it can restrain 
independent colored noise and work in relatively low 
SNR environment.  
 
2 Estimation of Frequency Change Rate 
 
2.1 Quadratic Form Transform of Chirp Signals 

Suppose that the mono-component chirp signal 
model is: 
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Where  denotes the amplitude of chirp signal;  denotes initial frequency; m denotes frequency 

change rate.  

A

0f

Let

( ){ }0

* 2( ) 2  (2)( ) ( ) exp
2 2

Z t j f mts t s t A π τ
τ τ

= = ++ −

It is easy to show that the correlation of Z(t) is: 
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This function is independent of time t . In another 
word, Z(t) is a stationary random signal. Hence, via 
quadratic form transform above, the nonstationary chirp 
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signal is converted into stationary state. So methods for 
stationary signal processing can be used to do the 
following treatment. But the transform above is based 
on mono-chirp signal with no additive noise. In this 
paper we want to talk about multi-chirp signals and the 
additive noise is colored. Obviously using the simple 
transform combined with common stationary signal 
processing methods (the MUSIC method [9], the 
ESPRIT method [8] etc.) cannot reach the estimation 
target. So this paper provides the following cross-
spectral ESPRIT method based on an especial quadratic 
form transform: 

Generally in practice, we can acquire only one 
observed sequence.  
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With , time delay method [10] is introduced to 
produce the other three sequences as follows: 
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Where  are amplitudes of chirp signals; ( 1, ,iA i q= L

( 1, , )if i qL im i ==

1

,  are initial frequencies 

and frequency change rates of chirp signals respectively; 

( 1, , qL )

τ  is a constant, which value is bigger than correlated 

time of colored noise; , , and  ( )x n yωω ( )n ( )z nω ( )g nω

are zero-mean independent colored noises with 
unknown spectral density. 

ombining  (4)~(7), we use the following especial 
quadratic form transform: 
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Then the correlation of x n y n  is: 
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For the convenience of notation, let 

Inserting them in (10), we obtain:  
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2.2 Cross-spectral ESPRIT Method 

By inserting r  in  cross-correlation 

matrix, we get 
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Then the matrix can be expressed as: 
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Consequently, the pencil  {
1 1x yR ' '

1 1x y
Rγ− } will also 

decrease in rank to q-1 whenever γ  assumes values 
given by (21). However, by definition these are exactly 
the generalized eigenvalues (GE’s) of the matrix pair 

. Also, since both matrices in the pair span 

the same subspace, the GE’s corresponding to the 
common null space of the two matrices will be zero, i.e., 
GE’s lie on the unit circle and are equal to the diagonal 
elements of the rotation matrix Φ , and the remaining 

' '
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Then we get:     
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Where  is a 
unitary matrix. In the complex field, it is a simple 
scaling operator. 
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Proof: Consider the matrix pencil  
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When frequency change rates  are different, the 

matrices 

im

F  and jE Pφ  are non-singular evidently. So 
we get the following equation: 
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Φ  is a  q diagonal matrix. So in general  q×
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This completes the proof of the theorem. 
Once Φ  is known, the estimation of frequency 

change rates m  can be obtained. But using the basic 

cross-spectral ESPRIT method above, the final results 
are not satisfied because of errors in estimating 

i

1 1x yR and ' '
1 1x y

R  from finite data as well as the morbidity 

question hiding in the algorithm itself. Herein the TLS-
ESPRIT idea [11] is introduced to solve this problem: 

The singular value decomposition (SVD) of 
1 1x yR is 

showed as: 
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matrix pencil { ,  turn to be the q q' '
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generalized eigenvalue problem of the matrix pencil 
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Once the generalized eigenvalues  of the matrix 

pencil { ,  are calculated,  can be gained 

from: 
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It is the cross-spectral ESPRIT estimation of 
frequency change rates. 
 
3 Estimation of Initial Frequencies 
 

Supposing the estimates of m  are 

accurate enough, we can consider approximatively 
. 
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Applying time delay method also, a sequence 
 that is independent of 2 ( )x n is produced: 
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Using the cross-spectral ESPRIT method depicted 
in section 2.2, the initial frequency estimates are easily 
obtained. Herein we do not explain it in detail. 
 
4 Simulation 
 

In this section the estimated results of frequency 
change rates and initial frequencies of chirp signals will 
be brought forth and we will compare them with 
outcomes of RWD method.  

The model of multicomponent chirp signals in 
colored noise is taken into account as: 
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Where , , , ;

is zero-mean, stationary colored noise with 

unknown spectral density. It is derived by a white noise 
with zero mean and variance 1 passing through a band-
pass filter, which has the follow expression: 
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Curve of power spectral density is showed in Figure 1. 
 

 
 
Unitary frequency 

Figure 1. Unitary Power Spectral of Colored Noise 
It is easy to obtain the correlation time of colored 

noise  be ( )x nω 0 25τ = . We assume delay time 

30τ = .  
Let 
( ) ( 30)y n x n= + , ( ) ( 60)z n x n= + , .    ( ) ( 90)g n x n= +

As we see, the colored noise in 
( ), ( ), ( ), ( )x n y n z n g n  is independent of each other. Let 

every data lengths of the four sequences be 512. Both 
SNRs of two chirp components are  –5dB.  

After 30 Monte-Carlo simulations under the same 
test conditions, the statistics of chirp parameter 
estimates using cross-spectral ESPRIT method are 
shown in Table 1. 

For the convenience of compare, keep the 
emulational model and conditions of previous test 
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invariable, but in model is changed into white 

Gaussian noise. Applying the well-known Radon-
Wigner distribution method, the estimated curve is 
shown in Figure 2 and the statistics of estimation results 
are shown in Table 2. 

( )x nω

 

 
Figure2  RWD of chirp signals 

 
We can get from the simulation results that when 

both SNRs are –5dB, for frequency change rates, the 
estimated accuracy of cross-spectral ESPRIT method is 
close to the accuracy of RWD method, but the 
computational burden of the first method is lower than 
the second method to heavens; for initial frequency f, 
the accuracy of method in this paper is bad comparing 
with RWD because of the assumption that m mˆ i i≈ . 

However, in practice it is often the case that the 
frequency change rates are the only parameters for 
interest, so the method in this paper is applicable in 
engineering. If the high estimated accuracy of parameter 
f is requested by all means, the method in literature [12] 
can be used. 

 

Table 1. Statistic of estimates by cross-spectral ESPRIT method  (SNR=-5dB) 

Parameter                                                                                                                          1m 2m 1f 2f

Real value                               0.17                                 0.19                           0.1                           0.12 

Estimated mean                      0.1700                            0.1900                      0.1026                      0.1213 

Estimated variance                3.6667E-09                   8.3000E-09              1.3998E-04                1.5405E-04 

                             
Table 2. Statistic of estimates by RWD  (SNR=-5dB) 

Parameter                                                                                                                     1m 2m 1f 2f
Real value                          0.17                          0.19                          0.1                         0.12 

Estimated mean                   0.1701                      0.1901                     0.1001                      0.12 

Estimated variance             9.2689E-09              7.6695E-09              2.5673E-08             3.3686E-08 

 
 
5 Conclusion 

In this paper a new approach for detecting and 
estimating chirp signals is presented. Both theoretical  
evaluations and simulations prove that cross-spectral 
ESPRIT method decreases a good number of  
computational complexities because it avoids the two-
dimensional search, which RWD method and so forth 
must confront.  Even working in colored noise and 
relatively low SNR phenomena, the method here is 

very accurate, highly reliable, and can operate 
efficiently. 
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