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Abstract: Due to the incapacity of conventional method, while detecting periodic signals buried in the 
noise and deciding accurate frequency, a novel method is presented. This method is an integration of 
second FFT, which is an additional DFT after PSD, and the chaotic oscillator. Second FFT can increase 
the detection ability of weak periodic signals and the chaotic oscillator can improve frequency precision. 
This method is simple, quick and convenient in hardware realization and instrument design. Furthermore, 
its effect is demonstrated by detecting a simulation signal and a communication signal. [Nature and 
Science. 2005;3(2):59-64]. 
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1 Introduction 
 

Quickly detecting weak periodic signals is widely 
used in radar, communication, sonar, earthquake and 
industrial measurement. The capability of conventional 
detection method such as power spectral density (PSD) 
is limited when the signal is buried in the noise. 
According to the character of PSD analysis, the more 
the data in PSD, the more powerful the ability of 
detection [1]. But it isn't practical, especially when the 
detecting speed is strictly required as online or real-time 
measurement being needed. Second FFT (Fast Fourier 
Transform) can improve the detection ability of weak 
periodic signals, but the frequency resolution is so low 
that the frequency of the to-be-detected weak periodic 
signal can’t be decided accurately. The chaotic 
oscillator is proved to be effective in weak periodic 
signal detection for whose immunity to the noise and 
sensitivity to certain periodic signal, however, some 
blindness is showed when deciding the frequency. The 
method of integrating second FFT and chaotic oscillator 
is presented in this paper to learn from other’s strong 
points to offset one's weakness. 
 
2 Principle of Second FFT 
 

Jen-Yi Jong presented a method, CPLE (Coherent 
Phase Line Enhancer), to discover periodic signals 

buried in noises utilizing the phase-coherent character 
among signals. The method restrains the disadvantage 
of phase information abandoned in conventional PSD 
analysis [2,3]. In order to run the method in a DSP 
(Digital Signal Processors) with high speed, we 
modified the method with not overlapping as 
segmenting data into blocks, which increases the 
calculating speed. We name the above method without 
overlapping second FFT and SFFT in short.  

Assuming x(n) is a discrete time series from a real 
signal after being sampled, segment x(n) into M blocks 
with N data in every block, namely: 
x1={x(1),x(2), …,x(N)} 
………………………………… 
xM={x((M-1)×N+1), …,x(M×N)} 

The DFT (Discrete Fourier Transform) for a 
discrete time series xi, is defined as: 
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Make the following definition as: 
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where k=1,2, …,N, and i=1,2,…M. 
From equation (2), we can construct a matrix Y 

with M×N form as shown in equation (3). 
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namely: Y=(y1,y2…,yM)T and yi=Xi(k). 
 
2.1 Conventional PSD 

Conventional PSD calculates the mean value of the 
energy with respect to the frequency component 
according to equation (4), and then the value will be the 
estimation power of the corresponding frequency 
component. At last, power spectrum is obtained.  
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2.2 SFFT 

Conventional PSD will end after getting the power 
spectrum from equation (4), but SFFT will further deal 
with matrix Y. For no overlapping in segmenting the 
data, some middle processes are passed over. For whom 
are interested to this, please refer [2] and [3]. Carry out 
DFT in every column of matrix Y. If M is not a power of 
2, we should pad with zeros. When M is the power of 2, 
Mnew=M. When M is not the power of 2, Mnew is the 
closest power of 2 larger than M. And then a new matrix 
R is obtained via carrying out an additional DFT along 
the column of matrix Y as shown in equation (5). 
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Get the max value of energy in each column and 
the corresponding index of wmax in matrix R, and 
calculate the power in a window according to equation 
(6) as the corresponding power with respect to the 
frequency component, where the rectangular window 
with length of 5 is used. The result PSFFT(k) is defined as 
the SFFT spectra. 
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where |Ek(w)|2 is the energy with respect to wmax; Lh is 
the length of window; W is the half length of window 
used in the method; α is amplitude correction constant 
and α=Mnew/M. 

For example, the simulation signal X(t) is defined as : 
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where t is time component; N(t) is a Gaussian white 
noise with mean of 0 and variance of 1. 

The sampling frequency is 10240Hz, A1=10V, 
f1=200.1Hz, A2=1V, f2=300.5Hz, A3=0.3V, f3=500Hz. 
Take 32768(=1024×32) data without overlapping, 
namely N=1024 and M=32. As illustrated in Figure 1(a), 
the amplitudes associated with frequency components of 
200Hz and 300Hz are very obvious while 500Hz is not 
obvious. As illustrated in Figure 1(b), the amplitude of 
500Hz is obviously clearer than in Figure 1(a). 

(a) The conventional 
PSD normalized spectrum. 

(b) The SFFT normalized 
spectrum. 

Figure 1. The comparison between conventional PSD and 
SFFT spectrum of simulation signal. 

Utilizing SFFT, we deal with the BPSK (Binary 
Phase-Shifted Key) signal widely used in radar and 
communication. The sampling frequency is 100 MHz. 
In practice, the accurate carrier frequency is unknown, 
but some imprecise information is known. Subtract the 
mean value and then square BPSK signal; we can get 
the standard sine signal theoretically. Error-code will 
occur for sampling and signal-to-noise ratio (SNR) will 
be deteriorated for square, so general methods are 
incapable to detect the signal. Take 32768 (=1024×32) 
data without overlapping, namely N=1024 and M=32. 
As illustrated in Figure 2(a), the trajectory changes 
gently in entire frequency range and there is not very 
obvious peak. However, a peak is very obvious with 
respect to frequency about 35MHz, as shown in Figure 
2(b). 

 

 
(a) The conventional PSD 
normalized spectrum. 

 
(b) The SFFT normalized 
spectrum. 

Figure 2. The comparison between the conventional PSD 
and SFFT spectrum of BPSK signal. 
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After lots of tests, it is demonstrated that SFFT is 

more efficient than conventional PSD analysis on weak 
periodic signal detection in the same condition. 
Furthermore, performing a DFT on complex data is a 
well-known technique and the additional DFT will not 
increase the cost of hardware. However, the parameter 
N is limited to be small, for example, N=1024, due to 
the algorithm of DFT. So the frequency resolution, 
defined as Fs/N (Fs is the sampling frequency), is bigger 
and the frequency of weak periodic signal cannot be 
estimated accurately. As shown in Figure 1(b) and 2(b), 
we can only get the approximate frequencies of 200Hz, 
300Hz, 500Hz and 35MHz. 
 
3  Principle and Implement of Weak Periodic 
Signal Detection Using Chaotic Oscillator  
 

Generally, for a nonlinear dynamic system, a small 
perturbation of system parameters may lead to the 
essential change of system state. Many methods 
utilizing the sensitivity to system parameters were put 
forward to detect weak periodic signal [4,5]. 

 
3.1 Principle 

In this paper, the Holmes Duffing equation is 
chosen because it is one of the classic nonlinear systems 
and its characters have been studied extensively [6,7]. 
After introduction of the noise, the to-be-detected weak 
periodic signal and some transformations in time scale, 
the Holmes Duffing equation suit for any ω0 is  
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where c is a damping constant; F0·cos(ω0t) is a periodic 
driving force in oscillator; F1·cos(ω1t+ψ) is the to-be-
detected periodic signal. Here, (F1cos(ω1t+ψ)+N(t)) is 
named external perturbation. 

If fix c, as F0 varies gradually from zero to one 
threshold Fa, and then exceeds another threshold Fb, the 
oscillator state will vary from the small-scale periodic 
motion to the chaotic motion, and, at last, to the large-
scale periodic motion in phase space. Discretize 
equation (8) and solve it using fourth-order Runge-
Kutta algorithm. We chose iteration step h of 0.01s, 
total time of 50s, x0=0 and y0=0 convenient for 
investigating the state transformation of the Duffing 
oscillator as shown in Figure 3. 

 
Figure 3. ω0=1rad/s, c=0.5. (a) F0=0.3 the small-scale 
periodic motion. (b) F0=0.6 the chaotic motion. (c) F0=0.9 
the large-scale periodic motion. 

 
We can use the character of the phase plane 

trajectory of Duffing oscillator varying with F0. Set ω0 
equal to the known frequency of the to-be-detected 
periodic signal and F0 less than Fb slightly. The original 
state of oscillator is chaotic motion. When the periodic 
signal with the same frequency, namely ω1=ω0, is 
introduced, as long as F0+F1>Fb, even if F1 is very 
small, the state transformation of the Duffing oscillator, 
from the chaotic motion to the large-scale periodic 
motion, will occur. By identifying the transformation, 
whether the periodic signal with frequency of ω0 is 
present or not can be confirmed. 

The threshold of Duffing oscillator can be obtained 
by Melnikov arithmetic [6,8] combined with 
experiments. As h=0.01 and ω0=1rad/s, Fb≈0.820. Set 
F0=0.815, F1=0, and then add Gaussian white noise with 
mean of 0, variance of 0.5 and mean of 0, variance of 1 
respectively. The corresponding phase plane trajectories 
are shown in Figure 4(a) and 4(b). Set F1=0.01, 
ω1=1rad/s, and then add Gaussian white noise with 
mean of 0 and variance of 1. The corresponding phase 
plane trajectory is shown in Figure 4(c). The phase 
plane trajectory fluctuates for being affected by noise, 
but the state of oscillator doesn’t change. It is concluded 
that Duffing oscillator takes on some immunity to noise 
and strong sensitivity to some weak periodic signal. 

 

 
Figure 4. F0=0.815, Duffing oscillator takes on some 
immunity to noise and strong sensitivity to some weak 
periodic signal. (a) σ2=0.5, F1=0, (b) σ2=1, F1=0 (c) σ2=1, 
F1=0.01 
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3.2 Intermittent Chaotic Motion 
The situation when |∆ω|=|ω1-ω0|=0, is analyzed 

above. Next, the situation with |∆ω|≠0 is analyzed.  
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From equation (10), the total force FCO(t) will vary 
with ∆ω and become a time function. As F0+F1>Fb>F0-
F1, FCO(t) will be periodically more than or less than Fb 
with time. And then the periodic and chaotic motion of 
Duffing oscillator will happen alternately, namely 
intermittent chaotic motion. The period of alternate 
transform is just T1=2π/∆ω. Assuming N(t)=0, 
ω0=1rad/s, F0=0.815, F1=0.02, set |∆ω|=0.01, |∆ω|=0.03, 
|∆ω|=0.04 and |∆ω|=0.05 respectively, and the 
corresponding waveforms of oscillator's output in time 
domain are shown in Figure 5. When ∆ω is very small, 
as shown in Figure 5 (a) and (b), theoretically T1 is 
about 628s or 209s and FCO(t) varies more slowly than 
the state transformation, so the boundary between the 
chaotic and periodic motion is obvious and easy to be 
identified. However, when ∆ω is relatively big, as 
shown in Figure 5 (c) and (d), theoretically T1 is about 
157s or 126s and FCO(t) varies relatively more quickly, 
so the boundary is not very obvious and hard to be 
identified. Therefore intermittent chaotic motion is 
limited by ∆ω. It's presented that |∆ω|≤0.03ω0 is the 
range in which obvious intermittent chaotic motion 
happens [5]. 

Through the analysis and test above, we conclude 
that there is a serious limitation in weak periodic signal 
detection utilizing chaotic oscillator. The oscillator can 
only detect the periodic signal whose frequency is equal 
to inner periodic driving force or the frequency 
difference between them is in a small range. A parallel 
detecting array is presented to solve this problem in [5]. 
The detecting array is composed of 79 chaotic 
oscillators and the corresponding ω0 is set from 1rad/s 
to 10rad/s with common ration of 1.03. When a signal is 
to be detected, transfer the frequency of signal into 
frequency range 1~10rad/s at first. And then introduce 
the signal to the detecting array. At last, the frequency 
of to-be-detected signal can be detected by identifying 

intermittent chaotic motion. However, when the 
frequency of to-be-detected signal is unknown, the scan 
of frequency is blindfold; any external perturbation will 
lead to false result and violent noise will weaken the 
detection ability. Furthermore, from Figure 5, hundreds, 
even thousands of seconds are needed to confirm the 
period of intermittent chaotic motion. It is slow and not 
suitable for quick detection. Furthermore, lots of 
elements are needed to construct 79 chaotic oscillators 
in hardware realization. The detection array needs great 
expense of hardware and its structure is complicated. 
The advantage of chaotic oscillator, easy to be realized 
with high speed in hardware, is missing. 

 

(a) | ∆ω|=0.01 (b) |∆ω|=0.03 

(c) |∆ω|=0.04 (d) |∆ω|=0.05 
Figure 5. The plots of intermittent chaotic motion. 

 
4 Integration of SFFT and Chaotic Oscillator 
 

To overcome the low frequency resolution of SFFT 
and utilize the property of intermittent chaotic motion, 
we present a new method based-on the integration of 
SFFT and the chaotic oscillator to detect weak periodic 
signals. First we use SFFT to find out all relatively 
obvious peaks in SFFT spectrum and estimate all 
frequency components associated with those peaks, and 
then set ±5% range of every estimated frequency to be 
the estimated frequency band and scan the frequency 
using a small array of Duffing oscillator in the 
frequency band. By this means, the accurate frequency 
can be obtained using only 5 chaotic oscillators. 

 
4.1  Calculating Steps 
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(1). According to the number of relatively 
outstanding peaks in SFFT spectrum, record the 
estimated frequency values corresponding to the peaks. 
Get fe=(fe1, fe2, fe3, …), or ωe=2π/ fe. 

(2). According to the sampling frequency and fe1, 
adjust the playing speed of signal and interpolating or 
exampling the signal, then get a new sampling 
frequency fSN and the post-treatment signal. 

(3). According to fSN, iteration step h and the new 
estimated frequency f′e1 are obtained. 

(4). Let the post-treatment signal pass a band-pass 
filter with a ±10%f′e1 band in order to eliminate the 
disturbance of other frequency components. 

(5). Take Ω=(0.95,0.975,1,1.025,1.05) ω′e1 into 
equation (8) respectively to replace ω0, and get five 
equations. Get threshold Fb according to fSN and 
iteration step h, and then set F0≤Fb. 

(6). Replace (F1cos(ω1t+ψ)+N(t)) in above five 
equations respectively with post-treatment signal. 

(7). By identifying the oscillator's output 
waveforms in time domain, the period of intermittent 
chaotic motion of every equation, and the four 
frequency difference, ∆fe1, ∆fe2, ∆fe4 and ∆fe5 are 
obtained. Take them into equation (12), and then the 
practical frequency fr1 of to-be-detected signal is 
obtained. 
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where corf is the frequency correction constant and 
relative to the playing speed and sampling frequency. 

(8). Take ωe2 or fe2 and repeat step 2 to step 7, till 
all estimated frequencies have been worked out. 
 
4.2  Application 

Assuming the structure of simulation signal 
described in equation (7) is unknown. From Figure 1(b), 
we can see three obvious peaks, so the simulation signal 
is at least composed of three periodic signals and the 
corresponding frequencies are fe1=200Hz, fe2=300Hz, 
fe3=500Hz. According to the estimated frequency fe1 and 
the sampling frequency of 10240Hz, we chose the 
playing speed of 1000Hz, so the iteration step h is 
0.001s and corf is 10.24. Accordingly, the frequency 
200Hz is adjusted to 19.53Hz. 19.53Hz is set as the 
centre of the estimated frequency band, and then 
18.55Hz, 19.04Hz, 20.02Hz and 20.51Hz are other four 
frequencies. Take the five frequencies into equation (8) 

respectively, and get five equations. As mentioned 
above in step 6, we get Figure 6. As shown in Figure 6, 
intermittent chaotic motion happened in four oscillators. 
According to the adjacent degree between the frequency 
of the to-be-detected signal and the inner periodic 
driving force, the periods of intermittent chaotic motion 
in the four oscillators are different slightly. After 
calculating, ∆fe1≈0.990Hz, ∆fe2≈0.501Hz, 
∆fe4≈−0.472Hz and ∆fe5≈−1.010Hz. From equation (12), 
fr1=200.08Hz. Also fr2=300.52Hz and fr3=500.01Hz. It 
can be seen that error between the practical frequency 
and the frequency calculated from this method is 
extraordinarily tiny. 

 

(a) ω0=18.55Hz (b) ω0=19.04Hz 

 
(d) ω0=20.02Hz 

 
(e) ω0=20.51 Hz 

Figure 6. The time domain waveforms of the four 
intermittent chaotic motions when simulation signal is 
introduced to the four Duffing oscillators respectively. 

 
From Figure 2(b), the BPSK signal in section 2 is a 

single-frequency signal and the frequency is estimated 
about 35MHz, namely fe=35MHz. According to 
sampling frequency of 100MHz and fe, after pre-treating 
the signal, the iteration step h=0.0005 and the centre 
estimated frequency is 175Hz, other four frequencies 
are 166.25Hz, 170.63Hz, 179.38Hz and 183.75Hz. As 
mentioned above, the result is shown in Figure 7. 
Intermittent chaotic motions are not obvious and the 
corresponding periods are fluctuating for noise, so we 
adopt averaging method to get the periods of 
intermittent chaotic motion. After calculating, 
∆fe1≈8.68Hz, ∆fe2≈4.86Hz, ∆fe4≈−5.42Hz and 
∆fe5≈−9.03Hz. From above, fr=34.955MHz with 
corf=200000. 
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(a) ω0=166.25Hz (b) ω0=170.63Hz 

 
(c) ω0=179.38Hz 

 
(d) ω0=183.75Hz 

Figure 7. The waveforms of the oscillator's output as 
BPSK signal introduced respectively. 

 
The detection ability of weak periodic signals to be 

detected and frequency resolution are improved by 
means of SFFT and the chaotic oscillator. From figure 6 
and figure 7, it is concluded that the larger the 
frequency of to-be-detected signal, the shorter the time 
required by calculation and the higher the detection 
speed. But this requires more powerful detection ability 
of chaotic oscillator. So we should choose the iteration 
step h and the threshold Fb according to the practical 
condition reasonably. 
 
5 Conclusion  
 

The method of integrating SFFT and chaotic 
oscillator presented in this paper is an integrated 
application of time domain and frequency domain 
method. SFFT is mostly used to estimate the frequency 
of the weak periodic signal approximately and the 
chaotic oscillator is used to decide the frequency 

accurately. Since a chaotic oscillator is composed of 
adder, integrator, gain element and sine signal generator, 
the detection system based on the chaotic oscillator is 
easy to be realized in circuits. This method improves not 
only the detection ability but also the frequency 
resolution of weak periodic signals, and the cost of 
detection system is not high and the method is easy in 
hardware realization and instrument design. 
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