An *In Silico* Investigation into the Discovery of Novel *Cis*-acting Elements within the Intronic Regions of Human *PAX7*

*Maika G. Mitchell^{1,2}, Melanie Ziman¹

¹ School of Exercise, Biomedical and Health Science, Edith Cowan University, Perth, Western Australia 6027, ²Email: <u>blackmam@mskcc.org</u>

² Sloan Kettering Institute (Memorial Sloan Kettering Cancer Center), New York City, New York 10021, USA

Abstract: PAX3 and PAX7 are homologous paired box family members expressed during early neural and myogenic development. Assays of mRNA expression have proven conclusively that PAX3 and PAX7 transcripts are present in embryonal and alveolar rhabdomyosarcoma, neuroblastoma, Ewing's sarcoma, and melanoma cell lines; the tumor-specific expression patterns correspond to expression patterns in corresponding embryonic cell lineages. The intronic regions of the PAX7 gene were analyzed using computational DNA pattern recognition methods. Several potential cis-regulatory motifs were identified in this investigation and one in particular that was common to both PAX7 and PAX3 and also to NF1, could have implications for the role of PAX7 in Alveolar Rhabdomyosarcoma and may be the cornerstone to more exciting, unique scientific investigations. Methods: In Silico biology methods are currently used in the pharmaceutical industry as an antecedent to wet chemistry and bench work. Here we employed several public online and offline programs/databases as tools to investigate the nucleotide sequences of the PAX7 gene. Results: Several potential cis-acting elements within the intronic regions of PAX7 were discovered through in silico biological methods. Transcription factors that could bind to these elements have also been identified and their association with cancer ascertained. Interestingly one cis element is found within a 155 bp sequence in intron 8 of PAX7 that surprisingly, is also found within intron 10 of PAX3 and is also found conserved within intron 23 of the NF-1 gene. Discussion: The use of In Silico Biology methods represent new, faster, cost-efficient techniques to identify novel regulatory elements that provide areas for more in depth in vitro investigations to confirm their functional effects. [Nature and Science. 2006;4(3):69-85].

Keywords: PAX7; PAX3; cis regulatory elements; NF-1; conserved sequences; ERMS; ARMS

Abbreviations and notations: TSS, transcription start site; *Cis*-acting element; ARMS, alveolar rhabdomyosarcoma; ERMS, embryonal rhabdomyosarcoma; NF-1, Neurofibromatosis factor 1; bp, base pair; TF, Transcription Factor; RD, Rhabdomyosarcoma; TSS, transcription start site

INTRODUCTION

Pax genes derive their name from the paired box gene region which encodes a highly conserved Paired DNA binding domain. Paired domains are found in all members of the Pax family. There are four classes of *PAX* genes based not only on sequence but on genomic organization. Genes within a given class have intron/exon boundaries and encoding regions in common. Pax3 and Pax7 are closely related paired box family members expressed during early neural and myogenic development and have been implicated in the development of specific myogenic and neurogenic cell lineages (Glaser, et al., 1994; Relaix et al., 2004). Pax proteins are thought to function primarily by binding to enhancer DNA sequences and modifying the transcriptional activity of bound downstream target genes (Chi et al., 2002). Assays detailing human PAX7 and PAX3 mRNA expression show conclusively that transcripts of these genes are present in Alveolar Rhabdomyosarcoma, Embryonal Rhabdomyosarcoma, neuroblastoma. Ewing's sarcoma, and melanoma cell lines and reveal tumor-specific expression patterns that correspond to those in corresponding embryonic cell lineages (Goulding, et al., 1991; Bennicelli et al., 1993; Macina et al., 1995; Schulte et al., 1997; Barr et al., 1999; Mercado et al., 2005).

The search for new regulatory elements in unreported regions of the PAX7 gene would lead to a better understanding of the oncogenic pathways that activate this gene. In this study, the eight introns of Homo sapiens PAX7 were scanned for new regulatory elements which may affect tumorigenesis in humans. We monitored the DNA repeat patterns of the eight introns in the time period from August 2005 to March 2006 to determine if updates to the NCBI database would affect the predicted outcomes for each query. The results for the eight introns of *PAX7* remained consistent in several repetitions of the experiment. We analyzed the intronic regions of this gene using computational DNA pattern recognition methods. We report here that several potential cis-regulatory motifs were identified in this way. The possible significance of all identified *cis* motifs for the PAX7 gene were investigated using various web and offline databases that employ similar

statistical tests and parameters. Moreover, transcription factors likely to bind to the elements were identified and the association of these transcription factors with tumour cell function determined.

Specifically, one newly identified *cis* element was found in a conserved region of intron 8 of PAX7; the same sequence containing the *cis* element (ctccaccc) was also found in alternative intron 10 of PAX3 and in the 3' region (in intron 23) of the tumor suppressor gene Neurofibromatosis factor 1 (NF-1). The presence of this element has not previously been reported in association with the intronic regions of PAX7 up to the date of submission of this publication (June 2006). The region of the NF-1 gene that is present in intron 8 of PAX7 and identified here by in silico data mining methods, has recently been linked to Embryonal Rhabdomyosarcoma (ERMS) (Hadjistilianou et al., 2002; Oguzkan et al., 2006) and Alveolar Rhabdomyosarcoma (ARMS) (Woodruff et al., 1993; Dei Tos et al., 1997) and confirmed as a significant role player in carcinogenesis in a recent publication using fluorescent-labeled microsatellite markers. (Oguzkan et al., 2006).

The conserved sequence containing the *cis* regulatory element identified in intron 8 of *PAX7*, may have arisen by insertion of a regulatory element in all three chromosomal regions or by homologous recombination between chromosome 1 (*PAX7*), chromosome 2 (*PAX3*) and/or chromosome 17 (*NF-1*). As a result of the similarly conserved intronic sequences present in all three genes, it is possible that the genes are similarly regulated by common transcription factors (TFs) proposed to bind to the common *cis* elements. Experimentation and *in vitro* studies that may prove the biological importance of these gene sequences, is currently underway.

MATERIALS AND METHODS DNA Data-mining Definition of *Cis* Elements

Before collecting meaningful data for the basis of this research, the first course of action for data mining is to define a *cis* element and second, to test several software applications that can be used to find *cis* elements. A *cis*-acting element controls the initiation, or the rate of transcription and translation of genes that reside on the same chromosome as itself. *Cis* elements contain the following features (Park et al., 2003):

A short consensus sequence (≥ 8 base pairs long);

No fixed location but usually 100-200 bp upstream of the transcription start site or within 10 kb upstream or downstream or within intronic regions of a gene;

Can be located in a promoter or act as an enhancer or silencer;

It is assumed that a specific protein binds to the element and the presence of that protein is spatially and temporally regulated; One consensus sequence is usually sufficient to confer a regulatory response but the sequence may be present as one of several consensus sequences close together or it may be present as tandem repeat units.

Knowledge of new *cis* elements in the intronic regions of *PAX7* (theoretical *cis* elements to be validated later by *in vitro* studies), may lead to a better understanding of the factors that lead to over-expression of the gene with resultant increased tumorigenicity (Lewin et al., 2000).

The Selection of Databases used for the Computational Portion of the Research

Computational queries were performed against known, validated segments of sequences in order to quantitate a threshold of accuracy for all future evaluations of data. Automatic e-mail updates for the *PAX7* sequences for *Homo sapiens* (as well as for the *Homo sapiens PAX3* and *NF-1* gene) was set up within the National Center for Biotechnology Information database (NCBI, <u>http://www.ncbi.nlm.nih.gov</u>).

To determine functional significance, that is, biological properties of the newly identified *cis* elements, their position within sets of conserved sequences was determined by computational sequence alignment, a fundamental means of detecting biologically significant patterns in genes (Lewin et al., 2000). Multiple alignment methods were used to locate and align exons or introns of DNA in an attempt to locate and align similar subsequences. This approach has often been used to look for transcription factor binding sites in similarly regulated promoters (Liu et al., 1995; Frith et al., 2004; Chen et al., 2005).

Programs Used for *In Silico* Investigations

The introns of *PAX7* were scrutinized for *cis* elements with eight separate programs which denote promoter areas, transcription factor binding sites and/or transcription start sites (TSS), DNA patterns, global and local nucleotide alignment and tandem repeats in submitted sequences. The names and functions of the programs used are:

1) <u>Mreps:</u>

(<u>http://bioweb.pasteur.fr/seqanal/interfaces/mreps.html</u>) - Mreps is a software package for identifying tandem repeats (patterns that appear >1x in a given sequence) in DNA sequences.

2) <u>CLC Free Workbench version 2.2 by CLC</u> <u>bioA/S: (http://www.clcbio.com)</u> - The alignment software illustrates the conservation of all sequence positions below aligned sequences. The height of the bars in the view reflects how conserved that particular position is in the aligned sequence. If one position is 100% conserved the bar will be at full height. The software uses a progressive alignment algorithm (Oguzkan et al., 2006) in order to create multiple alignments.

3) <u>DNA Pattern Search – Softberry:</u> (<u>http://www.softberry.com/</u>) - This program searches for significant patterns in the set of sequences.

4) <u>PROSCAN Version 1.7 Web Promoter Scan</u> <u>Service: (http://bimas.dcrt.nih.gov/molbio/proscan/)</u> -Predicts promoter regions based on homologies with putative eukaryotic Pol II promoter sequences. The site is serviced and maintained by Dr. Dan Prestridge at the Advanced Biosciences Computing Center, University of Minnesota.

5) <u>Promoter 2.0 Prediction Server:</u> (<u>http://www.cbs.dtu.dk/services/Promoter/</u>) – Promoter 2.0 predicts transcription start sites of vertebrate PolII promoters in DNA sequences. It has been developed as a frequently updated database of simulated transcription factors that interact with sequences in promoter regions. It builds on principles that are common to neural networks and genetic algorithms. The site is serviced and maintained by Steen Knudsen at The Center for Biological Sequence Analysis at the Technical University of Denmark.

6) <u>TSSG</u> - Recognition of human PolII promoter regions and transcription start sites from Softberry: (http://www.softberry.com/) - TSSG is the most accurate mammalian *cis* element prediction program.

7) <u>CLC Gene Workbench v. 1.0.1 by CLC bioA/S:</u> (<u>http://www.clcbio.com</u>) - Applying the Pattern Discovery helps identify unknown sequence patterns across single or multiple DNA and protein sequences. The discovery method is based on advanced hidden Markov models.

8) <u>TRANSFAC® 7.0:</u> (<u>http://www.gene-regulation.com/pub/databases.html#transfac</u>) - is a database of eukaryotic transcription factors, their genomic binding sites and DNA-binding profiles. This database was used to compare DNA patterns discovered during the data-mining stage of this research with known *cis*-acting elements and identify the transcription factors most likely to bind to them.

For each program, fasta files of the eight introns of *PAX7* were pasted into each program. The output was saved into a word document and/or a portable data file (PDF) for scrutiny and review.

RESULTS

1. Prediction of novel *cis* regulatory regions by computer scans of intronic regions of *PAX7*:

The list of novel *cis*-acting elements found in each intron of *Homo sapiens PAX7* was created by analysis of:

1) The location of the *cis*-acting element in the sequence compared to the locality of known/previously identified *cis*-acting elements;

2) Comparison of the results from the different DNA patterning software programs;

3) Location of pattern to the proximity of start and stop codons or to exon/intron boundaries;

4) Comparisons of DNA patterns to those that exist for other *cis*-acting elements on the TRANSFAC Database v.5.0 (http://transfac.gbf.de/TRANSFAC/index.html).

Below are the results for each intron of PAX7 obtained as a result of scanning the intronic sequences of PAX7 using the software, databases and search criteria specified above. Table 9 contains a summary of the list of proposed *cis* elements for each intron of PAX7 and table 10 lists the transcription factors that bind to each proposed *cis* elements.

PAX7 INTRON ANALYSIS: INTRON 1

PAX7 intron	1 patterns four	nd by	Softberry	Pattern
Search Software:	Found 5 pattern	<u>n (s)</u>		
1) Pattern	l, Length =	10,	552bp -	561bp
AAATAATAAT				
2) Pattern	2, Length =	9,	552bp -	560bp
AAATAATAA				
3) Pattern	3, Length =	10,	553bp -	562bp
AATAATAATT				
4) Pattern	4, Length =	10,	554bp -	563bp
ATAATAATTA				
5) Pattern	5, Length =	10, 1	1322bp – 1	1331bp
AATATAAAGT				

Proscan: Version 1.7

Cis element region predicted on forward strand at 1094bp to 1344bp

TATA found at 1323bp, Est.TSS at 1353bp

Softberry TSSG:

2 promoter(s) are predicted.

Promoter position: 1350 LDF: TATA box at 1324bp TATAAAGT

Promoter position: 492 LDF: TATA box at 463bp TTTATATG

Promoter 2.0 Prediction Server:

Position (bp)	Score	Likelihood
600	0.638	Marginal prediction
1000	0.561	Marginal prediction
2000	0.629	Marginal prediction

<u>CLC Gene Workbench v.1.0.1.</u> Pattern Discovery <u>Search (Table 1)</u>

Sequence	Type	Pattern	Length	ModelScore	PattemScore	StartPos	EndPos
PAX7 INTRON 1	0	CGGGAGAG	8	3611.743 57871381 15	23.66548 94035726 6	619	62
PAX7 INTRON 1	0	GGCGAGAG	8	3611.743 57871381 15	19.06079 82311651 83	663	67
PAX7 INTRON 1	0	GGGGAGAC	8	3611.743 57871381 15	20.79577 19668466 12	746	75
PAX7 INTRON 1	0	GCGGAGAG	8	3611.743 57871381 15	18.98736 37802946 3	813	82
PAX7 INTRON 1	0	GGGGAGAG	8	3611.743 57871381 15	23.84288 65639622 6	1011	101
PAX7 INTRON 1	0	CGGGAGAG	8	3611.743 57871381 15	23.66548 94035726 6	1161	116
PAX7 INTRON 1	0	GAGGAGAG	8	3611.743 57871381 15	19.72943 65851499 8	1284	1293
PAX7 INTRON 1	0	CGGGAGAG	8	3611.743 57871381 15	23.66548 94035726 6	1470	147
PAX7 INTRON 1	0	GGGGAGAC	8	3611.743 57871381 15	20.79577 19668466 12	2376	238
PAX7 INTRON 1	1	TCTCGCCT CCT	11	3561.958 50273364 9	17.43936 06083101 53	1520	153
PAX7 INTRON 1	1	CCTCCACT CCC	11	3561.958 50273364 9	22.26281 54940416 18	1553	156-
PAX7 INTRON 1	1	TCTCCCCT CCC	11	3561.958 50273364 9	27.71272 83914939 93	1711	172
PAX7 INTRON 1	1	TCACCCGT CCC	11	3561.958 50273364 9	21.64101 27906001 47	1993	200
PAX7 INTRON 1	1	TCTCCCTC CCC	11	3561.958 50273364 9	18.99264 22090328 83	2289	230
PAX7 INTRON 1	1	TCTCCCCT CCC	11	3561.958 50273364 9	27.71272 83914939 93	2595	260
PAX7 INTRON 1	2	AACCCAGG GAGT	12	3517.911 84683555 8	24.39181 58111311 6	144	15
PAX7 INTRON 1	2	ACCCCCGG GATT	12	3517.911 84683555 8	26.85349 84598473 5	406	41
PAX7 INTRON 1	2	AACCCGGG GATT	12	3517.911 84683555 8	27.01549 03651027 92	1175	118
PAX7 INTRON 1	2	ACCACCGG GATT	12	3517.911 84683555 8	23.80271 78007375 7	2484	249

Figure 1 1220 1240 1200 1200 1200 1200 PAX7 INTRON 1 AGTGGCACTC TCCTGTAGCG AATGCAAGTA AAACAGGCGG CTGAGGACGC GCGGCGGATT AGAACAATAT TTGCCCAACA TGACG Val Ala Leu Ser Cys Ser Glu Cys Lys <mark>Stp</mark> Asn Arg Arg Leu Arg Thr Arg Gly Gly Leu Glu Gln Tyr Leu Pro Asn Translate Met Thr Pattern 1280 1300 1320 1340 1360 PAX7 INTRON 1 CAGAATACTG AGGAGAGCCG AGTGCCGGTC GCTAAAGAGG CTCTTGAATA TAAAGTTGGG CGCTCGAGAG CTCTTGAGCG CTAAT Translate Gin Asn Thr Glu Glu Ser Arg Val Pro Val Ala Lys Glu Ala Leu Glu Tyr Lys Val Gly Arg Ser Arg Ala Leu Glu Arg Stp

Figure 1: *Cis* regulatory region predicted by CLC Gene Workbench v. 1.0 – on forward strand at position 1094bp to 1344bp; *Pattern found within this cis regulatory region.*

PAX7 INTRON ANALYSIS: INTRON 2

PAX7 intron 2 patterns found by Softberry Pattern Search Software: Found 5 pattern(s)

1) Pattern	l, Length =	10, Power:	1,	422bp - 431bp	AAAGGATAAA
2) Pattern	2, Length =	10, Power:	1,	423bp - 432bp	AAGGATAAAG
3) Pattern	3, Length =	10, Power:	1,	421bp - 430bp	GAAAGGATAA
4) Pattern	4, Length =	9, Power:	1,	95bp - 103bp	AGGAAAGTA
5) Pattern	5, Length =	9, Power:	1,	421bp - 429bp	GAAAGGATA
Proscan: Ve	ersion 1.7:				

Proscan: Version 1.7: Processed Sequence: 572 bp. No *cis* element regions predicted. Softberry programs: 0 promoter/enhancer(s) predicted <u>Promoter 2.0 Prediction Server:</u> No *cis* element predicted CLC Gene Workbench v.1.0.1. Pattern Discovery Search (Table 2)

Sequence	Type	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
PAX7 INTRON 2	0	CCCCACCC CACCT	13	786.0414 67692741 4	24.35138 44186404 78	361	374
PAX7 INTRON 2	0	CCCCATCC CATCT	13	786.0414 67692741 4	20.65919 82458401 87	525	536
PAX7 INTRON 2	0	CCCACCTC CACCT	13	786.0414 67692741 4	21.18756 03585959 1	553	56
PAX7 INTRON 2	1	ACTCCCAG AT	10	762.1814 32865190 8	19.29041 15669702 67	122	133
PAX7 INTRON 2	1	ACCCCCAG CT	10	762.1814 3286519D 8	22.55891 66334026 85	380	39
PAX7 INTRON 2	1	ACCACCAG CC	10	762.1814 32865190	19.29667 16934558	471	48

Figure 2: No cis element predicted, but 1 pattern found within 400-500 bps by CLC Gene Workbench v. 1.0.

PAX7 INTRON ANALYSIS: INTRON 3

 PAX7 intron 3 patterns found by Softberry Pattern Search Software: No patterns found

 Proscan: Version 1.7
 No cis element regions predicted.

 Softberry TSSG:
 No cis element regions predicted.

 Promoter 2.0 Prediction Server:
 Position

 Position
 Score
 Likelihood

 200
 0.557
 Marginal prediction

 Proscan: Version 1.7:
 Processed Sequence: 996 Base Pairs. No cis element regions predicted.

 Softberry programs:
 0 promoter/enhancer(s) predicted.

Sequence	Туре	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
PAX7 INTRON 3	0	GGGAGGAA	8	1346.789 07869357 64	20.21155 43687426 32	122	130
PAX7 INTRON 3	0	GGAAAGAA	8	1346.789 07869357 64	19.68872 10488846 38	190	198
PAX7 INTRON 3	0	GGAAAGAA	8	1346.789 07869357 64	19.68872 10488846 38	205	213
PAX7 INTRON 3	0	GGGAGGAA	8	1346.789 07869357 64	20.21155 43687426 32	245	253
PAX7 INTRON 3	0	GGAAGGAA	8	1346.789 07869357 64	23.15276 12529448	256	264
PAX7 INTRON 3	0	GGAAGGTA	8	1346.789 07869357 64	17.53897 87215351 38	264	272
PAX7 INTRON 3	0	GGAAGGAA	8	1346.789 07869357 64	23.15276 12529448	272	280
PAX7 INTRON 3	0	GGAAGGAA	8	1346.789 07869357 64	23.15276 12529448	280	288
PAX7 INTRON 3	0	GGAAGGAA	8	1346.789 07869357 64	23.15276 12529448	292	300
PAX7 INTRON 3	0	GGAAGGAA	8	1346.789 07869357 64	23.15276 12529448	300	308
PAX7 INTRON 3	0	GGCAGGAA	8	1346.789 07869357 64	18.90215 99027119 7	328	336
PAX7 INTRON 3	0	GTAAGGAA	8	1346.789 07869357 64	18.32484 82073802 74	891	899

Sequence	Туре	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
PAX7 INTRON 3	1	TGTGTGTG	8	1292.387 09900141 54	23.13529 16322799 7	564	572
PAX7 INTRON 3	1	TGTGTGTA	8	1292.387 09900141 54	18.44154 08128117 6	572	580
PAX7 INTRON 3	1	TGTGTGTG	8	1292.387 09900141 54	23.13529 16322799 7	580	588
PAX7 INTRON 3	1	TGTGTGTG	8	1292.387 09900141 54	23.13529 16322799 7	588	596
PAX7 INTRON 3	1	TGAGTGTG	8	1292.387 09900141 54	19.55980 93138332 24	635	643
PAX7 INTRON 3	1	TGTGGGTG	8	1292.387 09900141 54	19.42527 61692567 9	698	706
PAX7 INTRON 3	1	TGTGAGTG	8	1292.387 09900141 54	20.36494 47202190 47	785	793
PAX7 INTRON 3	1	TGTGTGTG	8	1292.387 09900141 54	23.13529 16322799 7	861	869
PAX7 INTRON 3	2	GTGGGAGA GAG	11	1266.019 80634617 55	21.30341 20449475 4	69	80
PAX7 INTRON 3	2	CTGTGAGA GAG	11	1266.019 80634617 55	21.04797 58203004 44	541	552
PAX7 INTRON 3	2	GTGTGAGT CAG	11	1266.019 80634617 55	22.96127 72583093 87	799	810
					140 I CAGAAAGG CAGAGT r Ang Lys Ala Giu i		
	180	Pattern 1	200 Pattern 1	⇒		240 Pattern	\rightarrow
		AAGAT GGAAAGAAG Arg Trp Lys Glu			Arg Lys Glu Arg G		Gly Arg

Figure 3: *Cis* regulatory region predicted by CLC Gene Workbench v. 1.0 on forward strand from 190-300bps; *Several patterns found within this region.*

PAX7 INTRON ANALYSIS: INTRON 4

PAX7 intron 4 patterns found by Softberry Pattern Search Software: Found 5 pattern(s)

1) Pattern	l, Length =	9, Power:	1,	916bp - 924bp	CTTTCTCCC
2) Pattern	2, Length =	10, Power:	1,	948bp - 957bp	CCTCTGCTCC
3) Pattern	3, Length =	10, Power:	1,	942bp - 951bp	CTCGCTCCTC
4) Pattern	4, Length =	10, Power:	1,	916bp - 925bp	CTTTCTCCCA
5) Pattern	5, Length =	10, Power:	1,	946bp - 955bp	CTCCTCTGCT

<u>Proscan: Version 1.7:</u> Processed Sequence: 1002bp. No *Cis* regulatory regions predicted. <u>Softberry programs:</u> 0 promoter/enhancer(s) predicted <u>Promoter 2.0 Prediction Server:</u>

Position (bp)	Score	Likelihood
200	0.557	Marginal prediction;

CLC Gene Workbench v.1.0.1. Pattern Discovery Search (Table 4a & 4b)

Sequence	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
PAX7 INTRON 4	GGGAGGAA	8	1355.13354 91683985	20.2233399 74494554	122	130
PAX7 INTRON 4	GGAAAGAA	8	1355.13354 91683985	19.7005324 9513273	190	198
PAX7 INTRON 4	GGAAAGAA	8	1355.13354 91683985	19.7005324 9513273	205	21
PAX7 INTRON 4	GGGAGGAA	8	1355.13354 91683985	20.2233399 74494554	245	25
PAX7 INTRON 4	GGAAGGAA	8	1355.13354 91683985	23.1645652 2709397	256	26
PAX7 INTRON 4	GGAAGGTA	8	1355.13354 91683985	17.5507604 22396078	264	27
PAX7 INTRON 4	GGAAGGAA	8	1355.13354 91683985	23.1645652 2709397	272	28
PAX7 INTRON 4	GGAAGGAA	8	1355.13354 91683985	23.1645652 2709397	280	28
PAX7 INTRON 4	GGAAGGAA	8	1355.13354 91683985	23.1645652 2709397	292	30
PAX7 INTRON 4	GGAAGGAA	8	1355.13354 91683985	23.1645652 2709397	300	30
PAX7 INTRON 4	GGCAGGAA	8	1355.13354 91683985	18.9139383 07175883	328	33
PAX7 INTRON 4	GTAAGGAA	8	1355.13354 91683985	18.3366373 0150939	891	89
PAX7 INTRON 4	TGTGTGTG	8	1300.73142 67724823	23.1470854 38411686	564	57
PAX7 INTRON 4	TGTGTGTA	8	1300.73142 67724823	18.4533111 97633493	572	58
PAX7 INTRON 4	TGTGTGTG	8	1300.73142 67724823	23.1470854 38411686	580	58
PAX7 INTRON 4	TGTGTGTG	8	1300.73142 67724823	23.1470854 38411686	588	59
PAX7 INTRON 4	TGAGTGTG	8	1300.73142 67724823	19.5716325 08941946	635	64
PAX7 INTRON 4	TGTGGGTG	8	1300.73142 67724823	19.4371354 75261723	698	70
PAX7 INTRON 4	TGTGAGTG	8	1300.73142 67724823	20.3766870 37843958	785	79
PAX7 INTRON 4	TGTGTGTG	8	1300.73142 67724823	23.1470854 38411686	861	86
PAX7 INTRON 4	GTGGGAGAGA G	11	1274.34830 6284579	21.3126706 965328	69	8

Table 3b:CLC Gene Workbench v.1.0.1. Pattern Discovery Search

Sequence	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
PAX7 INTRON 4	CTGTGAGAGA G	11	1274.34830 6284579	21.0705243 20844594	541	552
PAX7 INTRON 4	GTGTGAGTCA G	11	1274.34830 6284579	22.9709269 59621153	799	810

Figure 4: *Cis* regulatory region predicted by CLC Gene Workbench v. 1.0 on forward strand from 200-300bps; *Patterns found within this promoter region.*

PAX7 INTRON ANALYSIS: INTRON 5

PAX7 intron 5 patterns found by Softberry Pattern Search Software: Found 5 pattern(s)
1) Pattern 1, Length = 10, Power: 1, 5710bp - 5719bp TTTTTTTTA
2) Pattern 2, Length = 10, Power: 1, 3023bp - 3032bp TATTTTTTTT
3) Pattern 3, Length = 10, Power: 1, 3024bp - 3033bp ATTTTTTTTT
4) Pattern 4, Length = 10, Power: 1, 50527bp - 50536bp TATTATTTT
5) Pattern 5, Length = 10, Power: 1, 3760bp - 3769bp TATTTATTTT
From the four software programs used, many promoters were predicted (55382 bp).
Proscan: Version 1.7: 100+ promoters predicted
Softberry TSSG: 23 promoter/enhancer(s) predicted

Promoter 2.0 Prediction Server: 45+ promoters predicted

CLC Gene Workbench v.1.0.1. Pattern Discovery Search (Table 5a & 5b)

	: CLC (Discover			nch v.1.	0.1.				00.01		ne Wor Searcl		h v.1.(
Sequence	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos							
PAX7 INTRON 5	GGGGCGGGG	(9 76523.0283 0046571	24.1193467 05551376	383	392							
PAX7 INTRON	GGGAAAGGG	(76523.0283 0046571	22.4594298 77897016	813	822	Sequence PAX7 INTRON	Pattern AGGGAAGGG	Length 9	ModelScore 76523.0283	PatternScore 23.9229253	StartPos 6028	EndPos 6037
PAX7 INTRON	GGGAAGGGG	(24.9759799	1394	1403	5			0046571	5589768		
5			0046571	17901167			PAX7 INTRON 5	GGGGGGAGG	9	76523.0283 0046571	25.3889145 93661564	6108	6117
PAX7 INTRON 5	AGGGAAGGG	1	76523.0283 0046571	23.9229253 5589768	1872	1881	PAX7 INTRON 5	GGGGGAGGG	9	76523.0283 0046571	24.8469493 66321518	6366	6375
PAX7 INTRON 5	AGGAAGAGG	1	76523.0283 0046571	22.4298595 59503228	1887	1896	PAX7 INTRON 5	GGGGAGAGG	9	76523.0283 0046571	25.0364261 28971556	6484	6493
PAX7 INTRON	TGGGGGAGG	1	9 76523.0283 0046571	24.1542985 83505895	2072	2081	PAX7 INTRON 5	GGGGAGGGG	9	76523.0283 0046571	27.0110109 4163566	6546	6555
PAX7 INTRON	AGGGAGAGG	(76523.0283	24.4648905	2545	2554	PAX7 INTRON 5	TGGAGGAGG	9	76523.0283 0046571	22.1192675 597714	6557	6566
5 PAX7 INTRON	GGAGAGGGG		0046571	8323772 22.9884891	2826	2835	PAX7 INTRON 5	AGGAAAGGG	9	76523.0283 0046571	21.8878943 32163185	6605	6614
5 PAX7 INTRON	AGGGAGGGG		0046571	357242 26.4394753	3235	3244	PAX7 INTRON 5	GGGGAGGGG	9	76523.0283 0046571	27.0110109 4163566	6617	6626
5			0046571	95901827			PAX7 INTRON 5	AGGGAGGGG	9	76523.0283 0046571	26.4394753 95901827	6632	6641
PAX7 INTRON	GGGGCGGGG	(9 76523.0283 0046571	24.1193467 05551376	3816	3625	PAX7 INTRON 5	TGGGAGAGG	9	76523.0283 0046571	23.8018101 18815887	6669	6678
PAX7 INTRON	GGGGGGAGG	(76523.0283 0046571	25.3889145 93661564	3698	3707	PAX7 INTRON 5	CGGGAGGGG	9	76523.0283 0046571	22.0527674 0248411	6705	6714
PAX7 INTRON	GGGAAGGGG	6	9 76523.0283 0046571	24.9759799 17901167	4008	4017	PAX7 INTRON 5	AGGGAGGGG	9	76523.0283 0046571	26.4394753 95901827	6986	6995
PAX7 INTRON	AGGAAGGGG	(76523.0283	24.4044443	4096	4105	PAX7 INTRON 5	GGGGAGAGG	9	76523.0283 0046571	25.0364261 28971556	6996	7005
5 PAX7 INTRON	AGGGAGGGG		0046571	72167333 26.4394753	4144	4153	PAX7 INTRON 5	GGGCAGGGG	9	76523.0283 0046571	22.0302914 9255886	7520	7529
5			0046571	95901827			PAX7 INTRON 5	AGGGAGAGG	9	76523.0283 0046571	24.4648905 8323772	7566	7575
PAX/INTRON 5	AGGGAGGGG	1	9 76523.0283 0046571	26.4394753 95901827	4437	4446	PAX7 INTRON 5	TGGGAAGGG	9	76523.0283 0046571	23.2598448 9147584	7685	7694
PAX7 INTRON 5	GGGGATGGG	(9 76523.0283 0046571	23.5392248 92120643	4479	4488	PAX7 INTRON 5	AGGGAGAGG	9	76523.0283 0046571	24.4648905 8323772	8902	8911
PAX7 INTRON	GGAGAGGGG	(9 76523.0283 0046571	22.9884891 357242	4494	4503	PAX7 INTRON 5	GGGGTGGGG	9	76523.0283 0046571	24.6988666 7701248	9019	9028
PAX7 INTRON	AGGGGGAGG	(24.8173790 4792773	4633	4642	PAX7 INTRON 5	GGGGTGGGG	9	76523.0283 0046571	24.6988666 7701248	10597	10606
PAX7 INTRON	TGGAGGGGG	(76523.0283	24.0938523	4830	4839	PAX7 INTRON 5	GGGGGGAGG	9	76523.0283 0046571	25.3889145 93661564	10608	10617
5 PAX7 INTRON	GGGAAGGGG		0046571	72435508	4954	4963	PAX7 INTRON 5	TGGGCGGGG	9	0046571	22.8847306 95395707	10627	10636
5			0046571	17901167			PAX7 INTRON 5	GGGGTGGGG	9	0046571	24.6988666 7701248	10847	10656
PAX7 INTRON	AGGGAGGGG	1	76523.0283 0046571	26.4394753 95901827	4967	4976	PAX7 INTRON	GGGGAGGGG	9	76523.0283	27.0110109 4163566	10668	10677

Table 5c: CLC Gene Workbench v.1.0.1.Discovery Search

Table 5d: CLC Gene Workbench v.1.0.1.Pattern Pattern Discovery Search

							Sequence	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
Sequence PAX7 INTRON	Pattern GGGGTAGGG	Length 9	ModelScore 76523.0283	PatternScore 22.1823166	StartPos 25740	EndPos 25749	PAX7 INTRON 5	GGGAAGGGG	9	76523.0283 0046571	24.9759799 17901167	10687	1069
5			0046571	37008327			PAX7 INTRON	GGGGAGGGG	9	76523.0283 0046571	27.0110109 4163566	10827	1083
PAX7 INTRON	GGGGCGAGG	9	76523.0283 0046571	22.1447618 9288727	25769	25778	PAX7 INTRON	GGGACGGGG	9	76523.0283	22.0843156	10889	1089
PAX7 INTRON 5	AGGAGAGGG	9	76523.0283 0046571	22.2403827 95853194	25803	25812	5 PAX7 INTRON	GGGGTGGGG	8	0046571 76523.0283	81816882 24 6988666	11115	1112
PAX7 INTRON	GGGAAGGGG	9	76523.0283 0046571	24.9759799 17901167	28076	28085	5			0046571	7701248		
PAX7 INTRON	GGGAGGAGG	9		23.3538835 6992707	28086	28095	PAX7 INTRON 5	GGGGAGAGG	9	76523.0283 0046571	25.0364261 28971556	11124	1113
PAX7 INTRON	GGGGTGAGG	9	76523.0283	22.7242818	28311	28320	PAX7 INTRON 5	GGGGTGGGG	9	76523.0283 0046571	24.6988666 7701248	11470	1147
5 PAX7 INTRON	GGGGTGGGG	9	0046571 76523.0283	64348374 24.6988666	30246	30255	PAX7 INTRON	AGGGGAAGG	9	76523.0283 0046571	22.3008290 07923582	12800	1280
5 PAX7 INTRON	GGGAGTGGG		0046571 76523.0283	7701248	30590	30599	PAX7 INTRON	GGGAGGAGG	9	76523.0283	23.3538835	13039	1304
5			0046571	33076158			5 PAX7 INTRON	AGGGTGAGG	9	0046571 76523.0283	6992707 22.1527463	13764	1377
PAX7 INTRON 5	GGGAAGAGG	9	76523.0283 0046571	23.0013951 05237062	30917	30925	5 PAX7 INTRON	TGGGAGGGG	8	0046571 76523.0283	1861454 25.7763949	15811	1583
PAX7 INTRON 5	GGGGTGGGG	9	76523.0283 0046571	24.6988666 7701248	31772	31781	5		-	0046571	3147999		
PAX7 INTRON	AGAGAGGGG	9	76523.0283 0046571	22.4169535 89990367	34790	34799	PAX7 INTRON 5	GGGAAAGGG	9	76523.0283 0046571	22.4594298 77897016	16755	1676
PAX7 INTRON	AGAGAGGGG	9	76523.0283 0046571	22.4169535 89990367	34852	34861	PAX7 INTRON 5	TGGGGGAGG	9	76523.0283 0046571	24.1542985 83505895	17078	1708
PAX7 INTRON	TGGAGGAGG	9	76523.0283 0046571	22.1192675 597714	34869	34878	PAX7 INTRON 5	GGGGAGGGG	9	76523.0283 0046571	27.0110109 4163566	17957	1796
PAX7 INTRON	TGGAAGGGG	9	76523.0283 0046571	23.7413539 07745498	35093	35102	PAX7 INTRON 5	TGGGGGAGG	9	76523.0283 0046571	24.1542985 83505895	19023	1903
PAX7 INTRON	GGGAGGAGG	9	76523.0283 0046571	23.3538835 6992707	35146	35155	PAX7 INTRON 5	AGGGAGGGG	9	76523.0283 0046571	26.4394753 95901827	19070	1907
PAX7 INTRON 5	AGAGGGGGG	9	76523.0283 0046571	22.7694420 54680376	36419	36428	PAX7 INTRON 5	GGAGAGGGG	9	76523.0283 0046571	22.9884891 357242	20893	2090
PAX7 INTRON 5	GGGAAGAGG	9	76523.0283 0046571	23.0013951 05237062	36600	36609	PAX7 INTRON 5	GGGGAGGGG	9	76523.0283 0046571	27.0110109 4163566	22964	2297
PAX7 INTRON 5	TGGAGGAGG	9	76523.0283 0046571	22.1192675 597714	37913	37922	PAX7 INTRON 5	GGGGAGGGG	9	76523.0283 0046571	27.0110109 4163566	23759	2376
PAX7 INTRON	GGGGAGGGG	9	76523.0283 0046571	27.0110109 4163566	40031	40040	PAX7 INTRON 5	AGGGAGGGG	9	76523.0283 0046571	26.4394753 95901827	24434	2444
PAX7 INTRON	GGGGAGGGG	9	76523.0283 0046571	27.0110109 4163566	40119	40128	PAX7 INTRON 5	GGGGTGGGG	9	76523.0283 0046571	24.6988666 7701248	24457	244
PAX7 INTRON	GGGGAGGGG	9	76523.0283 0046571	27.0110109 4163566	40134	40143	PAX7 INTRON 5	AGGGAGGGG	9	76523.0283 0046571	26.4394753 95901827	24677	246
PAX7 INTRON	TGGGGGAGG	9	76523.0283 0046571	24.1542985 83505895	40147	40155	PAX7 INTRON	GGGGGTGGG	9	76523.0283 0046571	23.8917133 5681065	25475	254
PAX7 INTRON	GGGGAAAGG	9	76523.0283 0046571	22.5198760 88967404	40159	40168	PAX7 INTRON	GGGAGGGGG	9	76523.0283 0046571	25.3284683 82591176	25495	2550

CLC Gene Workbench v.1.0.1. Pattern Discovery Search (Table 5e & 5f)

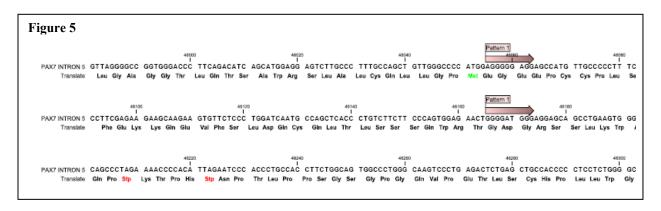
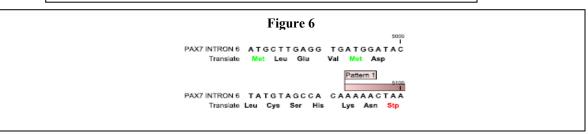
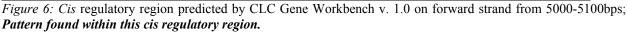


Figure 5: *Cis* regulatory region predicted by CLC Gene Workbench v. 1.0 on forward strand from 45000-46000bps; *Patterns found within this cis regulatory region.*

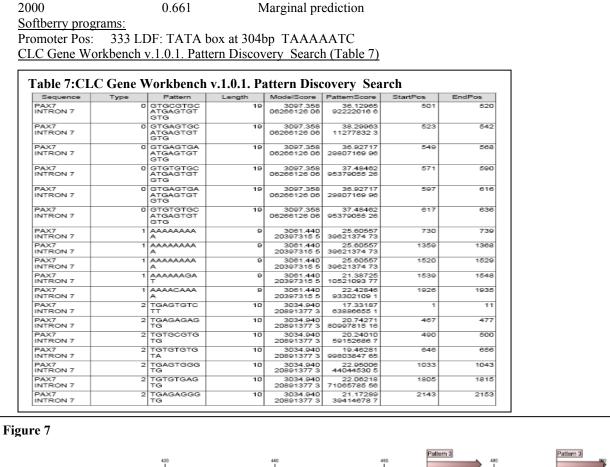

PAX7 INTRON ANALYSIS: INTRON 6

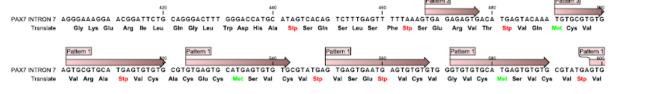

PAX7 intron 6: patterns found by Softberry Pattern Search Software: No patterns found

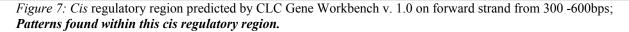
Proscan: Version	1.7			
Promoter region predicted on forward strand in 1456 to 1706bps				
Promoter region	predicted on forw	ard strand in 1791 to 2041bps		
Promoter 2.0 Pre	diction Server:			
Position	Score	Likelihood		
1000	1.021	Highly likely prediction		
3600	1.084	Highly likely prediction		
4000	0.584	Marginal prediction		
5400	1.262	Highly likely prediction		
6800	0.660	Marginal prediction		
7400	0.666	Marginal prediction		
Softberry TSSG:	2 promoter/enha	ncer(s) predicted		
Promoter Pos:	893 LDF: TAT	A box at 863bp AATATATG		
Promoter Pos:	5092 LDF: TA	TA box at 5062bp TATAAATA		
Softberry program	<u>ms:</u>			
Promoter Pos:	5092 LDF: TA	TA box at 5062bp TATAAATA		

Sequence	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
PAX7 INTRON 6	^^^^G	9	12025.4642 6286368	21,4214355 81383303	590	599
PAX7 INTRON 6	AAGAATAAA	9	12025.4642 6286368	21.3297510 59130928	2216	2225
PAX7 INTRON 6	AAAAATACA	9	12025.4642 6286368	20.1493917 32709592	2344	2353
PAX7 INTRON 6	ΑΤΑΑΑΤΑΑΑ	9	12025.4642 6286368	26.3323885 9500065	2510	2519
PAX7 INTRON 6	ΑΤΑΑΑΤΑΑΑ	9	12025.4642 6286368	26.3323885 9500065	2522	2531
PAX7 INTRON 6	ΑΤΑΑΑΤΑΑΑ	9	12025.4642 6286368	26.3323885 9500065	2534	2543
PAX7 INTRON 6	ΑΤΑΑΑΤΑΑΑ	9	12025.4642 6286368	26.3323885 9500065	2546	2555
PAX7 INTRON 6	таааатааа	9	12025.4642 6286368	23.4171905 68406124	2557	2565
PAX7 INTRON 6	ATAAATCAA	9	12025.4642 6286368	21.4455845 28654944	2566	2575
PAX7 INTRON 6	~~~~~~	9	12025.4642 6286368	25.0080904 7129887	3255	3264
PAX7 INTRON 6	~~~~~~	9	12025.4642 6286368	25.0080904 7129887	3267	3276
PAX7 INTRON 6	ATAAAAAAG	9	12025.4642 6286368	18.2065123 46481908	4611	4620
PAX7 INTRON 6	ΑΛΛΛΛΑΤΤΑΛ	9	12025.4642 6286368	19.5946421 56534352	4735	4744
PAX7 INTRON 6	ATAACTAAA	9	12025.4642 6286368	23.7322919 39851848	4935	4944
PAX7 INTRON 6	АЛЛАСТАЛА	9	12025.4642 6286368	23.7770113 89971346	5092	5101
PAX7 INTRON 6	тааааааа	9	12025.4642 6286368	22.0481729 9458485	5104	5113
PAX7 INTRON 6	AAGAATAAA	9	12025.4642 6286368	21.3297510 59130928	5285	5294
PAX7 INTRON 6	АТААСАААА	9	12025.4642 6286368	22.3632743 66030574	5582	5591
PAX7 INTRON 6	Таааатааа	9	12025,4642 6286368	23.4171905 68406124	6269	6278
PAX7 INTRON 6	*****	9	12025.4642	22,4079938	6361	6370

CLC Gene Workbench v.1.0.1. Pattern Discovery Search (Table 6)




PAX7 INTRON ANALYSIS: INTRON 7


PAX7 intron 7 patterns found by Softberry Pattern Search Software: Found 5 pattern(s)

1) Pattern	l, Length =	10, Power:	1,	1134bp – 1143bp	CCCTCCCCCT
2) Pattern	2, Length =	10, Power:	1,	1133bp – 1142bp	TCCCTCCCCC
3) Pattern	3, Length =	10, Power:	1,	870bp - 879bp	CCCCCCACTC
4) Pattern	4, Length =	10, Power:	1,	2157bp – 2166bp	CCTTCCCTCC
5) Pattern	5, Length =	10, Power:	1,	2156bp - 2165bp	CCCTTCCCTC

Proscan: Version 1.7 No promoter regions predicted. Softberry TSSG: 2 promoter/enhancer(s) predicted Promoter Pos: 1015 LDF: TATA box at 985bp TATAAGAT Promoter Pos: 333 LDF: TATA box at 304bp TAAAAATC Promoter 2.0 Prediction Server: Position Score Likelihood 600 0.670 Marginal prediction 1100 0.648 Marginal prediction

Sequence	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos	Sequence	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
PAX7 INTRON 8	сссствсс	8	44637.1815 51375776	24.6125917 02221213	519	527	PAX7 INTRON 8	GCCCTCCC	8	44637.1815 51375776	23.2068722	8587	855
PAX7 INTRON 8	GCCCTCCC	8	44637.1815 51375776	23.2068722	815	823	PAX7 INTRON 8	CCCCACCC	8	44637.1815 51375776	25.1248958 87980536	8648	865
PAX7 INTRON 8	CCCTTCCC	8	44637.1815 51375776	23.1372743 5186768	1562	1570	PAX7 INTRON 8	CCCCTCCC	8	44637.1815 51375776	27.2848067 07596857	9206	921
PAX7 INTRON 8	сстотост	8	44637.1815 51375776	21.2420949	2454	2462	PAX7 INTRON 8	CCTCTGCC	8	44637.1815 51375776	22.2170208 16637323	9887	989
PAX7 INTRON 8	CTCCACCC	8	44637.1815 51375776	22.9342527 0717892	2489	2497	PAX7 INTRON 8	сстстосс	8	44637.1815 51375776	16637323	11042	1105
PAX7 INTRON	GCCCTCCC	8	44637.1815	23.2068722	2831	2839	8	сстстосс	8	44637.1815 51375776	22.2170208 16637323	11822	1183
e PAX7 INTRON	стоттово	8	51375776 44637.1815	20.9466311	2974	2982	PAX7 INTRON 8	GCCCACCC	8	44637.1815 51375776	21.0469614 48558992	11898	1190
8 PAX7 INTRON	CCCCTGCC	8	51375776 44637.1815	71066066 24,6125917	3330	3338	PAX7 INTRON 8	CTCTTCCC	8	44637.1815 51375776	20.9466311 71066066	12371	1237
8 PAX7 INTRON	CCACTOCO	8	51375776 44637,1815	02221213	3339	3347	PAX7 INTRON 8	стестесс	8	44637.1815 51375776	25.0941635 2679524	12877	1288
8			51375776	83157623			PAX7 INTRON 8	CCCCACCC	8	44637.1815 51375776	25.1248958 87980536	13072	13080
PAX7 INTRON 8	стостово	8	44637.1815 51375776	25.0941635 2679524	4211	4219	PAX7 INTRON 8	CCCCTGCC	8	44637.1815 51375776	24.6125917 02221213	13137	13149
PAX7 INTRON 8	COCTACCO	8	44637.1815 51375776	20.9773635 32251363	4724	4732	PAX7 INTRON 8	CTCCACCC	8	44637.1815 51375776	22.9342527 0717892	13376	13384
PAX7 INTRON 8	CCCCAGCC	8	44637.1815 51375776	22.4526808 8260489	4739	4747	PAX7 INTRON 8	стестесс	8	44637.1815 51375776	25.0941635 2679524	13423	13431
PAX7 INTRON 8	CCCCAGCC	8	44637.1815 51375776	22.4526808 8260489	4900	4908	PAX7 INTRON 8	CTCTTCCC	8	44637.1815 51375776	20.9466311 71066066	13456	13464
PAX7 INTRON 8	CTCCTGCC	8	44637.1815 51375776	22,4219485 21419594	5946	5954	PAX7 INTRON 8	CCTCTCCT	8	44637.1815 51375776	21.2420949 72872103	13482	13490
PAX7 INTRON 8	CCCCACCC	8	44637.1815 51375776	25.1248958 87980536	7105	7113	PAX7 INTRON 8	CCCCTCCA	8	44637.1815 51375776	22.8670284 25851963	13521	1352
PAX7 INTRON	COCCTOCT	8	44637.1815 51375776	23.6376658	7433	7441	PAX7 INTRON 8	CCCCACCC	8	44637.1815 51375776	25.1248958 87980536	13568	13576
PAX7 INTRON	стостосо	8	44637.1815	25.0941635	7705	7713	PAX7 INTRON 8	COCCTOCC	8	44637.1815 51375776	27.2848067 07596857	13726	13734
8 PAX7 INTRON	CCTCTCCC	8	51375776 44637.1815	2679524 24.8892358	7793	7801	PAX7 INTRON 8	CCCCACCC	8	44637.1815 51375776	25.1248958 87980536	14095	14103
8 PAX7 INTRON	CCTCTGCC	8	51375776 44637.1815	22012967 22.2170208	8098	8105	PAX7 INTRON 8	CCCTTCCC	8	44637.1815 51375776	5186768	14143	1415
8 PAX7 INTRON	CTCCTCCC	-	51375776	16637323	8315	8323	PAX7 INTRON 8	CCCCTCCT	8	44637.1815 51375776	23.6376658 5845599	14170	1417
8			51375776	2679524			PAX7 INTRON 8	CCCCTCCC	8	44637.1815 51375776	27.2848067 07596857	14272	1428
PAX7 INTRON 8	COCCACCO	8	44637.1815 51375776	25.1248958 87980536	8432	8440	PAX7 INTRON	CCTCTGCC	8	44637.1815 51375776	22.2170208 16637323	14510	14518

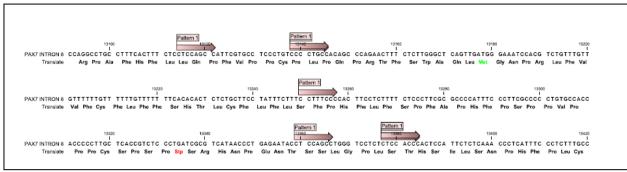
CLC Gene Workbench v.1.0.1. Pattern Discovery Search (Table 8a & 8b)

PAX7 INTRON ANALYSIS: INTRON 8

<u>PAX7 intron 8 patterns found by Softberry Pattern Search Software</u>: *No patterns found* From the other four software programs used, many *cis* elements predicted (32335 bps). <u>Proscan: Version 1.7</u>: Promoter region predicted on forward strand in 2557 to 2807 TATA found at 2792, Est.TSS = 2822

Table 8c:CLC Gene Workbench v.1.0.1.Pattern Discovery Search

Sequence	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
PAX7 INTRON 8	стестесс	8	44637.1815 51375776	25.0941635 2679524	22105	22113
PAX7 INTRON 8	сссстстс	8	44637.1815 51375776	22.6626361 63764077	22114	22122
PAX7 INTRON 8	стестесс	8	44637.1815 51375776	25.0941635 2679524	22139	22147
PAX7 INTRON 8	CCCTTCCC	8	44637.1815 51375776	23.1372743 5186768	22396	22404
PAX7 INTRON 8	CCCCACCT	8	44637.1815 51375776	21,4777550 3883967	22799	22807
PAX7 INTRON 8	CTCCACCC	8	44637.1815 51375776	22.9342527 0717892	22927	22935
PAX7 INTRON 8	CACCTOCC	8	44637.1815 51375776	21.5708080 6456451	23383	23391
PAX7 INTRON 8	CCCCACCC	8	44637.1815 51375776	25.1248958 87980536	23584	23593
PAX7 INTRON 8	стеттесс	8	44637.1815 51375776	20.9466311 71066066	26734	26742
PAX7 INTRON 8	CCCCACCC	8	44637.1815 51375776	25.1248958 87980536	27153	27161
PAX7 INTRON 8	COCCACCC	8	44637.1815 51375776	25.1248958 87980536	27222	27230
PAX7 INTRON 8	CCCCACCC	8	44637.1815 51375776	25.1248958 87980536	27488	27496
PAX7 INTRON 8	сстотово	8	44637.1815 51375776	24.8892358 22012967	27509	27517
PAX7 INTRON 8	сстотосс	8	44637.1815 51375776	24.8892358 22012967	28052	28060
PAX7 INTRON 8	сосстоос	8	44637.1815 51375776	27.2848067 07596857	28301	2830
PAX7 INTRON 8	ACCOTOCO	8	44637.1815 51375776	22.1956352 10806113	28455	28463
PAX7 INTRON 8	COCCTGCC	8	44637.1815 51375776	24.6125917 02221213	28780	28785
PAX7 INTRON 8	COCCTOCC	8	44637.1815 51375776	27.2848067 07596857	29534	29542
PAX7 INTRON 8	ACCOTOCO	8	44637.1815 51375776	22.1956352 10806113	29619	29627
PAX7 INTRON 8	стостоос	8	44637.1815 51375776	25.0941635 2679524	29848	29856
PAX7 INTRON 8	COCCAGOO	8	44637.1815 51375776	22.4526808 8260489	30079	30087
PAX7 INTRON 8	стествее	8	44637.1815 51375776	22.4219485 21419594	30091	3009
PAX7 INTRON 8	CCCCACCC	8	44637.1815 51375776	25.1248958 87980536	30397	30405


Table 8d:CLC Gene Workbench v.1.0.1.Pattern Discovery Search

Sequence	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
PAX7 INTRON 8	CTCCACCC	8	44637.1815 51375776	22.9342527 0717892	15106	15114
PAX7 INTRON 8	сстотосс	8	44637.1815 51375776	24.8892358 22012967	15245	15253
PAX7 INTRON 8	CGCCTCCC	8	44637.1815 51375776	21.0919248 9325413	15431	15435
PAX7 INTRON 8	стоствос	8	44637.1815 51375776	22.4219485 21419594	15453	15461
PAX7 INTRON 8	COCCTOCC	8	44637.1815 51375776	27.2848067 07596857	15704	15712
PAX7 INTRON 8	сссствес	8	44637.1815 51375776	24.6125917 02221213	16062	16070
PAX7 INTRON 8	COCTTODC	8	44637.1815 51375776	23.1372743 5186768	16362	16370
PAX7 INTRON 8	GCCCTCCC	8	44637.1815 51375776	23.2068722 6817531	16642	16650
PAX7 INTRON 8	стостово	8	44637.1815 51375776	25.0941635 2679524	16922	16930
PAX7 INTRON 8	сттотосо	8	44637.1815 51375776	22.6985926 41211352	17814	17822
PAX7 INTRON 8	CCCCACCC	8	44637.1815 51375776	25.1248958 87980536	18029	18037
PAX7 INTRON 8	стостоос	8	44637.1815 51375776	25.0941635 2679524	18057	18069
PAX7 INTRON 8	сстотосо	8	44637.1815 51375776	24.8892358 22012967	18132	18140
PAX7 INTRON 8	COCCTOCA	8	44637.1815 51375776	22.8670284 25851963	18145	18153
PAX7 INTRON 8	CCCCTCCT	8	44637.1815 51375776	23.6376658 5845599	18175	18183
PAX7 INTRON 8	COCTTODC	8	44637.1815 51375776	23.1372743 5186768	18991	18995
PAX7 INTRON 8	стостоос	8	44637.1815 51375776	25.0941635 2679524	19055	19063
PAX7 INTRON	CCCCAGCC	8	44637.1815 51375776	22.4526808 8260489	19115	19123
PAX7 INTRON 8	сттотово	8	44637.1815 51375776	22.6985926 41211352	19374	19382
PAX7 INTRON 8	CCCCTCCA	8	44637.1815 51375776	22.8670284 25851963	19660	19668
PAX7 INTRON 8	GTOCTODO	8	44637.1815 51375776	21.0162290 87373695	20605	20613
PAX7 INTRON B	GCCCTCCC	8	44637.1815 51375776	23.2068722 6817531	21527	2153
PAX7 INTRON 8	ccccccc	8	44637.1815 51375776	20.9294946	22007	22015

<u>Softberry TSSG</u>: *No promoter regions predicted* <u>Promoter 2.0 Prediction Server:</u> 31 promoters predicted

CLC Gene Workbench v.1.0.1. Pattern Discovery Search (Table 8e)

Sequence	Pattern	Length	ModelScore	PatternScore	StartPos	EndPos
PAX7 INTRON 8	CCCCACCT	8	44637.1815 51375776	21,4777550 3883967	30993	31001
PAX7 INTRON 8	сстотосс	8	44637.1815 51375776	24.8892358 22012967	31090	31098
PAX7 INTRON 8	сстотосс	8	44637.1815 51375776	24.8892358 22012967	31104	31112
PAX7 INTRON 8	сстстесс	8	44637.1815 51375776	24.8892358 22012967	31159	31167
PAX7 INTRON 8	GCCCTCCC	8	44637.1815 51375776	23.2068722 6817531	31198	31208
PAX7 INTRON 8	CCACTOCC	8	44637.1815 51375776	21.8304835 83157623	31229	31237
PAX7 INTRON 8	CTTCTCCC	8	44637.1815 51375776	22.6985926 41211352	31260	31268
PAX7 INTRON 8	CACCTOCC	8	44637.1815 51375776	21.5708080 6456451	31302	31310
PAX7 INTRON 8	CCTCACCC	8	44637.1815 51375776	22.7293250 0239665	31420	31428
PAX7 INTRON 8	CCTCTCCC	8	44637.1815 51375776	24.8892358 22012967	31447	31459

Figure 8: Cis regulatory region predicted by CLC Gene Workbench v. 1.0 on forward strand in 13487 to 13737bps; *Patterns found within this cis regulatory region.*

Table 9.	SUMMARY OF MOST LIKELY CIS REGULATORY SEQUENCES PREDICTED FOR EACH
	INTRON OF <i>PAX7</i> .

Intron number	Pattern (cis element?)	Length(bp)	<u>Start</u> <u>Position in</u> intron	<u>End</u> <u>Position</u> in intron
PAX7 INTRON 1	GAGGAGAG	8	1284	1292
PAX7 INTRON 3	GGAAAGAA	8	190	198
PAX7 INTRON 4	GGAAAGAA	8	205	213
PAX7 INTRON 5	AGGGGGAGG	9	46054	46063
	GGGGATGGG	9	46164	46173
PAX7 INTRON 6	AAAACTAAA	9	5092	5101

PAX7 INTRON 7	GTGAGTGCATGAGTGTG TG	19	523	542
PAX7 INTRON 8	CCCCACCC	8	13072	13080
	CCCCTGCC	8	13137	13145
	CTCCACCC	8	13376	13384
	CTCCTCCC	8	13423	13431

The results shown in table 9 are the predicted *cis*-regulatory elements for *PAX7* and were chosen from the results of computer scans and based on the four criteria listed above. Table 10 displays the transcription factors most likely to bind to these *cis*-elements with the exception of the *cis*-element in intron 5 for which no transcription factors was identified. Transcription factors were identified using the TRANSFAC database. The transcription factors previously identified as being associated with tumourigenesis are indicated in Table 10.

Table 10. SUMMARY OF MOST LIKELY CIS REGULATORY SEQUENCES PREDICTED FOR EACH INTRON OF PAX7 WITH CORRESPONDING TRANSCRIPTION FACTORS

Intron Number	<u>Cis element</u>	Binding Transcription factor from Transfactor

PAX7 INTRON 1	GAGGAGAG	EBNA-1;RAR-gamma; R2; Zmhoxla
PAX7 INTRON 3	GGAAAGAA	NP-TCII; NF-1; GT-IIA
PAX7 INTRON 4	GGAAAGAA	NP-TCII; NF-1; GT-IIA
PAX7 INTRON 5	AGGGGGAGG	Six-3: DR1; CACCC-BF; CAC-BF; Sp1; ADR1
PAX7 INTRON 5	GGGGATGGG	NONE
PAX7 INTRON 6	AAAACTAAA	SRY; PHO2
PAX7 INTRON 7	GTGAGTGCATGAGTGTGTG	Zeste; GCN4; Zeste; MEP-1; MBF-I; Sp1; GHF-1; Pit-1a; RAP1/SBF-E/TUF; USF; TEF;TTF-1
PAX7 INTRON 8	**CCCCACCC	TEF2;MIG1; ACCC-BF; AP-2; CAC-BF; Sp1
PAX7 INTRON 8	*CCCCTGCC	AP-2; CAC-BF; Ttk;LVc
PAX7 INTRON 8	**CTCCACCC	CACCC-BF; CAC-BF; Sp1
PAX7 INTRON 8	*CTCCTCCC	CAC-BF; ADR1; Sp1

*Found in NF1 & PAX3;

** Found in PAX3

***Transcription factors in blue are associated with tumorigenesis.

http://www.mdcberlin.de/forschung/schwerpunkte/cancer/rosenbauer.htm

2. Conservation of intron 8 region containing novel *cis* regulatory region indicating possible functional significance

To ascertain the possible functional significance of the putative *cis*-elements identified above, sequences surrounding these *cis*-elements were used to search for conservation of the regulatory region in other cancer related human genes, such as in human *PAX3*. Comparisons between DNA sequences of *PAX3* and *PAX7* can be used to determine the relationship between the gene sequences from which functional or regulatory regions can be ascertained which assist with identification of the functions of *PAX7* and its role in tumorigenesis.

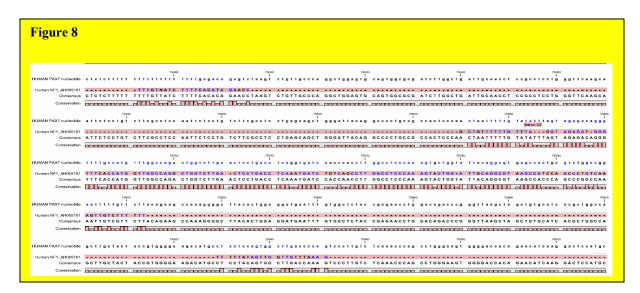


Figure 9: Conserved sequence in intron 8 of PAX7 also found in intron 23 of the human NF1 gene (GenBank Accession Number for NF-1 gene is AH005101). Conserved regions are shown by sequences coloured in blue. The novel *cis*-element identified in intron 8 of PAX7 is also found in this conserved sequence in intron 10 of PAX3 at nucleotide 71560.

One *cis*-element identified in intron 8 was found to be located within a conserved sequence that is also present in alternative intron 10 of human *PAX3* as well as within intron 23 of NF1 (sequence length ~100 bps.). The sequence, approximately 155 nucleotides in length is highly conserved between *PAX7* and *NF-1* (89% conserved) (Figure 9) and between *PAX3* and NF1 (72% conserved) (Figure 10).

HUMAN PAX3	aattcatctg	taatgagggt	agc tg ttatt	aatatcatgc	aaataatgac	aaacattcaa	gtttgtggg	gaggaattac	ttgcaaatat	taattaatta Intron 23	attattttt
luman NF1_AH005101	CAT	AGAAC	CGCTGTT				-TTTTGT		·····	TAG	
Consensus	AATTCATCTG	TAATGAGAAC	AGCTGTTATT	AATATCATGC	AAATAATGAC	AAACATTCAA	GTTTTGTGGG	GAGGAATTAC	TTGCAAATAT	ΤΑΑΤΤΑΑΤΤΑ	ATTATTTTT
Conservation		nnnn I nnn									
	71400		71425	i	71440		71460	1	7148)	7150
HUMAN PAX3	gagacagggt	ctcactctgt	l tgcctgagct	ggagtgcact	ggagtacagt	ggtgcgatct	ctgctcactg	caacctctgc	ctcctgggct	cagatgatcc	tcccgcctca
uman NE1_AH005101											
Consensus	GAGACAGGGT	CTCACTCTGT	TGCCTGAGCT	GGAGTGCACT	GGAGTACAGT	GGTGCGATCT	CTGCTCACTG	CAACCTCTGC	CTCCTGGGCT	CAGATGATCC	TCCCGCCTCA
Conservation											
		71520	1	7154	1	71560		7158)	7160	E.
HUMAN PAX3	gtctcctggg	tagccgagac	tacaggcttg	tgccaccaca	cccagctaat	ttttgtattg	tagagatgcg	gtttcaccat	g.ttgccaag	gctggtctca	aactcctgga
man NF1_AH005101						G	TAGAGATG-G	GTTTCACCAT	GGTTGGCCAG	GCTGGTCTTG	A-CTCCTGAC
Consensus	GTCTCCTGGG	TAGCCGAGAC	TACAGGCTTG	TGCCACCACA	CCCAGCTAAT	TTTTGTATTG	TAGAGATGCG	GTTTCACCAT	GGTTGCCAAG	GCTGGTCTCA	AACTCCTGAA
Conservation											
	71620		71640		71660		71685	2	7170	1	7172
HUMAN PAX3	atcaagtaat	cctcctattt	tttggcctcc	caaagtgctg		tgtaagccac		c caaatattt	atgatgtgca	aaagttttag	taaatattcc
uman NF1 AH005101	CTCAAATGAT	CTGTCAGCCT	TGGCCTCC	CAAAGTACTG	- GATTGCAGG	CGTAAGCCA-	TCCAGC	cc		AAAGTT	
Consensus	ATCAAATAAT	CCGCCAACCT	TTTGGCCTCC	CAAAGTACTG	AGATTACAGG	CGTAAGCCAC	TATGTCCAGC	CCAAATATTT	ATGATGTGCA	AAAGTTTTAG	TAAATATTCC
Conservation					n						
		71740	1	71766		71780		71803)	71820	i.
HUMAN PAX3	atctaagaat	cccatgaagt	aggcaagtaa	catcctgttt	taccacgaag	acaatggaag	acagaaaaac	aagttactag	gggaaataga	atttaactag	gagtcagatg
uman NF1_AH005101											
Consensus	ATCTAAGAAT	CCCATGAAGT	AGGCAAGTAA	CATCCTGTTT	TACCACGAAG	ACAATGGAAG	ACAGAAAAAC	AAGTTACTAG	GGGAAATAGA	ATTTAACTAG	GAGTCAGATG
	1										

Figure 10. Conserved sequence in intron 8 of *PAX7* and intron 23 of *NF-1* also found in alternative intron 10 of *PAX3* (GenBank Accession Number for *PAX3* gene is NM_013942). Conserved regions are shown by sequences coloured in blue.

DISCUSSION

In this paper we have identified novel *cis*-elements in intronic regions of human *PAX7*. We have also identified a conserved intronic region of *PAX7* that is present in introns of *PAX3* and *NF-1*. Moreover, the conserved region contains a newly identified *PAX7 cis*element and the same *cis* element occurs in the conserved sequence in all three genes. These findings highlight the ability of *in silico* methodologies to uncover putative *cis* regulatory regions. In addition, the sequence alignments performed in this article confirm that patterns of conservation can be useful in identifying regulatory regions.

Cis elements are known to be important in upregulation of genes or in splicing of intronic regions (Pethe et al., 1999; Martin et al., 2004) and therefore crucial in the tumorigenic functions of a gene. The region we have identified in intron 8 of *PAX7*, also found in intron 23 of *NF-1* and alternative intron 10 of *PAX3* may contain regulatory functions common to all three genes and it seems probable that transcription factors and/or spliceosomes would act similarly on all three genes.

Recent experiments identify specific sequences in *NF-1* as being associated with increased tumorigenicity in the childhood cancer, alveolar rhabdomyosarcoma (Dei Tos, et al., 1997). Similarly, *PAX7* and *PAX3* are associated with alveolar rhabdomyosarcoma (Sorensen, et al, 2002). The intronic sequence common to all there genes may be implicated in their tumorigenic properties.

The conserved sequence containing the *cis* regulatory element identified in intron 8 of *PAX7*, intron 10 of *PAX3* and intron 23 of *NF-1* may have arisen by insertion of a regulatory element in all three gene regions or by homologous recombination between chromosome 1 (*PAX7*), chromosome 2 (*PAX3*) and/or chromosome 17 (*NF-1*). The significance of this finding is currently being investigated further by *in vitro* studies.

Only in recent literature has there been a spark to delve into the intronic regions of genomic sequences (Oguzkan, et al, 2006). Historically, introns have been viewed as non-coding, nonsense "place holders" between the exons of a given gene (Bernett et al., 2003; de Roos et al, 2005). It was not until the great race for decoding the human genome that researchers realized that introns constitute a large portion of the regulatory regions of the genome (Davies, 2001; Patrinos, 2001). This can only lead one to believe that the once overlooked introns may play a significant role in regulation of cell functions such as cell cycle control, apoptosis, or aberrant cell cycle control as in tumorigenesis. The research performed in this paper represents a cornerstone in in silico research of gene sequences as it points the way for future bench work studies so that the findings can be verified and validated.

In conclusion, the results presented here may present significant findings that can be utilised ultimately for the development of therapeutics for the treatment of alveolar rhabdomyosarcoma and other cancers associated with *PAX7*. Furthermore, the methods and findings may have implications for other diseases and other genes. *In silico* biology is currently used by pharmaceutical companies to facilitate and hasten the development of new therapeutics for many diseases.

Acknowledgment

We would like to thank the Memorial Sloan Kettering Institute DNA Sequencing Core Facility Lab manager and technician (Dr. Diane Tabarini & Ms. Donna Wong, respectively) and Memorial Sloan Kettering Cancer Center's Diagnostic Molecular Genetics Laboratory Director (Cindy Yee, PhD) and technologists (Mrs. Nilofer Kreonidis, Mr. Ruben Bacares and Ms. Nadia Shaukat) for their support and assistance for the clinical portions of this project. I would also like to extend my deepest gratitude to Mr. Geoffrey Jackson, of the Centers for Disease Control & Prevention (CDC) who provided the much needed equipment for this project.

Correspondence to:

Maika G. Blackman-Mitchell Memorial Sloan Kettering Cancer Center Rockefeller Research Laboratories 430 East 67th Street 4th Floor, Room 453 New York City, New York 10021, USA Email: blackmam@mskcc.org

REFERENCES

- Glaser, T., Jepeal, L., Edwards, J. G., Young, S. R., Favor, J., and Maas, R. L. (1994). "PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects." Nat. Genet 7:463-471.
- Relaix, F., Rocancourt, D. et al. (2004). "Divergent functions of murine Pax3 and Pax7 in limb muscle development." Genes Dev. 18(9): 1088-1105.
- 3. Chi, N., Epstein J.A. (2002). "Getting your Pax straight: Pax proteins in development and disease." Trends Genet. 18(1): 41-7.
- Barr, F. G., Fitzgerald, J. C. et al. (1999). "Predominant Expression of Alternative PAX3 and PAX7 Forms in Myogenic and Neural Tumor Cell Lines." Cancer Res. 59(21): 5443-5448.
- Mercado, G. E., Barr, F.G. (2005). "Looking Downstream of Sarcoma-Associated Chimeric Transcription Factors: When is a Target Really a Target?" Cancer Biol. Ther. 4(4): 456-8.
- Macina R. A., Barr F. G., Galili N., Riethman H. C. (1995). Genomic organization of the human *PAX3* gene: DNA sequence analysis of the region disrupted in alveolar rhabdomyosarcoma. Genomics, 26: 1-8.
- Goulding M. D., Chalepakis G., Deutsch U., Erselius J. R., Gruss P.(1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J., 10: 1135-1147.

- Bennicelli J. L., Guerry D. I. (1993). Production of multiple cytokines by cultured human melanomas. Exp. Dermatol., 2: 186-190.
- Schulte T. W., Toretsky J. A., Ress E., Helman L., Neckers L. M. (1997) Expression of PAX3 in Ewing's sarcoma family of tumors. Biochem. Mol. Med., 60: 121-126.
- Hadjistilianou T, Mastrangelo D, Gragnoli A, Capretti MC, De Francesco S, Galluzzi P. (2002) Letter to the editor: neurofibromatosis type 1 (NF 1) associated with embryonal rhabdomyosarcoma of the orbit. Med Pediatr Oncol.. 38. 6:449.
- Dei Tos AP, Dal Cin P. (1997) The role of cytogenetics in the classification of soft tissue tumours. Virchows Arch. 431(2):83-94.
- Woodruff JM, Christensen WN. Glandular peripheral nerve sheath tumors. *Cancer.* (1993). 72. 12:3618-28
- Oguzkan, et al., (2006) Two neurofibromatosis type 1 cases associated with Rhabdomyosarcoma of bladder, one with a large deletion in the NF1 gene., *Cancer Genetics and Cytogenetics* 164, 159–163
- 14. Park, Ben Ho and Vogelstein, Bert (2003) Cancer Medicine Volume 6. BC Decker Inc. Hamilton, London
- 15. Lewin, Benjamin Genes VII. (2000). Oxford University Press
- Robson, Ewan J. D., He, Shu-Jie, (2006)A Panorama of PAX Genes in Cancer and Development., Nat Rev Cancer. 6(1):52-62
- Frith, et al.,(2004) Spouge3 and Zhiping Weng Finding functional sequence elements by multiple local alignment Nucleic Acids Research, Vol. 32, No. 1 189±200
- Liu, J.S., Neuwald, A.F. and Lawrence, C.E. (1995) Bayesian models for multiple local sequence alignment and Gibbs sampling strategies. J. Am. Stat. Assoc., 90, 1156±1170.
- Chen, Jianjun, Sun, Miao, Rowley, Janet D, Hurst, Laurence D, (2005)The small introns of antisense genes are better explained by selection for rapid transcription than by 'genomic design', Genetics, 171(4):2151-5.

- Martin, Natalia, Patel, Satyakam, Segre, Julia (2004) A. Longrange comparison of human and mouse Sprr loci to identify conserved noncoding sequences involved in coordinate regulation. Genome Res. 14: 2430-2438
- Vaiju Pethe, and P. V. Malathy Shekhar (1999). Estrogen Inducibility of c-Ha-ras Transcription in Breast Cancer Cells. Identification of Functional Estrogen-Responsive Transcriptional Regulatory Elements in Exon 1/Intron 1 of the c-Ha-ras Gene. J. Biol. Chem. 274: 30969-30978.
- Dei Tos AP, Dal Cin P. (1997). The role of cytogenetics in the classification of soft tissue tumours. Virchows Arch. Aug;431(2):83-94. Review
- Sorensen, Poul H.B., Lynch, James C., Qualman, Stephen J., Tirabosco, Roberto, Lim, Jerian F., Maurer, Harold M., Bridge, Julia A., Crist, William M., Triche, Timothy J., Barr, Frederic G. (2002). PAX3-FKHR and PAX7-FKHR Gene Fusions Are Prognostic Indicators in Alveolar Rhabdomyosarcoma: A Report From the Children's Oncology Group J Clin Oncol . 20: 2672-2679
- Albert D. G. de Roos. (2005) Origins of introns based on the definition of exon modules and their conserved interfaces Bioinformatics Advance Access, DOI 10.1093/bioinformatics/bth475.Bioinformatics 21: 2-9.
- Bernett T. K. Lee, Tin Wee Tan, and Shoba Ranganathan (2003) MG AlignIt: a web service for the alignment of mRNA/EST and genomic sequences. Nucleic Acids Res.; 31(13): 3533–3536.
- Ari Patrinos. (2001). Initial sequencing and analysis of the human genome. The Genome International Sequencing Consortium."*Nature* 409, 860-921.
- 27. Kevin Davies., (2001) Cracking The Genome: Inside The Race To Unlock Human DNA. Free Press, A division of Simon & Schuster, Inc.