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e latter. [Nature and Science. 2007;5(3):5-8]. 

 

at constitute 
relationships 
ulating these 
which of the 
 be causes or 
the all-effect 
 the Markov 
hilosophy of 
the sequence 

ents in the ontogenetic chain. The name “all-effect sequential model” comes from the fact that the 
m ee Figure 1); 

on and Kyte, 
Kozak et al., 

ntogenetic 
tulated prior 

alysis, and it may influence its results. (Note that some methods, e.g., path analysis, may be used to 
st me that such 

for example, 
uence SPAD 
Samborski et 

 prior in the 
hem. A 

 1, …, j – 1, 
er of traits in 
 – 2) trait on 

ect character, 
ly the direct 
g influenced 

b  any of them, whereas the last trait may be influenced by all other traits, not influencing any of them. 
This type of causal system is often used to model the associations among traits in an ontogenetic chain in 
agronomy and crop science; see, for example, Grafius (1969), Rasmusson and Cannell (1970), Thomas et al. 
(1971), Eaton et al. (1986), McArthur and Eaton (1988), Freeman et al. (1989), Bowen and Kliewer (1990), 
Akwilin Tarimo (1991), Dofing and Knight (1992), Shamaila et al. (1992), Bos and Spaarnaij (1993), 
Spaarnaij and Bos (1993), Gołaszewski (1996), Gołaszewski et al. (1998, 2001), Spaner et al. (1996, 2000, 
2001), Mądry et al. (2005), Samborski et al. (2006), and many others.  

 
 
 

 
 
Abstract: This paper discusses an ontogenetic chain, the specific form of a cause-and-effect s
traits, in relation to crop science. Two approaches to modeling associations in such a 

the former has much stronger biological basis than th
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The general definition of an ontogenetic chain in relation to plant traits is that the traits th
it develop in a certain order during ontogeny, a fact that may result in a particular form of 
among the traits (Mądry et al., 2005). We may distinguish two main approaches to post
relationships (“postulating” because at the very beginning of the investigation we do not know 
relationships are true and important and which are not, but we may postulate which traits may
effects of other traits). The first approach consists in applying what we will hereafter call 
sequential model (the ALL-SEQ model); and the second, in applying the model based on
condition (the MC model), a model that represents the causal chain, quite common in the p
causation. In fact, both of these models are “sequential” because they both take into account 
of ev

odel comprises all the direct and indirect effects that are possible in the ontogenetic chain (s
methods that use this model are, for example, sequential yield component analysis (e.g., Eat
1978; Eaton and MacPherson, 1978) and sequential yield analysis (e.g., Mądry et al., 2005; 
2006).  

We are not discussing here the methods of analyzing relationships among the traits in the o
chain. Our aim is to discuss models that describe these relationships; such a model is to be pos
to the an

udy a causal process based on various models; hence the choice of a model matters.) We assu
postulation is to be done based on the knowledge of a process one aims to study. Therefore, 
we know that SPAD measurement in the DC 31 stage (SPAD 31; Zadoks et al., 1974) may infl
49, but the opposite situation (in which SPAD 49 would influence SPAD 31) is impossible (
al., 2006).  

Figure 1 presents the ALL-SEQ model for three traits. In this system the traits that are
chain to other traits may influence them, but may not be influenced by those traits that follow t
particular, jth trait (Xj) may be, then, determined by all the traits previous to it, that is, Xi for i =
and may determine the traits that follow it, that is, Xk for k = j + 1, …, p, where p is the numb
the ontogenetic chain. Therefore, it is assumed possible that the influence of the jth (j = 2, …, p
the last, pth trait (which is often called the dependent trait) may have a direct as well as indir
the latter via the traits that follow Xj in the chain (of course, the last but one trait may have on
effect on the last one). So, the first trait in the chain may influence all the other traits, not bein

y
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Figure 1. The all-effect sequential (ALL-SEQ) model presenting the associations among the traits in an 
o

Q model. A 
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02, sec. 2.7). 
is concerned 
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e trait that the jth trait follows. Analogously, every trait 
(except for the last one) in the chain is assumed to be a cause of only one trait: the one it precedes. In this 
way every trait in the model may be a cause of only one trait as well as an effect of only one trait. The 
model of this type, for three traits, is presented in Figure 2. 
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a may also have an influence (for example, the direct effect) on 
cereal grain yield of different character from that along the above-given path (e.g., Rozbicki, 1997). How, 
then, in the light of the above discussion should we interpret the MC model, in which number of spikes per 
unit area is assumed to affect grain yield only indirectly?  

In contradiction to the MC model, the ALL-SEQ model assumes that each trait (yield component in 
our example) may (so does not have to) affect the final trait in the chain (grain yield) directly and, for all 
traits except for the last but one trait, indirectly.  
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ntogenetic chain (for three traits).  
 
The modeling based on the MC model is different from that based on the ALL-SE

description of the Markov condition may be found, for example, in Pearl (2000); its illegible e
relation to ecology, in which this model has found many applications (see, e.g., Baker,1989 and Tu
Anand 2004 and the citations therein), but also plant physiology, was presented by Shipley (20
Under the Markov condition a jth (j > 1) trait in the ontogenetic chain (note that this paper 
with the ontogenetic chain so the Markov condition is discussed only in this context, although
be used for other models) is determined only by th

X1 X2 X3

Figure 2. The model based on the Markov condition (the MC model) presenting the associa
traits in an ontogenetic chain (for three traits). 

 
The choice of one of these two models is essential: it is likely that the interpretations ba

will be different (it is likely but not certainly because it may happen that the model in Figure 2 will 
in such an instance this should be shown also by the analysis of the ALL-SEQ model). Below
the two models for one of the most common crop science problems—yield component analysis
Mądry, 2006), although what will be said may be linked to many other causal systems in crop scien

Consider the following components of cereal grain yield (GY): number of spikes per un
number of grains per spike (NG), and kernel weight (usually presented as 1000-kernel weight
order of the traits in the ontogenetic chain is acknowledged to be as follows (e.g., Dofing and K
NS, NG, TKW and GY. The MC model assumes in this case that the influence of TKW on 
the influence of NG on GY is only indirect, via T

e path NS  NG  TKW  GY. Thus, the only yield component that directly affects cerea
would be 1000-kernel weight. It is easy to imagine that not too many crop scientists would ag
statement. Number of spikes per unit are
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o use the ALL-SEQ model, not the MC model, in so many analyses (see the papers cited above) 
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Let us now come back to the example concerned with SPAD measurements. Consider t
ontogenetic chain: SPAD 31, SPAD 49 and winter triticale grain yield. Why should we assum
31 has no direct influence on grain yield and the only influence it has on grain yield is indire
49? Is there any knowledge that would support such a statement? If no, we may simply choo
SEQ model and try to find which associations (see Figure 1) are and which are not signi
important. Note once more that we do not assume that all associations from the ALL-SE
significant: we assume they are possible.  

These simple examples show that the MC model quite often is not correct in crop science
which does not mean that for all, causal processes in crop science that are based on the ontog
the ALL-SEQ model has much stronger biological 
esearcher’s task to decide which model to choose, and it never should be done by con

knowledge of the process should provide necessary information.  
Nonetheless, looking more generally at the MC model it is easy to notice that this type of

analyzing cause-and-effect relationships is quite a simplification of a process represe
ontogenetic chain. One could say that the assumption that each trait (except for the firs
ontogenetic chain) has only one cause, that is, the preceding trait, is rather artificial and usually
to do with the biology of the processes. And note that by applying the MC model we are 
whether or not this is true: we assume this. Is there any crop scientist who would agree with t
conclusion: “The only influence that number of kernels per spike has on cere

000-kernel weight, and the only influence that number of spikes per unit area has on cereal grai
that via the following path: number of spikes per unit  number of kernels per spike 
weight  grain yield”? A question arises: Is such a simplification of biology appropriate? 

In the light of the discussion presented in this paper we may acknowledge that the ALL-S
crop science is usually correct, i

model of how com
the choice t
may be acknowledged
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