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Abstract: The application of the Young-Laplace equation to bubbles, droplets, capillary rise and 
depression have been generally accepted for centuries, because it approximates experimental evidence. 
Consequentially, any cohesive forces perpendicular to the tensile has been omitted from due consideration. 
In this treatise, we shall investigate the mechanical implications of also considering the cohesive forces 
perpendicular to the tensile layer, arriving at a new perspective. [Nature and Science. 2007;5(4):43-52]. 
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Introduction 

Whether a resultant force is dynamic or static, that force when applied perpendicular to an area 
results in a pressure felt by that area. This concepts holds in every realm of physics except for one! Most 
accept the intermolecular cohesive forces along a curved tensile layer result in a pressure change across the 
tensile layer, without any consideration being given to the intermolecular cohesive forces perpendicular to 
the said tensile layer. This has rendered the science of tensile layers into that rare case where resultant 
forces perpendicular to an area do not contribute to pressure felt by that area. Accordingly, this paper will 
consider the ramifications of considering a liquid’s cohesive forces perpendicular to its tensile layer, 
determining that such consideration may be warranted. 

The science of tensile layers is too often portrayed as if there is no ambiguity. Interestingly, the 
question as to should tensile layers be contemplated purely in terms of some mechanical description1,2,3, or 
based upon some thermodynamic consideration, i.e. Helmholtz free energy2,4,5,6, is an ongoing debate. A 
verbal description for its existence Helmholtz free energy being2: “The interaction of a given molecule with 
its (nearest) neighbors leads to a reduction of its potential energy, i.e., intermolecular forces act to stabilize 
the system. However, the molecules at the surface region of this condensed matter have a smaller number 
of nearest neighbors, and therefore their potential energy is not decreased by as much as in the interior of 
condensed phase.”  

  The mathematical description for the Helmholtz Free energy (F) is7: . If F is 
actually obtained from

TSEF −≡
7: . Then comparing these two equations one would be inclined to 

say that: , therefore: 
PVETS +=

FPVF −= )(PV∆−=∆ .  
  Although well accepted, this is problematic! Changes to Helmholtz free energy are contemplated 

in terms of temperature change ( T∆ ) at constant entropy (S) and volume change ( ) at constant 
pressure (P), plus any changes in energy associated with chemical potential, surface area etc.  For the 
isothermal case, with no change to chemical potential, the change in Helmholtz free energy in differential 
form is 

V∆

2: 
 

dAdVPdVPdF σ+−−= 2211            1) 
   

  Where: σ is the surface tension, dA is the change in surface area and subscripts “1” and “2” 
represent the two phases, which are separated by the tensile surface. 1) assumes that the energy changes 
associated with tensile layers, only signifies a volume change of both phases plus the energetics associated 
with the increased tensile layer. Seemingly forgotten is that fact that a curved tensile layer signifies a 
pressure change, hence any conjecture that tensile layer formation is an isobaric process is troublesome at 
best. Part of the justification resides in the fact that we can mathematically obtain certain results by doing 
so, as Pellicier2 does for the Young-Laplace equation. Beyond the mathematical justification, the logic is 
seemingly weak. Accordingly, we must seek an improved logic based mathematical model.  

  Perhaps the reason for the acceptance of the Helmholtz free energy interpretation of tensile layers 
is that the mechanical description of tensile layers is similarly troubled. Consider the verbal description for 
its existence is3: “For a molecule in the bulk liquid the resultant repulsive form its nearest neighbors and the 
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resultant attractive force from its farthest neighbors are both zero on the average.” “In the surface there is 
an unbalanced force on a molecule; it is directed inwards because the decreasing density in the surface 
layer implies that there are fewer neighbors to give an outward repulsive force”. As plausible as such an 
explanation sounds, the implication is that the unbalanced forces are perpendicular to the tensile layer. So 
why are these unbalanced forces not considered?  

  The mechanical description is approximated by the Young-Laplace equation.  For a spherical 
shaped tensile layer residing between a liquid and gas, the Young-Laplace equation is8: 
 

rPP gl /2σ=−       2) 
 

  Wherein the subscripts “l” and “g” respectively signifies the liquid and gas phase, with r being 
the tensile layer’s radius of curvature. As valid as 2) may be for obtaining a result based upon the cohesive 
forces along a tensile layer, one must ponder: What would happen if we added to this, a consideration of 
the unbalanced forces resulting from cohesive forces perpendicular to the tensile layer? Hence, this paper 
was written. 
 
Simple Derivation of the Young-Laplace Equation 

  Let us review the Young-Laplace equation derivation. There a numerous methodologies for 
deriving 2), such as the one given by Adamson9. Herein, we shall take simpler approach in deriving 2), 
which was previously published by this author10 thus is given herein purely for review purposes, with the 
intention of adding clarity. 
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Fig. 1:  Shows the pressure in a 
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  When deriving the Young-Laplace equation, one may start with the following fundamental 
principle of hydrostatics. The force in a particular direction from a uniform pressure on a curved surface 
equals the pressure times the cross-sectional area of this surface in the direction of the desired force11. 
Consider the cross-section of a spherical tensile layer, as is shown in Fig. 1. If ir  is the radius to the inside 
of the tensile layer, then the cross-sectional area is: . If the pressure under consideration is along the x-
axis, as shown in Fig. 2, then the cross-sectional area is measured in the y-z plane. Applying the principle of 
hydrostatics we can say, the total force perpendicular to the cross-sectional area is the force of elongation 
( )

2
irπ

eF 10: 
 
          3) 2

ie rPF π∆=
 

  Where: , which is the pressure difference, across the tensile layer. Equilibrium 
means that the surface tension must be equal and opposite to this force of elongation. Consider the pressure 
to be along the x-axis, is countered by the tensile force along the x-y plane, as is shown in Fig 2. If the 
bubble’s surface tension is squeezing inward as a function of its length then the total surface tension (

lg PPP −=∆

1τ ) 
along the ring of tensile layer, as illustrated in Fig. 3, is10:  
   

σπτ R21 =        4) 
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  Where: . Consider the tensile layer to be thin therefore: R2/)( ei rrR += rrr ei === =r.  

Equating the tensile forces to the force of elongation, i.e. 3) to 4) and dividing by: , we obtain:  2
irπ

 
rP /2σ=∆        5) 

 
  Obviously, 5) is another way of writing the Young-Laplace equation, that being 2). 

 
 
Bubbles, Droplets and the Young-Laplace Equation 

  Traditionally, the Young-Laplace equation is used to define the pressure inside of a bubble 
surrounded by a liquid, the pressure inside of a liquid droplet surrounded by a gas, as well as in the analysis 
of both capillary rise and depression. The Young-Laplace equation only considers the cohesive forces along 
the tensile layer conveniently omitting the liquid molecule’s cohesive forces perpendicular to the tensile 
layer, as is shown by the white arrows in Fig. 4 and 5. If we now consider the cohesive forces perpendicular 
to the tensile layer, the resultant tension perpendicular ( ⊥τ ) to the tensile layer is taken over a ½ sphere, 
whose magnitude is10: 
  
 drσπτ =⊥        6) 
 

  As illustrated in Fig 4, the cohesive forces perpendicular to a bubble’s tensile layer would be 
directed into the surrounding liquid, from the bubble’s tensile layer. Subtracting the cohesive forces 
perpendicular to the tensile layer, as defined by 6), from the cohesive forces along the tensile layer, as 
defined by 4), the pressure within a bubble ( ) immersed in a liquid becomesbP 10: 
 

lbb PrP += /σ       7) 
  

Pg

In both the above Fig 4 and Fig 5 we see two sets of forces. Black 
arrows are due to the intermolecular cohesive forces along the tensile 
layer while the white arrows are due those perpendicular to the tensile 
layer.  

Pl

Liquid

Bubble DropletCohesive forces 
along the tensile 
layer

Cohesive forces  
to the tensile layer

Resultant force 
due to above

Fig. 6            Shows the cohesive forces in 
a container of liquid. Although the press-
ure in the liquid is higher due to the inter-
molecular cohesive forces, the affinity of 
those same forces to the pressure gauge 
would prevent the gauge from reading 
any pressure increase.  

Pg

Pl

Pressure
 gauge

Cohesive forces along 
the flat tensile layer

Fig 4 Fig 5

 
 
 

  Conversely for a droplet, as illustrated in Fig 5, the cohesive forces perpendicular to the tensile 
layer would be directed into the droplet. Adding the cohesive forces perpendicular to the tensile layer, as 
defined by 6), to the cohesive forces along the tensile layer, as given by 4), results in the pressure within the 
droplet ( ) becomesdP 10:   
 

gdd PrP += /3σ       8)  
 

  Until now, most researchers believe that the pressure within both a bubble and droplet are well 
understood, that being defined by 4). Certainly, this was this author’s belief until researching the 
phenomena and noticing huge discrepancies in the theory. The extent of this problem can be seen by 
comparing Debenedetti12 who has the pressure inside of a bubble, lower than the pressure of the 
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surrounding liquid, to Adamson9 has the pressure inside of a bubble greater than the pressure of the 
surrounding liquid. They both cannot be right.  
   Logic seemingly dictates that one should be able to readily probe either a bubble or a droplet with 
a pressure gauge. However, trying to actually measure the pressure within a spherical bubble is next to 
impossible. It only becomes feasible if the bubble is rigidly adhered to a surface, however the consequences 
of that rigid attachment should influence the pressure reading.  

 As for a droplet, inserting a pressure probe into it is easily accomplished. Even so, when either a 
bubble or droplet is rigid attached to some surface to which its tensile layer has an affinity, the shape is 
rarely perfectly spherical which will influence the pressure reading. Moreover, if we are considering all 
resultant intermolecular cohesive forces, then we must consider that the resultant cohesive forces of the 
liquid perpendicular to the probe’s surface, which will be directed into the liquid. Hence will lower the 
actual pressure reading. In order to visualize this, imagine the container of liquid illustrated in Fig. 6. 
Considering all resultant intermolecular cohesive forces, we realize that along the container’s base and 
walls the liquid’s intermolecular forces are directed into the liquid but these are countered by the strong 
affinity the liquid has for the container. The only intermolecular cohesive resulting in pressure increase 
within the liquid would be those perpendicular to the relatively flat surface tensile layer. Obviously these 
are directed down into the liquid. However, the pressure gauge, due to the affinity between the pressure 
gauge’s probe’s end and the surrounding liquid, would result in a resultant cohesive force directed into the 
liquid therefore the gauge would not measure the pressure increase. 

  Interestingly, for a soap bubble, it was realized that the cohesive forces perpendicular to the 
tensile layer would cancel, leaving the accepted traditional result10:  
 

brP /4σ=∆        9) 
 
 
Capillary Rise and Depression: The Traditional Approach 
   Capillary rise is the elevation of a liquid by some height (h) within a capillary tube when the 
liquid has an affinity towards the capillary tube and the tubes radius is sufficiently small. In capillary rise, 
traditional theory incorporates the idea of contact angle (φ ), and considers the tensile surface to be 
spherical with a radius defined by the capillary tube’s radius ( cr ). The traditional equation is for capillary 
rise being9: 
  
 cgrh ρφσ /cos2=       10) 
 

   It seems strange that the curved tensile layer would have a radius simply defined by the tube’s 
radius, even though it has a contact angle. Logic should dictate that the greater φ  is, then the larger the 
tensile layer’s radius should be. When, cr  is sufficiently small, then: 0→φ , then: cos 1→φ , which 
results in:  
 
 cgrh ρσ /2=        11) 
 

  Interestingly, 11) is also traditionally used to define capillary depression, that being the fall of a 
liquid by some height (h) within a capillary tube when the liquid has no affinity to the capillary tube. For 
capillary depression, the traditional approach is treat the radius of curvature of the liquid as being equal to 
the capillary tube’s radius, which is to say: 0→φ , hence the use of 11). 
   The correlation between 11) and the Young-Laplace equation [2) or 5)] can be best illustrated by 
contemplating capillary rise. That column of liquid has a volume (V) and a density ( ρ ), giving the force 
due to gravity exerted by the weight of the column of liquid in the capillary tube is:  
 

ghrgVmg c ρπρ 2==       12)  
Equating 12), to the tension as defined by 4), we obtain: 
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cc rghr σπρπ 22 =       13) 

 
  Dividing through by: , one then obtains 11).  grc ρπ 2

 
 
Capillary Rise and Cohesive Forces Perpendicular to the Tensile Layer 

  In order to arrive at a more general formulation that being approximately the tensile layer as 
elliptical, we will consider what forces are acting in the y-direction in Fig 7. The cross-sectional area of an 
approximate ellipse parallel to the x-z plane is: 
 

zxxz rrA π=        14) 
 

 Multiplying the pressure change ( yP∆ ) along the y-axis by the cross-sectional area in the x-z 
plane ( ) gives the force of elongation ( ) along the y-axis: xzA eyF
 

zxyey rrPF π∆=        15) 
 

   is countered by the tension squeezing along the x-y plane. Since the tensile surface 
approximates a ½ ellipse, whose length along the x-y plane is: 

eyF
2/)( yx rr +π . Therefore, the tension along 

the positive y-axis due to intermolecular cohesive forces along the tensile layer [ ):( alongyτ ] is: 
 

2/)():( yxalongy rr += σπτ      16) 
   

  Since the tensile layer has an inner ( ir ) and exterior/outer radius ( er ), as was discussed when 
deriving 4), we double 10). Therefore, for capillary rise, the tension along the positive y-axis due to the 
intermolecular cohesive forces along the tensile layer is: 
 
 )():( yxalongy rr += σπτ      17) 

Capillary tube

Pg

Fig. 7            Shows  all the  intermolecular cohesive 
forces within the liquid in capillary rise.
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the tensile layer

Cohesive forces perpen-
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Due to cohesive forces 
along the tensile layer

Cohesive forces into 
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Cohesive forces into the 
capillary tube
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Fig. 8      Shows capillary rise of height . Shown are the 
intermolecular cohesive forces that must be considered 
that being both those along and perpendicular to the 
curved tensile layer in the capillary plus those perpen-
dicular to the flat tensile layer.
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  Obviously, when the capillary layer is spherical then: yx rr = , and 17) simply equates to 4), i.e. 

1ττ =xy , giving the traditional result. Specifically, for the case of: yxc rrr == , then 17) becomes the 
Young-Laplace equation for capillary rise, which in this case would be: 
 
 calongy rσπτ 2):( =       18) 
 

  Next consider the liquid’s cohesive forces perpendicular to the tensile layer [ ):( ⊥yτ ] in the 
capillary tube. Since they are of the same magnitude as those along the tensile layer, we can approximate 
them by writing: 
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  2/)():( yxy rr +−=⊥ σπτ      19) 
 

  The negative sign meaning ):( ⊥yτ  is directed along the negative y-axis hence downward into the 
liquid. Therefore, the net tension felt by the liquid inside of the capillary due to all cohesive forces within 
the capillary tube ( cylτ ) must be: 
  

):():( ⊥+= yalongycyl τττ       20) 
 

  Realizing that ):( alongyτ  and directed upward, while ⊥yτ  is directed downward, we obtain: 
 

2/)()( yxyxcyl rrrr +−+= σπσπτ     21) 
 

  Collecting the terms, for capillary rise we obtain: 
 

2/)( yxcyl rr += σπτ       22) 
 

  We do not concern ourselves with the intermolecular cohesive forces between the capillary tube 
and liquid as shown in Fig. 7 because they are perpendicular to the capillary rise with the resultant force 
directed into the capillary tube. This does not imply that they are not important because it is the liquid’s 
affinity to the tube that allows for the rise in the first place. Is 22) the summation of all cohesive forces felt 
by the liquid inside the capillary?  The answer is no! 

  As was discussed previously for Fig. 6, there are cohesive forces perpendicular to the relatively 
flat tensile layer, which will need consideration. Considering, the pressure exerted along an arbitrary line, 
whose length is  the equivalent tension felt along the arbitrary line (cr2 aτ ), would be: 
 
  στ ca r2= :       23) 
  

  As far as the contents of the capillary tube, is concerned, the direction of aτ  is directed upward 
along the y-axis. The tension as defined by 23) must be added to 22) to calculate the total tension that 
results in capillary rise:  
 

σσπτττ cyxacyltot rrr 22/)( ++=+=     24) 
    
   Equating totτ  to the weight, as defined by 12), we obtain: 
  

cyxc rrrghr σσπρπ 22)(2 ++=     25) 
 
   Dividing by: , we obtain: grc ρπ 2

 
     26) grrrrh ccyx ρπσσπ 2/]22/)([ ++=
 

  If xc rr = , then we can rewrite 26) as: 
 
      27) grrrrh ccyc ρπσσπ 2/]22/)([ ++=
 

  27) becomes the general equation for capillary rise. For the special case of the tensile layer being 
spherical then: yc rr = . Collecting terms we obtain: 
 

cgrh ρπσ /)/21( +=       28) 
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    Which can be rewritten as10: 
 

cgrh ρσ /)64.1(=       29) 
 

  Although 29) is not identical to the traditionally accepted value [10) or 11)] for capillary rise, we 
can see that it is close, implying that our consideration of cohesive forces perpendicular to the tensile layer 
warrants consideration. What is most important is 27), which tells us that the greater the value of yr  in 
comparison to cr the higher the capillary rise would be. Moreover, in capillary experiments the tube is 
generally wetted prior to the experiment, which should increase yr thus increasing height (h), which helps 
explain why basing capillary rise on the Young-Laplace equation has remained unchallenged. 
   We can view the above analysis another way. Consider that capillary rise is the difference of two 
phenomena. 1) the upward force due to the cohesive forces along the tensile layer, as defined by the 
Young-Laplace equation when the tensile layer is spherical. 2) the difference between the cohesive forces 
perpendicular to the curved tensile of the top of the capillary and the cohesive forces perpendicular to a flat 
tensile layer whose length is: . cr2
 
Capillary Depression and Cohesive Forces Perpendicular to the Tensile Layer 
   Capillary depression/fall seemingly correlates better with the Young-Laplace equation than does 
capillary rise.  However, the current theory for capillary depression a is poor at best and as was the case in 
capillary rise, current theory fails to address the fact that cohesive forces are acting in 3 directions along the 
tensile surface, hence the parabolic shape.  
  For capillary depression, once again the area of the ellipse in the x-z plane is given by 14), while the force 
along the y-axis is given by 15). Therefore, for capillary depression, the tension along the positive y-axis 
due to the intermolecular cohesive forces along the tensile layer is has a magnitude defined by 17) but is 
now along the negative y-axis, as illustrated in Fig 9. Therefore: 
 
 )():( yxalongy rr +−= σπτ      30) 
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h

Fig. 9            Shows  all the  intermolecular
 cohesive forces within the liquid in 
capillary depression/fall.

Fig. 10      Shows capillary depression of height .  Shown 
are the intermolecular cohesive forces that must be 
considered.  Those being both along and perpendicular to 
the curved tensile layer in the capillary plus those perpen-
dicular to the flat tensile layer plus those directed into the
liquid along the container walls and capillary tube.

h

A
B CD

 
 
 
   For the liquid’s cohesive forces perpendicular to the tensile layer ( ⊥yτ ) in the capillary tube, 
which are directed into the liquid, once again that would be defined by 19) and be directed along the 
negative y-axis hence downward into the liquid, as illustrated in Fig 9. Therefore, the net force felt by the 
liquid inside of the capillary due to all cohesive forces within the capillary tube ( cylτ ) must be would still 
be defined by 20) but the result now becomes: 
 

2/)()( yxyxcyl rrrr +−+−= σπσπτ     31) 
 
   Collecting the terms, for all the cohesive forces along the curved tensile layer within the capillary 
tube in capillary depression, we obtain: 
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2/)(3 yxcyl rr +−= σπτ       32) 

 
   32) is written as if it represents all the cohesive forces within the capillary. However, looking at 
Fig 9 we can see that the cohesive forces of the liquid directed into the liquid along the capillary tube, were 
not considered. Although, due to strong affinity between the capillary tube and liquid in capillary rise, these 
forces were omitted from the analysis, this may not be the case for capillary depression, which we will 
discuss later on in this section. Considering the cohesive forces perpendicular to a tensile layer, the 
difference between that exerted along a curved tensile layer and an equivalent section of flat tensile layer, is 
still defined by 23). The net result becomes:  
 

2/)(32 yxcacyltot rrr +−=+= σπστττ     33) 
 
   The value of totτ will be negative, indicating that the resultant tension is along the negative y-axis. 
Equating totτ  to the gravitational force as defined by 12), we obtain: 
  

2)(322
yxcc rrrghr +−= σπσρπ     34) 

 
   Dividing both sides of 34) by: , we obtain: grc ρπ 2

 
     35) grrrrh cyxc ρπσπσ 2/]2/)(32[ +−=
 
   If: xc rr = , then 35) becomes: 
 
     36) grrrrh cycc ρπσπσ 2/]2/)(32[ +−=
 
   For an approximation to the currently accepted equation for capillary depression we assume that 
the tensile surface is close to being spherical, therefore: yc rr =  and we now obtain: 
 

grrrh ccc ρπσπσ 2/)32( −=      37) 
 
   Dividing 37) through by cr  we obtain: 
 

grh cρππσ /)32( −=       38) 
 
   Which becomes: 
 

grh cρσ /36.2−=       39) 
  
   The traditionally accepted theory for capillary depression is also based upon the Young-Laplace 
equation, but is directed along the negative y-axis, hence is the negative of 11). We can see that the 
traditional value is 85% of our calculated value. It must be emphasized that our approximation, as given by 
39) is based upon the tensile surface being spherical and its radius being exactly that of the capillary. For 
the case of the capillary depression of mercury is a glass capillary tube, that is seemingly often the case. 
Since in capillary depression experiments, the tube is not wetted prior to experiment, the difference 
between our result, 39), and the traditional result, 40), must be explained. Firstly, in our analysis we did not 
consider all the tensile forces directed into the liquid. Looking at Fig 10 we can see that we omitted the 
following: 
A) The cohesive forces directed upwards into the liquid from along the base of the container. 
B) The cohesive forces directed into the liquid from the along the walls of the container. 
C) The cohesive forces directed into the container of the liquid from along the capillary tube. 
D) The cohesive forces directed into the capillary tube from along the capillary tube. 
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As for A), these cohesive forces and those from along the top of the liquid should be uniform 

throughout the liquid. The only real difference is the difference between the curved tensile in the capillary 
tube and that of an equivalent line of a flat tensile. Accordingly our analysis could have included these but 
we would have arrived at the same result! 

  However, the same cannot be said if due consideration was given to B), C) and D). Since all 
these cohesive forces are perpendicular to the capillary depression, then they probably do not affect the 
result. Having said that, this may warrant more consideration.  

  Secondly, another explanation for why 40) is so strongly believed may lie in the process of 
measurement. 
 
  
Measurement in Capillary Action 

  Whether one is talking about capillary rise or capillary fall, this author believes that the 
measurement of h should be made along a line passing through the centroid of the section containing the 
curved tensile layer in the capillary tube, as illustrated in Fig 11. And not to either the top or bottom of the 
curved tensile layer in either capillary rise or fall, as is done traditionally. 
 

Traditionally measurement

Fig. 11                  Shows the top of a tensile layer in capillary rise on the left and the top of 
a tensile layer in capillary fall on the right. In both cases the height ( ) should be 
measured to the plane which defines the center of mass of the capillary section.  
.  

h
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x

r rc x=

ry ry
r rc x=

h h

Line through
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For the case of capillary rise this would mean that the traditionally measured location gives a 

slightly higher value for the h than it should be. Conversely, for capillary depression the traditionally 
measured value would be lower than it should be, hence providing an explanation as to why 40) is so 
strongly believed by those using traditional theory. 
 
Clarification 

  For clarification, the derivation of 7) ,8) and 9) can be found in this author’s paper10, 
entitled: ”Energetics of Nucleation”. Since the paper primarily dealt with nucleation, 29) and 39) were 
simply stated, in order to demonstrate to the reader, that the treatment of all cohesive forces may warrant 
due consideration. Hence the more formal derivation and discussion of 29) and 39) were left for this paper. 
 
Conclusions 

  In this treatise we did not prove that the intermolecular cohesive forces perpendicular to tensile 
layers must be considered when contemplating a pressure change across a tensile layer, whether it be 
curved or flat. By considering all the intermolecular cohesive forces, meaning both along and perpendicular 
to the tensile layer in capillary action, we arrive at results that are close (82.5-85%) to the traditionally 
accepted value when the tensile layer is approximated to being spherical! Considering, the tensile layer as 
being elliptical resulted in an improved approximation, although a precise calculation can only be attained, 
by considering the tensile layer’s exact shape. Interestingly, for capillary rise the act of wetting the capillary 
tube should result in a higher height of rise, by increasing yr  in comparison to xr .     

  In both capillary rise and depression, the measurement of height is often taken to be the highest 
point in the curved tensile surface, rather than a line passing through its centroid. For capillary rise this 
means that the measured height is too large, while in capillary depression it would be too small, thus 
reinforcing the traditional theory.      
   We also realized the some of the difficulties exist in measuring the pressure with a bubble and/or 
droplet. Furthermore, when measuring the pressure within most liquids, whether it is a droplet or a 
container of liquid, the measurement of pressure will be lowered due to any affinity between the liquid to 
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the end of the probe, hence nullifying from the reading any pressure increase within the liquid due to the 
intermolecular cohesive forces directed perpendicular to the tensile layer and into the liquid. 
  We are no longer befuddled by the enigma as to why we simply omit the intermolecular cohesive 
forces perpendicular to the tensile layer. Certainly, logic dictates that there is a resultant force associated 
with such cohesive forces, therefore a pressure/tension associated with them. Interestingly, the concept of 
contact angle was not required in our analysis leaving the astute reader to ponder whether contact angle 
may be a result, rather than some reason as conveyed in traditional theory9. 

The paper is a treatise demonstrating that when one considers all the intermolecular cohesive 
forces, both along and perpendicular to a tensile layer that one does arrive at some interesting results. In 
many ways it is an elaboration of some concepts originally discussed in an earlier paper by this author, 
which dealt with the theory of nucleation (paper entitled: Energetics of Nucleation). Since that paper dealt 
with nucleation, certain equations concerning the pressure change across curved tensile layers were simply 
stated. It must be emphasized that the derivation of those stated equations were given to the reviewers but 
no comments were made. 

 The paper Energetics of Nucleation was deemed controversial and was not going to be published, 
until this author found some data from an experiment performed in 2001, in which a laser was shot into 
degasified water and the energy required for nucleation was calculated. The data in question could not be 
explained by the research group but was an exact fit to what this author was saying, hence publication. The 
Lauterborne group in Germany, who performed the experiment in question, has confirmed the exactness of 
fit. 

 I am an independent researcher whose interest lay in nucleation theory and thermodynamics. I 
have also another paper concerning work that has been accepted for publication by Physics Essays and 
another currently in the review process. Neither of those papers deals with cohesive forces and tensile 
forces that being the paper presented herein. 
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