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Abstract: The increased computational speed and developrretite area of algorithms have created the
possibility for efficiently identifying a well-filhg time series model for the given nonstationasgdmear
time series and use it for prediction. In this papenew method is used for analyzing a given
nonstationary-nonlinear time series. Based on thdtifdsolution Analysis (MRA) and nonlinear
characteristics of the given time series a methmd ahalyzing the given time series using wavelet
decomposition is discussed in this paper. Afteodgmsing a given nonstationary-nonlinear time sefje

in to a trend series Yand a detail series;Yhe trend series and the detail series are sebarabdeled.
Model T(t) representing the trend serigsaXid the Threshold Autoregressive Model of ord€r AR(k))
representing detail series; dre combined to obtain the Trend and Thresholdoregressive(T-TAR)
model representing the given nonstationary-nontitiege series. The scale dependent thresholdiéorr
TAR model are obtained using the detail seriesuminy the trend series. Also simulation studiesdares
and the results revealed that the developed meatboltl increase the forecasting accuracy. [Natuck an

Science 2010;8(1):53-59] ( ISSN: 1545-0740).
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1. Introduction

Many stochastic systems are observed to be
nonlinear which governs to nonstationary non-
linear time series or signals. The Annual sunspot
time series, the Canadian lynx series (Priestley,
1988) Financial time series (Hyndman, 2008)
are examples of nonstationary nonlinear time
series. So modeling nonstationary-nonlinear time
series/signals for prediction is need of the day.
Curvilinear regression models, Threshold Auto-
regressive (TAR) models, State Dependent
Models, etc are used for modeling nonstationary-
nonlinear time series ( Makridakis, 1990;
Priestley,1988). But accuracy in prediction of
nonstationary-nonlinear time series/signals was
one of the main issues associated with the
existing models. The increased computational
efficiency leads to the application of wavelet
decomposition method as a tool for modeling
nonstationary-nonlinear time series (Kants,
2003; Kuo, 1994; Minu, 2008; Nason, 1999;
Papoulis, 1991). This method leads to high
accuracy in prediction. This paper discusses the
decomposition of a given nonstationary-
nonlinear time series in to a trend series and
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detail series. The Wold decomposition theorem
(Hayes, 2004) states that a given time series can
be splitted in to trend series and detail series. |
established (Lineesh, 2008) that the resultant
time series obtained by wavelet decomposition
are the same as the trend and detail series due to
Wold (Hayes, 2004). Here instead of using the
conventional reconstruction of the time series
using wavelet, the trend series and detail series
are modeled separately and the model
representing the given time series is obtained as
a combination of both the models (Lineesh,
2008) which takes care of the time dependencies
of the series and this combined Trend and
Threshold Autoregressive model (T-TAR) is
used for prediction.

2. Review of Literature

The fitting of models for nonstationary-
nonlinear time series raises some complex issues
like the determination of the best fitted model to
the given time series. Strang (1998) discussed
how to decompose a signal in to its wavelet
coefficients and reconstruct the signal from the
coefficients. Brockwell and Davis (1995)
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discussed a method for identifying the order of
the time series model which is based on the
patterns present in higher order cumulants. Sesay
and Subba Rao (1988) derived Yule-Walker type
difference equations for higher order moments
and cumulants for certain class of Bilinear time
series models. Subba Rao, M. Eduarda, et al.
(1992) extended the idea for the tentative
identification of the order of the Bilinear model.
Yuan Li and Zhongjie Xie (1982) engaged in the
study of the identification of the thresholds and
time delay of TAR models by checking different
empirical wavelets of the given data. Oyet
(2001) introduced a new approach for modeling
nonlinear time series based on wavelet
smoothing. Skander Soltani (2002), Hayes
(2004), Ko and Vannucci (2006) are also
contributed to the wavelet analysis techniques
for the analysis of nonstationary-nonlinear time
series. Nason and Von Sachs (1999) give an
overview of the work on wavelet applications of
time series. Initially the applications of wavelet
transform for time series analysis were focused
on periodogram analysis and cycles evaluation.

3. Estimation of T-TAR Modelsusing
Wavelet Decomposition M ethod

3.1 Waveet Decomposition of Nonstationary-
nonlinear Time series
To obtain a model for prediction of the

given nonstationary-nonlinear time serigs it
is required to decompose the given time series
Z, in to the trend serieX, and the detail series

Y, sothatX, andY, are orthogonal.

A given time series
{z,:t=022,..,N-1}
can be decomposed as
Z =X,+Y,t=012..,N-1

where X, is the trend series any is the detail
series given by,

)
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where d; | is the j™ level detail series, using

wavelet decomposition technique. Lineesh

(2008) proved that the components

M
X, =Cy . and, :Zdj,t

i

of time seriesZ, obtained by wavelet decompo-

sition satisfy the requirements of Wold's
decomposition of the time series.

3.2 Estimation of Threshold Auto-
regressive M odel Using Wavelet Techniques

The | threshold autoregressive model of
order, k i.e. TAR (k) model (Priestley, 1988) is
defined as,

Yo=a+> Y, +e’ 2)
i=1
whereY, ; € R for 1=12,...,1, R()

being a given subset of the real lif". In (2),
ef”, j=12,...,I andt e Z (the set of

integers) is a sequence of independent and
identically distributed random variables with 0

mean, constant varianae”> and af”,lé i<k
are constant coefficients. The TAR (k) model
is estimated for representing the detail seffes

by applying wavelet decomposition method.

Determination of the coefficients and
threshold are the main issues while analyzing a
nonstationary-nonlinear time series using TAR
model. In this paper the coefficients and
thresholds are estimated as follows.

The scale and wavelet coefficients are
defined as;

J

4. (1) = z(zjqﬁ(zj t—k),
i=12.,3k=01 2 -1

vi(t)= Zw‘/’(zjt_k)'
j=12..3k=01..2' -1
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where
—2[77jj if 2lk<t<2/(k+1/2)
#(t)= ) o
2'2)jf 2i(k+1/2)<t< 2 (k+1)
4)
and
wlt)= 2[1_;] if 2lk<t<2/(k+1/2)
—2[?] if 2/(k+1/2)<t<2'(k+1)
®)
N-1
Defingf; | = Z‘/’j,k(t)-Yt (6)
t=0

where Y, is the detail series obtained by

decomposingZ, using wavelet decomposition.

Then using (6)

/Bj,k-Wj,k(t) ()

=1 k=0

3.21 Esimation of the Threshold

The threshold of the TAR model is
estimated as follows.

For j =1 2,...,J define

A = \/W , Where(#djyt)

denotes the cardinality &(ﬂj,t}' Also define

A=,2log\#C,, ,

Here lj denotes the threshold for thjsth

level detail series ant denotes the threshold of
the TAR model.
3.22 E simation of TAR model

The Threshold Autoregressive model
representing the detail serié\é[} is given by,
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b, +bY,, +..+ BIY,

Y = 7§3”Ké<ﬂ @)
B7Y, + 7Y, + o+ BTY
@ ;
+e7if Y, 424 ®)

where the coefficientg(bj(i)} are defined by,

| szj,t(l)'l//(l)j't
_J) it

(i)
b, = @ (2
Z_Zdj,t Wi
bt )
where
d, W =d, if d, <2
@ ) (20)
andd, ®=d, , if d 22
v U=y, if d, <
(2) _ ,
ady, =y, if d 24, 1)

3.3 Model for Trend Series

The best fitting ARMA (p, q) model, linear
regression model and curvilinear regression
model are considered for the analysis of trend
series. The model thus obtained for trend series
is denoted by T (t).

3.4 Trend and Threshold Autor egressive
Model (T-TAR)

The T-TAR model representing the
nonstationary-nonlinear time seriés, using

wavelet decomposition is obtained by combining
the model representing the trend series and
the detail series which is given by;

T(t)+b"Y,, +blY, ,

given

if Y, 4 <A4
2 _ +..+bYY, , +e¥ o
CTO+ Y Y,
if Y. 4=4
+..+b2Y,_, +e?
(12)
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Here T(t) and TAR (K) preserves orthogonality.

4. Application of T-TAR Modelsfor
Prediction

Prediction using time series originated from
a stochastic system is the very aim of modeling a
time series. The estimation of T-TAR model by
applying wavelet theory is demonstrated with
different real world time series and the results
are presented here.

4.1Analysis of the Time Series of Annual
Sunspot Numbers

The time series of annual sunspot numbers
during years 1700 — 1955 (Priestley, 1988) is
taken for illustrating the estimation of T-TAR
model explained in this paper. The plot of the
time series is shown in figure 1.

Figure 1: Plot of time series of sunspot numbers
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4.1.1T-TAR Model Estimation of the Time
Series of Annual Sunspot Numbers

Using the method explained in this paper T-
TAR model is estimated for the time series of
sunspot humbers using the wavelet method and it
is given in Table 1.

4.1.2 Model Estimation of the Time Series
of Sunspot Number s using the Existing
Method

The commonly used method for analyzing
nonstationary-nonlinear time series is due to
Priestley. Using this method the model
representing the time series of annual sunspot
numbers is estimated. The analysis results using
Priestley’'s method is included in Table 2.

http://www.sciencepub.net 56

4.2 Analysisof Stock Exchange Time Series

To see variety of applications the methsod i
applied for the analysis of stock exchange time
series. The time series representing monthly
weighted-average exchange value of U. S. Dollar
starting from September 1977 to December 1998
is taken for illustrating the method discussed in
this paper. This is a secondary data (Hyndman,
2008). The plot of the data is given in figure 2.

Figure 2: Plot of stock exchange time series
T T T
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4.2.1 T-TAR model Estimation of the Stock
Exchange Time Series

Using the method explained in this paper T-
TAR model is estimated for stock exchange time
series using the wavelet method and it is given in
table 3.

422 Model Estimation of Stock Exchange
Time Series using the Existing Method

Using the existing method the model
representing the time series is estimated. The
analysis results of the stock exchange time series
using the existing method due to Priestley is
included in Table 4.

4.3 Analysisof IBM Stock Price Time Series
The time series of daily closing IBM stock
prices (Hyndman, 2008) is taken for illustrating

the estimation of T-TAR model explained in this
paper. The plot of the data is shown in Figure 3.
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o0 Figure 3: Plot of IBM stock price time series 4.3.2 Model Estimation of IBM Stock Price
‘ ‘ ‘ ‘ ‘ Time Series using the Existing M ethod

Using the existing method due to Priestley
the model representing the IBM stock price time
series is estimated. The analysis results using
Priestley's method is included in Table 6.

5. Conclusions

In this paper a new method for analyzing
nonstationary-nonlinear time series using wavelet
‘ ‘ ‘ , , decomposition is introduced. Under this method
% w20 m0 30 the given nonstationary-nonlinear time series is
decomposed into trend and detail series. After
decomposition of the given time series the
resultant series are modeled separately and then
the T-TAR model for the given time series is
obtained by combining the models representing
the trend series and detail series. This method
gives a comprehensive algorithm for analyzing
nonstationary-nonlinear time series which is an
advantage over the existing method.

The developed method is verified using
different time series. The developed method is
compared with the existing method and the error
analysis in Table 7 shows the efficiency of the
method in improving the accuracy in prediction.

350
0

43.1T-TAR Model Estimation of the IBM
Stock Price Time Series

Using the method explained in this paper T-
TAR model is estimated for IBM stock price
time series using the wavelet method and the T-
TAR model estimated is given in Table 5.

Table 1: Estimated T-TAR model for the time sen&annual sunspot numbers
Thresholc Estimated Modk MAPE MSE

3.3¢ 0_99xt71 - 0.003Xt72 - 5.6Yt71 0.790: 4.481:

A if Y, <333
— 889Y, , —21.7Y,_, +eY
099X, , —0.003X, , + 428, ,

+ 709Y,_, + 548Y,_, +¢?

if Y, > 333

Table 2: Analysis of time series of sunspot numbeiisg Priestley’'s method
Threshol Estimated Modk MAPE MSE

3 0.539X,, —0.196X,, 3.182t | 6531

. if X,,<35
+0.483X, , + e
X =10542X,_, —0.127X,,

+0.017X,_, + 0.051X,_, if X_,>35
+0.029X,  + 045X, . +¢€?
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Table 3: Estimated T-TAR model for the stock exa®time series
Threshol Estimated Modk MAPE MSE
3.5z 099X, , — 0000157, ., Liz 04
) if Y. <352
5 _ ) =079, 1258, + el
t71099X,, -0000157%, , .
@ if Y, >352
+1.121Y, , + 2499, +¢€
Table 4: Analysis of stock exchange time seri@sgiBriestley’'s method
Threshol Estimated Modk MAPE | MSE
%9 1.003X, , — 044X, , + 025X, _, 1.916« 0.521
— 019X, + 031X, — 031X,
s _ )T 023X, ;- 018X+ 039X, 4 if X, 3<90
" |- 049X, + 058X, ,,— 028X, .,
+ 04X, , +eY
1.169X_, — 016X, +€? if  X_,>90
Table 5: Estimated T-TAR model for the IBM stockcprtime series
Threshol Estimated Modk MAPE MSE
8.74¢ 0-99Xt,1 + 0.0000274“72 0.040: | 27.69¢
— 302Y,_, — 2.659%, if Y, <8744
, _) —8021 ,-3734Y_, + el
t 71 099X, , —0.0000274,
+ 286Y,, + 2.726Y_, +19Y,_, if Y_, >8744
+ 236, , +e?
Table 6: Analysis of IBM stock price time seriesngsPriestley’s method
Threshad Estimated Modk MAPE | MSE
56(

1.293X,, —0.293X, , + e
113X, , —0.338X, , +0.176X, ,

+0.145X _, — 028X, . + 0.016X, .
~0.106X_, +0.257X,_, +€?

X, =

if X,_,>560

if X, <560 1.46¢ | 84.48:

Table 7: Error Comparison of T-TAR model and Modeé to Priestley

Sr. No | Time Serie T-TAR Model Model due to Priestle
MAPE MSE MAPE MSE

1. Sunspc 0.7901 4.481¢ 3.182¢ 6.531"

2. Stock Exchanc 1.1z 0.4¢ 1.916¢ 0.521¢

3. IBM Stock Prict 0.040: 27.69¢ 1.46¢ 84.48:
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