Notes on Indicators of Environmental Status in Inshore and Offshore Waters of South Western Nigeria

Nwankwo, Diike Ikegwu* and Adesalu, Taofikat Abosede**
*Department of Marine Sciences, University of Lagos, Akoka, Nigeria.
**Department of Botany, University of Lagos, Akoka, Nigeria.
boseadesalu@yahoo.com

Abstract: This compilation is based on several years of personal and collaborative work on inshore and offshore waters of South West Nigeria. The relevance of algae, polychaetes, juvenile stages, as well as water chemistry in determining environmental status was documented. Nutrient level, dissolved oxygen, biological oxygen demand level and thermocline development are important abiotic factors. [Nature and Science 2010;8(6):62-65]. (ISSN: 1545-0740).

Keywords: pollution indicators, inshore, offshore, phytoplankton, environment.

1. Introduction

The inshore and offshore waters of South West Nigeria are prone to contamination arising from an inefficient or outright non-existent sewage system (Nwankwo, 1986; Ajao, 1989) Tidal water recruitment of wood wastes deposited along the lagoon shore at Okobaba (Akpata, 1987; Nwankwo and Akinsoji 1989; Nwankwo, 1998) and waste heat generated by gas driven thermal plants washed into the shores of Lagos Lagoon at Egbin (Nwankwo et al, 2008). There are land based diffuse sources of contamination resulting from the use of old, worn out technology by industries (Nwankwo et al., 1993) leachates from land due to poor land use (Nwankwo 1993) erosion caused by human intervention on the coastline and resulting in increased solids. Besides, there is the challenge of sand extraction from the Lagoon and modification of wetlands through sand filling (Nwankwo, 1996). Furthermore, there is the petroleum industry related contamination (Adesalu and Nwankwo 2005) through sabotage, equipment failure, human error, leakages and inappropriate practices of refined petroleum and spent oil dispensers. These interventions in locations resulted in very high temperatures, low transparency, anoxic condition, very high bio-chemical oxygen demand (BOD$_5$), very high chemical oxygen demand (COD) and acidic condition (Oyenekan 1975, Ajao, 1996, Nwankwo 2004). Algae, bacteria, benthic fauna and fungi are useful indicators of aquatic environmental quality; they act as early warning signals thereby provoking appropriate remediation. This compilation is an attempt to provide resource materials for environmentalists working in the Nigeria inshore and offshore waters.

2. Table 1. Indicators of environmental status

A. Offshore / oceanic

<table>
<thead>
<tr>
<th>Types of environment</th>
<th>Characteristics</th>
<th>Indicator</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Continental slope</td>
<td>Deep water, very cold water</td>
<td>Coccolithophores</td>
<td>Unpublished report</td>
</tr>
<tr>
<td>2 Plankton</td>
<td>High alkaline water, salinity above 35%</td>
<td>Predominantly Diatoms, dinoflagellates</td>
<td>Unpublished report</td>
</tr>
</tbody>
</table>

B. Inshore / coastal

<table>
<thead>
<tr>
<th>Types of environment</th>
<th>Characteristics</th>
<th>Indicator</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Fresh water Swamps, creek-lets</td>
<td>Acidic, nutrient poor, brownish colour</td>
<td>Desmids, dwarfed Eichhornia crassipes</td>
<td>Adesalu et al. 2008, Nwankwo et al; 1999</td>
</tr>
<tr>
<td></td>
<td>Environmental Conditions</td>
<td>Species/Phenomena</td>
<td>References</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>3</td>
<td>Mangrove swamps</td>
<td>Acidic water, brownish to reddish brown exudates possibly humic and fluric acids</td>
<td>Nwankwo et al.; 1999.</td>
</tr>
<tr>
<td>6</td>
<td>Shallow waters</td>
<td>Mixing of water shattered</td>
<td>Unpublished data</td>
</tr>
<tr>
<td>7</td>
<td>Deep waters</td>
<td>Vertical environmental gradient</td>
<td>Nwankwo Unpublished</td>
</tr>
<tr>
<td>8</td>
<td>Sluggish creeks, river</td>
<td>Bubbles of gas on water surface, pungent smell, transparency very low, high BOD, low Dissolved Oxygen</td>
<td>Ajao and Fagade (1990); Adesalu et al., (2008), Adesalu and Nwankwo (2008),</td>
</tr>
<tr>
<td>12</td>
<td>Lagoons, creeks</td>
<td>Eutrophic/heavy organic contamination BOD >8.0 mgL-1 very low species richness.</td>
<td>Nwankwo (1993, 1996) Nwankwo and Akinsoji (1992);</td>
</tr>
<tr>
<td>14</td>
<td>Open water in Lagoons, tidal creek</td>
<td>Change of hydroclimate conditions collapse of horizontal environment gradient or build up of horizontal environmental gradient.</td>
<td>Nwankwo (1996).</td>
</tr>
<tr>
<td>15</td>
<td>Open water carried by waves</td>
<td>Deep brownish colouration atimes drifting towards the shore line.</td>
<td>Nwankwo and Onyema (2009).</td>
</tr>
</tbody>
</table>
Coastal, drifting from freshwater and mangrove swamp into creeks, river, Lagoons

Deep brown or reddish brown leachates, acidic. Fluic and humic acid leached.

Nwankwo et al., (2005); Adesalu and Nwankwo (2005).

Riparin vegetation

Clumps of grasses, pure stands of mangroves Brackish water

Paspalum vulgaris, Rhizophora, Acrosticum, Raphia hookeri, Pachymelina, tympathonus

Lagoons, creeks

Eroding riparine zone, dredging.

Presence of soil algae e.g Botrydium.

Adesalu and Nwankwo (2005).

Lagoons, creeks

High number of algal species, high biomass, high dominance.

Organic pollution

Lagoons, creeks

Low number of algal species biodiversity, low biomass.

Area of elevated temperatures.

Nwankwo et al., (2009).

Lagoon

High brackish water Tilapia, Asphyxia.

Bloom of Chaetoceros sp.

Unpublished.

3. Conclusion

Proper screening of organism and correct identification are very important in any attempt to interprete biological data for environmental use. Not all species in a genus may have been screened and some species are more function in a presence or absence manner while others are very opportunistic and therefore useful in accumulating contaminants.

It is important to have a proper knowledge of the environment. For instance is it physically controlled or biologically controlled. If physically controlled, what are the forcing functions and if biologically controlled what are the controlling factors?

The tropical environment is determined by rainfall while the temperate environment is determined by temperature. In interpreting results workers should be weary of extrapolation. There are two main seasons in Nigeria and four in the temperate region.

Some species are essential stenohaline, existing either as fresh waters forms or oceanic. Care should be taken not to mess up ones work with a little exhibition of ignorance, atimes the minute details we ignore give us great clues of ecological niches of a myriad of organism.

Corresponding author:
Adesalu, Taofikat Abosede.
Department of Botany and Microbiology
University of Lagos, Akoka, Nigeria
E-mail: boseadesalu@yahoo.com

References

3/25/2010