Floristic Composition and Biological Spectrum of Vegetation in Alpine Meadows of Kedarnath: Garhwal Himalaya

Kusum Pharswan *, J. P. Mehta and Subodh Department of Botany, Post Box-22, H. N. B. Garhwal University, Srinagar (Garhwal), 246174, India *<u>kkusumpharswan@gmail.com</u>, Research fellow

Abstract: The present paper gives an account of flora of Kedarnath which have very harsh climatic conditions. 80 species, belonging 36 families were estimated from the study area. Notes on phenological pattern, life form (biological spectrum), plant type and uses have also been studied. Asteraceae was the dominant family (11.25%) recorded under present investigation. The genus and species are arranged alphabetically with in a family with correct nomenclature. The major class of life form was found to be Chamaephytic. Besides Chamaephytes (36.25%), the other life forms enumerated were Therophytes (28.75%), Cryptophytes (18.75%), Hemicryptophytes (11.25%) and Phenerophytes (5%). Most of the plant species had flowering and fruiting in rainy season, followed by summer season and very few species in winter season. [Nature and Science 2010;8(7):109-115]. (ISSN: 1545-0740).

Key words: Kedarnath, life forms, biological spectrum, floristic list, altitude.

Introduction:

Himalaya is a mega diversity centre of world. It supports about 18,440 species of plants, of which 25.3% are endemic to Himalaya (Singh and Hajra, 1997, Samant et.al., 1998). In which most of the plant species are used as medicine and food. High mountain ecosystem are comparatively thrilling and sensitive at least at the upper elevation levels, and are determined by abiotic climate related ecological factors (Gaur et.al., 2005). Species richness increases remarkably partially due to the invasion of plant species from alpine belt (Gottfried, 1998). The well known cause for declining plant species diversity are habitat loss, narrow distribution range, low population size, fragmentation degradation of population and genetic variation (Allen and Allen, 1990; Weekly and Rau, 2001; Vergar et.al., 2003; Kala, 2000, 2005a). To save this precious natural wealth, protected areas have been established and within the Indian Himalaya there are many protected areas that contain rich medicinal plant diversity (Kala, 2005a). KWLS (Kedanath Wild Life Sanctuary) in Uttarakhand state of India is one of the protected area which have a lot of traditional knowledge of medicinal plants and a very high diversity. The flora and its ecological characters such as life forms were studied in this paper. Life form etc. indicates climate and human disturbance of a particular area (Cain & Castro, 1959). Very little work is available on this aspect.

The climatic conditions of alpine zones of India include dense frost, fog, heavy hailstorms, extremely low temperature, high intensity of light and high wind velocity and lower oxygen and carbon dioxide concentration. There is sharp fluctuation regarding these weather conditions, even in the same day. Monthly max and minimum temperature ranges between 24-14 c and 7.5-3 c respectively (Maikhuri *et.al.*, 1998). Comparatively very high rainfall was observed in this area. Average annual rainfall (1475mm) occurs over a short period of two months (July-Aug), featuring a strong monsoonic influence.

The diverse topographic features of the Himalayas sustain an enormous perennial reservoir of vegetation resources (Gaur *et al.*, 1995). The high altitude of this region have unique vegetation due to their diverse geo-morphology which provides different microhabitats for specific plant growth. The alpine vegetation of this part has many characteristic features in connection with the separation zone from timber line, seasonal succession and distributional pattern. On the basis of distribution the alpine plants represent distinct habitats. They are found on exposed dry rocks crevices, ravines and on much fertile loamy soils constituting the alpine meadows (Semwal & Gaur, 1981).

The well known species of this alpine meadow are *Hypericum hookerianum*, *Thalictrum alpinum*, *Angeleca glauca*, *Primula denticulate*, *Gentiana* spp., *Caltha palustris*, *Gagea lutea*, *Anemone* *obtusiloba* and species of *Potentilla, Polygonum, Delphinium* and *Taraxacum officinale* are observed.

Material and Methods: Study area:

KWLS in Uttarakhand that are situated in central Himalayan region, covers an area of 975 km², which lies between 29 26' and 31 38'N latitude and 77 49' and 80 6' E, longitude, at an elevation of 1160m to 7068 m.asl in district Rudraprayag (Figure-1). The elevation of study area between 2500m to 4000 m.asl. The slope of the study area is lies between 30-60 c and towards the South-East aspect .

The region is rich in bioresources and fascinating folk culture as well as diverse flora and fauna due to its distinct meteorological, geographical, geological and ecological patterns (Gairola and Biswas, 2008). The alpine habitat usually starts at timberline or the tree line i.e. 3500 m.asl and are characterized by the complete absence of tree. The soil of the Kedarnath valley is dark brown to brown at surface and brown to yellowish brown in the sub soil and endodynomorphic (Singh and Singh, 1992).

For the estimation of vegetation structure and composition random sampling was done taking 0.5 m² quadrates. The size of the sampling plot was arrived at by the method given by Misra (1968). After counting the number of individual species, they were clipped at the ground level and identified. Classification was done as per the Raunkiaer (1934) and species belonging to respective life-form were arranged.

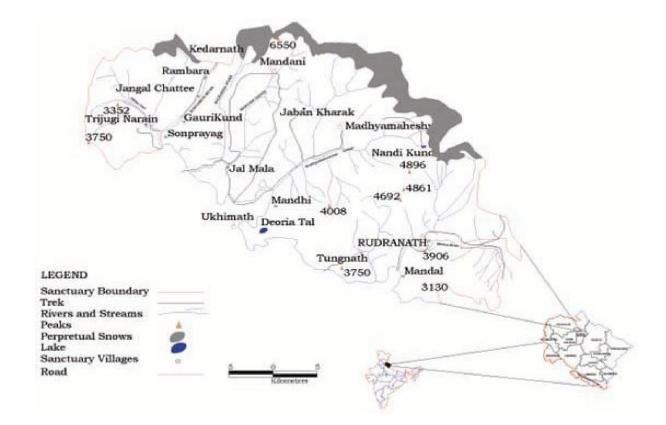


Figure-1. Complete map of KWLS by Semwal et.al.

Occurrence of plant species on the study site from May 2009 to October 2009 were recorded and assigned to various life-form classes following Raunkiaer (1934). The percentage life form was calculated as follows :

% Life-form = $\frac{\text{Number of species in any life form}}{\text{Total number of species of all life forms}} \times 100$

Result:

A complete list of the plant species encountered in the study area Kedarnath is given in Table-1. There are 80 plant species recorded which belong to 36 families. Monocots represented by six families (Liliaceae, Poaceae, Orchidaceae, Araceae, Amaryllidaceae and Dioscoreaceae) while the remaining thirty families represented the dicots. The dominated families were Asteraceae, 9 spp.(11.25%), Ranunculaceae, 8 spp.(10%), Apiaceae and Poaceae were represented by 5 spp.(6.25%) each, Lamiaceae and Polygonaceae had 4 spp. each. The majority of the species ,67.5% were recorded from 2500 to 4000m. altitude, 17.5% species from below to 2500m. and 15% of the total species have a broad range of occurrence, recorded from 1000 to 4000m. altitude.

The biological spectrum (Figure-2) showed that Chamaephytes, 29spp. (36.25%) and Therophytes, 23spp. (28.75%) were the dominant followed by Hemicryptophytes, 9spp. (11.25%), Cryptophytes, 15spp. (18.75%) and Phanerophytes, 4spp. (5%). The annuals, biennials, perennials and annual-perennials were 13.75%, 1.25%, 72.5% and 12.5% respectively, of the total plant species. There are three distinct climatic season of Kedarnath, rainy season, summer season and winter season. Majority of the plant species having flowering and fruiting in rainy season (50spp., 62.5%), summer season is represented by lesser no plants (18spp., 22.5%) than rainy season and the rest and very low plant species are represent to winter season (12 spp., 15%).

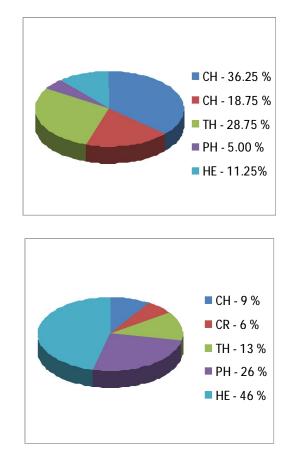


Figure-2. Biological Spectra of Kedarnath Raunkiaer's Normal Spectra

S.No	Plants Name	Vern. Name	Family	Altitude	Life- form	Plant Type	Fl-Fr	Part used	Uses
1	Allium corolianum	Faran	Amaryllidaceae	3000- 4000	CR	Ann	Jun- Sept	BB, LF	Indigestion, joint pain
2	Allium.humile	Faran	-	3000- 4000	CR	Pere	June- Aug	LF,BB	Asthma, Jaundice
3	Angelica glauca	Choru	Apiaceae	3000- 4000	СН	Pere	Jul-Oct	RT, FR, ST	Flatulence, constipation, bronchitis, gastric, dyspepsia
4	Bupleurum longicaule		-	2800- 4900	СН	Pere	July- Sept	RT	RAMP
5	carum carvi	Jangli dhaniya	-	2500- 4500	СН	Pere	Jul-Sept	SD	Cold, fever, cough
6	Foenculum vulgare	Saunf	-	2500- 3400	TH	Ann/Pere	Feb-Jun	WP	Vomiting
7	Arisaema flavum	Meen	Araceae	2400- 3800	TH	Pere	May- Aug	BB	Skin diseases
8	Arisaema jacquemontii	Khaprya	-	2000- 3000	CR	Pere	May- Aug	BB	Ringworm-killer, snakebite
9	Anaphalis lineasis		Asteraceae	3500	TH	Ann	May- Sept		
10	Artimisia capillaries	Marva	-	2400- 5600	TH	Pere	Jul-Dec	WP	Hypertension, Typhoid, dyspepsia

Table 1: List of plant species, life forms, plant type, phenolgy and medicinal uses encountered in the study area of Kedarnath

11	Artimisia maritima	Pati	-	3000- 4000	СН	Pere	Jun-Oct	LF,WP	Cuts, gastric, anthelmintic
12	Artimisia nilagirica	Kunjo	-	3000- 3500	СН	Pere	Aug- Oct	LF,WP, AP	Ulcer, Wound, cut
13	Doronicum falconeri		-	3300- 4800	TH	Pere	Aug- Sept		
14	Echinops cornigerus	Kandala	-	1000- 2500	СН	Pere	Sept- Oct	RT	Urinary trouble, fever
15	Inula cuspidata	Jhuri	-	2000- 3400	СН	Pere	Sept- Dec	RT	Dyspepsia, colic
16	Jurinea dolomiacea	Bis- kandara, guggul	-	3200	СН	Pere	Aug- Oct	RT	Colic, sores, antiseptic
17	Taraxacum officinale	Kanphuliya Karatu	-	1800- 4200	TH	Pere	Feb-Oct	WP, LF,RT	Blisters, tonic, blood purifier, kidney disorder, migraines,
18	Impatiens scarbida	Ban-til, tillua	Balsaminaceae	2700- 3000	TH	Ann/Pere	Jul-Oct	SD	Hair tonic, abortion
19	Cynoglossum glochidiatum	Kuri	Boraginaceae	1500- 4000	TH	Pere	Jul-Nov	RT,LF	Wound, Ulcer
20	Arabis amplexinule	Ban- sarsaun	Brassicaceae	2500- 3000	TH	Pere	Mar- May	LF	Burns, scratches
21	Cyanthus lobatus		Campanulaceae	3200- 4200	СН	Pere	Jul-Oct	RT	Liniment in chronic rheumatism
22	Arenaria orbiculata,		Caryophylaceae	1500- 3200	HE	Ann/Pere	Mar- Aug		
23`	Cerastium cerastoides	Pangein	-	2400- 4700	TH	Pere	Apr- Sept	WP	Body ache, Headache, cough
24	Chenopodium ambrasioides	Kirmiri	Chenopodiaceae	2600- 3200	TH	Ann/Pere	Aug- Oct		Hook-worm killer, piles
25	Dioscorea deltoidea	Gethi	Dioscoreaceae	Up to 3100	CR	Ann	Jul-Sept	RZ	Rheumatism, spermatorrhoea
26	Goltheria tricophyla	Goltheria (Bhuinla)	Ericaceae	2700- 4600	TH	Ann	May-Jul	OL, LF, RT	Rheumatism, simulative, carminative, cough
27	Euforbia stracheyi	Dudhibish	Euforbiaceae	3500	TH	Ann	Jun-Jul	LT	RAMP
28	Androchne cordifolia	Bhatia	-	1000- 2500	PH	Pere	Jan-Dec		
29	Indigofera heterontha	Sakina	Fabaceae	1500- 3000	NP	Pere	May- Oct	LF,SD	Diarrhea, dysentery
30	Trifolium repens	Tipatiya	-	2300- 3500	CR	Pere	Apr-Jul	LF	As astringent
31	Corydalis govaniana	Bhut-keshi	Fumariaceae	3000- 4000	СН	Pere	Jul-Sept	RT	Diuretic, liver trouble
32	C.cornuta	Indra-jatta	-	2500- 3700	СН	Pere	Jun-Oct	RT	Veterinary medicines
33	Swertia ciliata	Sfed Chirota	Gentianaceae	2000- 4000	СН	Ann/Pere	Jul-Oct	WP, RT	Malaria, fever, vermifuge
34	Gentiana argentea		-	Up to 3300	СН	Pere	May- Sept	LF,FL	Sore throat
35	Geranium wallichianum	Ratanjot	Geraniaceae	1800- 4200	СН	Pere	Jul-Oct	RT, FL	Dysentery, cough, eye trouble, toothache, opthalmia
36	Geranium nepalense	Lal jhari	-	1500- 4000	HE	Pere	Aug- Nov	WP	Jaundice, ulcer, eczema
37	Hypericum oblongifolium	Peali	Hypericaceae	1500- 2500	PH	Pere	Mar-Jul	FL	Wounds, boils, facilitate delivery
38	Hypericum elodeoides	Basanti	-	3200	PH	Pere	Aug- Oct	LF	Tertiary fever
39	Ajuga bracteosa	Neelkanth	Lamiaceae	1200- 5100	HE	Pere	May- Aug	LF,RT	Jaundice, malaria, tonic
40	Lucas lanata	Bis-kapra	-	Up to 1800	CR	Pere	Jan-Dec	LF	Wound, check bleeding, heating
41	Micromeria biflora	Ban-ajwain	-	1000- 4000	СН	Pere	Aug- Nov	WP, LF	Eczema, cold
42	Stachys sericea		-	2400- 3000	СН	Pere	Sept- Nov		

43	Lilium polyphyllum	Kandmul	Liliaceae	1500- 3400	CR	Ann	Jun-Jul	BB	Diuretic, antipyretic, tonic
44	Epilobium lactum		Onagraceae	2500- 3800	TH	Pere	Jul-Oct	RT	Ringworm
45	Habenaria intermadia	Ridhi- virdhi	Orchidaceae	2800- 3200	CR	Pere	Jul-Sept	WP	Tonic
46	Dactylorhiza hatagirea	Hattazari	-	2800- 4000	CR	Pere	Jun-Oct	RT, TU	Diarrhea, bone fracture, wounds
47	Oxalis corniculata	Khatti-ghas	Oxalidaceae	Up to 2700	CR	Pere	Feb- Nov	LT,WP	Snakebite, jaundice, wart
48	Meconopsis aculeate	Kalihari	Papaveraceae	3200	СН	Pere	Jun- Sept	WP, RT, LF, FR	Renal pain, fever, colic, wound
49	Plantago major	Isabgol	Plantaginaceae	1200- 3300	CR	Pere	Mar- Dec	SD, LF	Fever, Tonic, intestinal injury
50	Cynodon dactylon	Doob	Poaceae	1500- 3000	HE	Pere	Jun-Dec	WP	Anti-Abortive, haemostatic
51	Eulatia contorta		-	1500- 2600	HE	Ann	Sept- Oct		
52	Festuca gigantean	Tall broom	-	2000- 3500	CR	Pere	Aug- Dec	LF	Fodder
53	Heteropogon contortus	Kumra	-	Up to 2600	HE	Ann/Pere	Aug- Dec	RT	Stimulant, diuretic
54	Sporobulous diander	Sitya	-	Up to 1500	CR	Pere	Mar- Sept	LF	Burns, pimples
55	Podophyllum hexandrum	Bankakri	Podophyllaceae	3200- 4000	CR	Pere	Apr- Sept	RT, FR, SD, RH	Cancer, skin disease
56	Polygala crotalariodes		Polygalaceae	1800- 3000	TH	Pere	Apr- Nov	WP,RT	Catarrhal affections, cough
57	Polygonum amplexicaule	Kutrya	Polygonaceae	2500- 3000	СН	Ann/Pere	Jul-Sept	RT,LF	Stomach trouble, wound, cough.
58	P. vaccinifolium	Inuri	-	3000- 3600	СН	Ann/Pere	Jul-Aug		
59	P.macrophyllum	Kukhri	-	3000- 3400	СН	Ann	Jul-Oct	WP	RAMP
60	Rheum emodii Wall.ex.		-	3200	СН	Pere	Jun-Jul	RZ/RT	Asthma, abdominal pain, fever
61	Androsace rotudifolia		Primulaceae	2000- 3000	TH	Pere	Jun- Sept	ST	Stomach pain
62	Primula denticulata	Jalkutra	-	3100	TH	Pere	Apr-Jul	LF, RT, FL	Urinary problems, cough, cold
63	Aconitum heterophyllum	Meeth Bish	Ranunculaceae	3350- 4500	СН	Pere	Aug- Nov	RT, TU	Diarrhea, vomiting, digestive disorder, cough
64	Aconitum balfourii	Meeth bish	-	3300- 4100	HE	Bi	Aug- Nov	TU	Neuralgia, paralysis, rheumatic fever
65	Animone obtusiloba	Kanch- phool	-	3400- 4200	СН	Pere	May- Aug	RT, SD	Rheumatism, diarrhea
66	Animone rivularis	Mirchile Angeli	-	1600- 4000	СН	Pere	Jun-Oct	LF, WP, RT	Ear pain, fever, bone fracture
67	Caltha palustris	Kushnya	-	2500- 4200	TH	Pere	Jul-Sept	WP, FL	Warts, anemia, tincture, diuretic
68	Delphinium denudatum	Nirbishi	-	2000- 3500	TH	Ann/Pere	Apr- Nov	RT	Ulcer, cold, cough
69	Ranunculus hirtellus	Simariya	-	2800- 3600	СН	Ann/Pere	Jul-Sept	ST,LF	Anthelmintic, wounds
70	Thalictrum alpinum		-	3000- 4000	СН	Pere	Jul-Aug	RT,LF	Fever
71	Duchesnia indica	Bhikafal	Rosaceae	Up to 2500	HE	Ann	Apr-Jun	LF,FL,RT	Leucoderma, diarrhea
72	Potentilla fulgens	Bajra-danti	-	1500- 3000	TH	Pere	Jul-Nov	LF, RT	Toothache, urinary disorder, burns
73	Potentilla nepalensis		-	1800- 3000	TH	Pere	Jul-Oct	RT	Burns
74	Galium aparine	Kuri	Rubiaceae	3000- 4000	СН	Ann	Aug- Sept	WP,LF	Ant scorbutic, skin disease
75	Bergenia ciliate	Pasha nbhed	Saxifragaceae	2000- 3600	TH	Pere	Jun- Sept	RZ	Febrifuge, digestive disorder

76	Saxifraga		-	3000-	CH	Pere	Jul-Dec		
	brachipoda			4500					
77	Valeriana	Samewa	Valerianaceae	2000-	CR	Pere	Mar-Jun	RT,LF,FL	Epilepsy, hysteria,
	jatamansi			3000					mental disorder
78	Nardostachys	Jata-mansi	-	3400-	CH	Pere	Jun-Oct	RZ, WP	Hysteria, Epilepsy,
	grandiflora			5000					Diuretic, blood purifier
79	Viola biflora	Bana-ksha	Violaceae	2300-	HE	Ann	Jun-Aug	RT, FL,	Emetic, constipation
				3600				WP, LF	
80	Viola	Banfasa	-	3000	HE	Ann	Aug-	LF,WP	Blood disease,
	betonicifolia						Sept		diaphoretic

CH-Chamaephytes, TH-Therophytes, CR-Cryptophytes, HE-Hemicryptophytes, PH-Phanerophytes, Ann-annual, Bi-biennial, Pere-perennial, WP-whole plant, LF-leaf, FL-flower, RZ-rhizome, RT-root, TU-tuber, SD-seed, FR-fruit, BB-bulb, OL-oil.

Discussion:

The analysis of the flora of the study area indicates that the meadows are affected by intense biotic interference. The number of Chamaephytes is maximum while that of Phanerophytes is minimum. According to the biological spectrum given by Raunkiaer (1934), the flora of the present meadows may be called as the Chamaephytic. The high percentage of Chamaephytes characterized the colder climate and high altitude (Braun-Blanquet, 1932). But Hagerup (1931) explained that higher percentage of Thamaephytes is an indication of semi-desert condition at altitude. Chamaephytes were followed by Therophytes which indicate that heavy biotic pressure due to grazing and men's interference.

Nearly thirty species from the Garhwal Himalaya have been listed in various categories under threat in the Indian Red Data Book (Nayar and Sastry, 1887-90), of which 24 species are from high altitude alpine regions. Recently, Rawat et.al. (2001) listed 45 more species (excluding Red Data Books) which need special attention for conservation and this list also contains as many as 30 species from high altitudes, for example Aconitum heterophyllum, Angelica glauca, Arnebia benthamii. Dactvlorhiza hatagirea, podophyllum hexandrum and picrorhiza kurrooa, all possessing high medicinal damands and thus are overexploited from the wild.

Acknowledgment:

Authors are grateful to Head of the Department, Department of Botany for providing laboratory facilities and encouragement.

Corresponding to:

Kusum Pharswan Department of Botany, Post Box-22, H. N. B. Garhwal University, Srinagar (Garhwal), 246174, India Phone No- 9410952673 Emails- kkusumpharswan@gmail.com

References:

Allen RP and Allen CP. How many plants feed world? Conservation Biology. 1990; **4**: 365-374.

- Bhandari BS, Mehta JP and Tiwari SC. Floristic composition, biological spectra and diversity of burnt and unburnt submontane grazing lands of Garhwal Himalaya. J Indian bot Soc. 1999; **78**:107-110.
- Braun-Blanquent J. Plant Sociology (Transl. by fuller,G.D.& Conard,H.S.). McGraw Hill New York. 1938.
- Cain SA and GM de Oliveria. Castro Manual of Vegetation Analysis. Harper & Brothers, New York. 1959.
- Gairola Y and Biswas S. Bioprospecting in Garhwal Himalayas, Uttarakhand. Current Science. 2008; **94(9):** 1139-1143.
- Gaur UN, Raturi GP and Bhatt AB. Current vegetation pattern along Glacial Landscape in Central(Garhwal) Himalaya, India. Journal of Mountain Science. 2005; **2(3):** 255-264.
- Gottfried M, Pauli H and Grabherr G. Prediction of Vegetation Patterns at the Limits of Plant Life: a new view of the alpine-Nival Ecotone. Arctic and Alpine Research. 1998; **3**: 207-221.
- Hagerup O. Etude des types biological de Raunkiaer dans la flora autour de Tombouctou. Daske Videnskah Selskab. Biol Medd. 1931; ix 4.
- Kala CP. Status and conservation of rare and endangered medicinal plants in the Indian trans-Himalaya. Biological Conservation. 2000; **93**: 371-379.
- Kala CP. Indigenous uses, population density and conservation of threatened medicinal plants in

protected areas of the Indian Himalayas. Conservation Biology. 2005a; **19**(2): 368-378.

- Maikhuri RK, Nautiyal S, Rao KS and Saxena KG. Medicinal plant cultivation and biosphere reserve management: A case study from the Nanda Devi Biosphere Reserve, Himalaya. Current Science. 1998; **74(2):** 157-163.
- Naithani BD. The Flora of Chamoli, Vols. I & II BSI, Howrah. 1984-1985.
- Ram J and Arya P. Plant forms and vegetation analysis of an alpine meadow of Central Himalaya, India. Proceeding of The Indian National Science Academy. 1991; **57**: 311-318.
- Raunkiaer C. The life forms of plants and statistical plant geography. The clarendon press, Oxford. 1934; 632 pp.
- Samant SS Dhar U and Palni LMS. Medicinal Plants of Indian Himalaya: Diversity, Distribution and Potential values, Gyanodaya Prakashan, Nainital. 1998.
- Semwal DP, Saradhi P Pardha, Nautiyal BP and Bhatt AB. Current status, distribution and conservation of rare and endangered medicinal plants of Kedarnath Wildlife Sanctuary, Central Himalayas, India. Current Science. 2007; **92(12).**
- Semwal JK and Gaur RD. Alpine Flora of Tungnath In Garhwal Himalaya. J. Bombay Nat. Hist. Soc. 1981; **78(3):** 498-512.
- Semwal JK, Gaur RD and Purohit AN. Floristic pattern of Tungnath alpine zone in Garhwal Himalaya. Acto Botanica Indica. 1981; **9**:110-114.

- Shah R. Nature's MEDICINAL PLANTS OF UTTARANCHAL (Herbs, Grasses & Ferns)Vol. II, B L Consul for Gyanodaya Prakashan, Mallital, Nainital. 2006.
- Sher Zaman and Khan Zaheer-ud-Din. Floristic composition, life form and leaf spectra of the vegetation of Chagharzai valley, District Buner. Pak. J. Pl. Sci. 2007; **13**(1):57-66.
- Sikarwar RLS. Life forms and biological spectrum of the flora of Morena District, Madhya Pradesh. J Indian bot Soc. 1996; **75**: 275-277.
- Singh, D K and Hajra, P K (1997) Floristic diversity. In Gujral (Ed.). Biodiversity Status In the Himalaya. 23-38. British Council, New Delhi.
- Singh JS and Singh SP. Forest of Himalaya: Structure, Functioning and Impact of Man, Gyanodaya Prakashan, Nainital. 1992.
- Sundriyal RC, Joshi AP and Dhasmana R. Phenology of high altitude plants at Tungnath in the Garhwal Himalaya. Trop Ecol. 1987; **28**: 289-299.
- Vergeer PR, Rengelink AC and Ouborg NJ. The interacting effects of genetic variation, habitat quality and population size on performance of Succisa pratensis. Journal of Ecology. 2003; **91**: 18-26.
- Weekley CW and Race T. The breeding system of Ziziphus celata Judd and D.W.Hall (Rhamnaceae), a rare endemic plant of the Lake Wales Ridge, Florida, USA: Implication for recovery. Biological Conservation. 2001; **100(2):** 207-213.

19/3/2010