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Abstarct: Heterosis, or hybrid vigor, an unsolved  puzzle and a ‘miraculous’ agricultural phenomenon, refers to the 
phenomenon in which hybrid progeny of two inbred varieties exhibits enhanced growth or agronomic performance. 
Converse of hybrid vigour is ‘inbreeding depression’ caused by increased homozygosity of individuals, which 
reduces survival and fertility of offspring. Agricultural heterosis was observed nearly 100 years ago when hybrid 
plants out yielded their inbred parents and today this “hybrid vigor” is a major provider for global food production. 
One of the most promising approaches to unravel the genetic basis for heterosis at the molecular level emerged 
through the availability of molecular markers, as they have provided a powerful approach to map and subsequently 
identify genes involved in complex traits. Molecular marker technology was used to identify the genomic regions 
that contribute to heterosis for a trait of interest. The advancements in functional genomics have created a novel 
avenue to study the genetic basis of heterosis at the gene-expression level. The genetic basis of heterosis has been 
debated with respect to the relative importance of dominance, overdominance and epistasis; where one of the 
problems has been the use of whole genome segregating populations where interactions often mask the effects of 
individual quantitative trait loci.  In this review the phenomenon of heterosis and the modern concept of its genetic 
and molecular basis will be discussed. 
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1. Introduction 
Heterosis, or hybrid vigour, an unsolved  puzzle and 
a ‘miraculous’ agricultural phenomenon, refers to the 
phenomenon in which hybrid progeny of two inbred 
varieties exhibits enhanced growth or agronomic 
performance. Converse of hybrid vigor is ‘inbreeding 
depression’ caused by increased homozygosity of 
individuals, which reduces survival and fertility of 
offspring (Charlesworth and Willis, 2009). 
Inbreeding depression and heterosis are considered 
two aspects of the same phenomenon (Falconer, 1981; 
Mather and Jinks, 1982).  Heterosis a universal 
phenomenon in the biosphere though most evident 
for adult traits like plant biomass or yield but is also 
apparent during embryo (Meyer et al.,2004, 2007; 
Jhanke et al.,2010) and early seedling development 
(Hoecker et al.,2006). The concept was introduced 
nearly a century ago and such a long history, with 
paramount agricultural importance and exploitation 
has generated several hypotheses regarding the 
genetic basis of heterosis; however, the molecular 
basis and heterotic gene expression underlying 
heterosis remains elusive (Shull, 1908; 
Hochholdinger and Hoecker, 2007).  Heterosis is 
often expressed as Mid-parent heterosis, that is the 
difference in phenotype value between the 
heterozygous offspring and the mean of the 

homozygous parents, and Best-parent heterosis that 
describes the situation where the hybrid exceeds the 
best parent and is the underlying rationale for the 
widespread use of hybrids in many agricultural 
species. Hybrid vigor was first described by Charles 
Darwin. (1876) and was independently rediscovered 
by Shull. (1908) and East. (1908) who highlighted 
the high potential of this phenomenon for agriculture 
for the first time. The term “heterosis” was 
recognized by Shull to facilitate the description of 
this phenomenon and as short form for the phrase 
“stimulation of heterozygosis”. Despite a dramatic 
long history of successes, especially in maize 
( Duvick, 2001), there is still a striking discordance 
between an extensive agricultural practice of hybrid 
vigor utilization and our understanding of the basis of 
heterosis (Coors and Pandey, 1999; Reif et al.,2006), 
and this hampers an effective exploitation of the 
phenomenon. Still, the production of new hybrids 
basically relies on empirical and time consuming 
approaches (Duvick, 2001). Despite this lack of 
understanding and one of the most complex issues, 
breeders have quite successfully manipulated 
heterosis to increase the vigor of many domesticated 
species (Springer and Stupar, 2007). One of the more 
striking examples of the utilization of heterosis has 
occurred in maize breeding programs over the last 
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century (Hallauer and Miranda, 1981).In agriculture, 
the  use of heterosis in different crop plants and 
animals  has achieved great success and is considered 
essential to meet the world’s food needs (Duvick, 
1999).  One common theme throughout the last 
century has been that no hypothesis of heterosis holds 
true for every experiment or every organism; 
magnitude of heterosis varies in different species and 
is the result of variation at multiple genomic 
locations and complex phenotypes that are often 
assessed for heterosis, such as yield, and are likely 
influenced by many (hundreds of) genes. 
Additionally, heterosis does not simply result from 
the overall genetic diversity within a hybrid, but is 
likely a reflection of diversity at specific important 
genes that contribute to a particular trait (Springer 
and Stupar, 2007). Though recent studies have 
determined the roles of non- additive gene expression, 
small RNAs, altered hormone levels and epigenetic 
regulation, including circadian-mediated metabolic 
pathways in hybrid vigor, which could lead to better 
use and exploitation of the hybrid vigor (Osborn et 
al.,2003; Okoh et al., 2007; Birchler et al.,2010; 
Chen,  2010). However, the knowledge on genetic 
mechanism of heterosis is limited due to biological 
complexity and limitations of research methodology 
and still a topic of research today. 
2. Genetic models towards understanding of 
heterosis 

Dominance, real over dominance and/or 
pseudo over dominance and epistasis are the major 
genetic models invoked to explain hybrid vigor in the 
extensive scientific literature addressing heterosis in 
many crops (Lamkey and Edwards, 1999; Crow, 
2000; Reif et al., 2006). Although not always 
explicitly stated, these genetic hypotheses make the 
combination of a considerable number of genes and 
concurrently may play a role in hybrid vigor 
(Hochholdinger and Hoecker, 2007). However the 
basic question to be answered, what is the relative 
contribution of these gene actions in the 
manifestation of superior phenotype, is still revolving 
towards uncertainty, though dominance is considered 
more popular one (Charlesworth and Willis, 2009). 
These models have survived with various 
modifications and interpretations as the methods and 
specialties of biology have changed (Birchler et al., 
2010). Also, they were coined before the molecular 
concepts of genetics were formulated and are not 
directly connected with molecular principles. 
Although these classical hypotheses have provided 
guidance for experimentation, they are of limited 
utility to describe the molecular parameters that 
accompany heterosis. At molecular level, two models 
are considered to explain heterosis. One model 
considers that in hybrids having two different kinds 

of alleles an allelic expression in additive manner 
occur with the average of the parental expression 
levels. In the second model, the combination of 
different alleles causes gene expression changes in 
hybrids that deviate relative to mid parent (Birchler et 
al., 2010).   

The dominance hypothesis explains 
heterosis by the complementing action of superior 
dominant alleles from both parental inbred lines at 
multiple loci over the corresponding unfavorable 
alleles, leading to improved vigor of hybrid plants 
(Davenport, 1908; Bruce, 1910; Keeble and Pellow, 
1910; Jones, 1917). An extension of the dominance 
hypothesis was recently suggested on the basis of 
DNA sequencing data (Fu and Dooner, 2002). 
Accordingly, functional genes are often absent in 
maize lines, and lines lacking different genes would 
complement one another in the F1 hybrid, resulting in 
heterosis. However, in some instances the apparent 
loss of gene colinearity might be due to the 
movement of genes or gene fragments by helitron 
transposons to other genomic regions and thus the 
contribution of non-collinear regions of the genome 
to heterosis is unclear. Further it is unlikely that all 
species that display heterosis contain a degree of non-
collinearity in their genome as high as that of maize. 

Although complementation will certainly 
occur, as the major contributor to heterosis (Coors 
and Pandey, 1999; Crow, 1999), however for simple 
complementation to explain heterosis, the 
complementation across loci must be cumulative. 
There are several lines of evidence that suggest that 
mechanisms beyond simple complementation may be 
important in heterosis. The absence of a decline in 
the magnitude of heterosis (Duvick, 2001), the 
progressive heterosis in tetraploids, and the rapid rate 
of inbreeding depression in tetraploids have been 
cited as factors that suggest that dominance may be 
insufficient to explain completely about heterosis 
(Birchler et al., 2010).Further some classical studies 
on hybrid vigor, however, point out the   involvement 
of allelic dosage (rather than simple complementation) 
in the process. On the concept that heterosis results 
from the complementation of recessive detrimental 
mutations in the hybrid, one might expect that the 
magnitude of heterosis would decline with continuing 
accumulation of superior alleles in elite inbred lines. 
This however is not the result and it was observed 
that the magnitude of heterosis has not diminished 
but has increased slightly (East, 1936; Duvick, 1999). 
However, superior inbred lines have been difficult to 
identify, likely due to the large number of loci 
differing between two parents (Tsaftaris, 1995), an 
idea initially reported by East. (1936). 
  The phenomenon of progressive heterosis 
(Mok and Peloquin, 1975) suggests that increased 
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allelic diversity creates a more robust heterotic 
response. Progressive heterosis refers to the fact that 
double cross hybrid autotetraploids (ABCD) typically 
show greater vigor than single cross hybrids (AABB; 
CCDD and so on). If the explanation for progressive 
heterosis were solely complementation, increasingly 
superior alleles at any one locus must be added to the 
genotype with each different genome introduced in 
the tetraploid without contributing inferior alleles at 
other loci. The probability of this occurrence is low. 
This observation argues against simple 
complementation as the sole basis of heterosis; 
therefore, there must be an additional molecular 
explanation. 

The inbreeding depression curves of 
autotetraploid plants and diploid plants are similar 
(Busbice and Wilsie, 1966; Rice and Dudley, 1974). 
If inbreeding depression is driven by homozygosity 
of recessive alleles, then it should proceed at a much 
slower pace in tetraploids. At any one heterozygous 
locus in diploids, selfing will result in 50% of the 
progeny being homozygous, whereas in tetraploids, 
selfing for a heterozygous locus (AAaa) will only 
produce homozygous alleles in F1 1/18 of the 
progeny. The fact may be that allelic dosage impacts 
the magnitude of heterosis, and may be an additional 
argument why complementation of recessive 
detrimental alleles is an adequate model for heterosis 
(Birchler et al., 2010). Evidence that such dosage 
component is consistent, that the first quantitative 
trait locus cloned, fruit weight 2.2 (fw2.2), shows a 
negative dosage effect on the size of tomato fruit 
(Frary et al., 2000). The dosage of identical alleles, 
however, changes more rapidly than homozygosis 
and could potentially contribute to the otherwise 
unexpected more rapid progression of inbreeding 
depression. 

Over-dominance hypothesis attributes 
heterosis to the superior fitness of heterozygous 
genotypes over homozygous genotypes at single 
locus (Shull, 1908; East, 1908; Crow, 1948; Stuber, 
1994). It postulates that diverse alleles interact so as 
to create a superior function than that which could 
happen with homozygous alleles. Thus, a 
heterozygous individual may have an advantage due 
to the combination of both allozymes. For 
overdominance to produce superior phenotypes 
observations are repeatedly made that heterozygosity 
for a single gene or small genomic regions are needed 
to produce such response. Further a challenge for this 
model is to identify the best combination of a single 
genetic locus or a few loci that contribute to the 
overall heterosis, which seems to contradict the 
hybrid performance of many agronomic traits that are 
controlled by multiple genetic loci. Consequently, 
there is little support for single-gene over dominance 

(Lippman and Zamir, 2007).However a number of 
studies demonstrated the role of single genes in the 
manifestation of heterosis for various traits in 
Arabidopsis, Cereals and Tomato (Gustafson, 1946; 
Redei, 1962; Dollinger, 1985; Semel et al., 2006; 
Krieger et al., 2010). Though evident as examples of 
overdominance, it is possible that they involve 
dosage effects on regulatory networks that are not 
incompatible with the concept of multigenic control. 
If alterations to regulatory networks contribute to 
heterosis, then variation in single genes or multiple 
genes that are not necessarily the same in different 
varieties could also contribute (Birchler et al., 2010).  
Further, by contrast to genome-wide heterozygosity, 
single loci with over dominant action contributes 
significantly to reproductive fitness as they have 
possibility to persist in the population because of no 
hybrid breakdown in subsequent generations due to 
recombination. 
  Jones (1917) first pointed out that linkage 
could cause considerable problems when attempting 
to identify overdominance, which gives rise to 
pseudo-overdominance. Pseudo-over dominance 
refers to a particular situation, in which tightly linked 
genes with favorable dominant alleles in repulsion 
phase in the parental lines result in an apparent over 
dominance when combined in the hybrid (Crow, 
1952; Stuber et al., 1992; Graham et al.,1997).  For 
example, if beneficial dominant alleles were tightly 
linked to a deleterious recessive allele of another 
gene, one would have difficulty in producing the 
recombinant individual to identify such gene action. 
In that case, the pair of linked loci would mimic a 
single, over dominant locus, thus skewing a measure 
of true overdominance. The heterosis associated with 
pseudo-overdominance can dissipate in the selfing 
progeny because genetic recombination leads to the 
dissociation of the alleles from the repulsion state, 
which is exactly what is observed in a study with 
tomato hybrids (Semel et al., 2006). This pseudo-
overdominance can also arise from numerous alleles 
in recombination suppression regions where good 
and bad allele combinations are in repulsion (Gore et 
al., 2009; McMullen et al., 2009). 

There is also evidence for the role of 
epistasis in heterosis, i.e. the interaction of favorable 
alleles at different loci contributed by the two parents, 
which themselves may show additive, dominant, or 
overdominant action (Yu et al.,1997; Monforte and 
Tanksley, 2000; Li et al.,2001; Luo et al.,2001). 
Therefore, the genetic background and allelic 
interactions therein can have an effect on the 
heterotic contributions of individual loci. The 
dominance/overdominance debate becomes even 
more nuanced when contributions of epistasis are 
considered. 
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3. QTL and heterosis 
One of the most promising approaches to 

unravel the genetic basis for heterosis at the 
molecular level emerged through the availability of 
molecular markers, as they have provide a powerful 
approach to map and subsequently identify genes 
involved in complex traits. Molecular marker 
technology was used to identify the genomic regions 
that contribute to heterosis for a trait of interest.  
Specific genes/QTL for individual traits contributing 
to heterosis for desirable traits can be used to enhance 
the performance of hybrids by transferring them into 
parental inbred lines through MAS but may be very 
challenging. The complex trait ‘heterosis’ is expected 
to be reflected by many genes, their wide genomic 
distribution, the combination and interaction of which 
may depend on the organism and trait under study 
(Korn et al., 2008; Li et al., 2008). To exploit 
heterosis by its best it is much needed to understand 
the nature of dominance, epistatic properties of these 
genes and how they interact with the environment 
(Coors and Pandey, 1999). Also marker-based QTL 
studies are inherently inefficient at detecting epistasis 
and one cannot exclude the possibility that some 
level of epistasis is occurring. Mapping and cloning 
QTL with heterotic effects will require more rigorous 
approaches, particularly with regard to the global 
phenotyping that is much expensive and time 
consuming.  An alternative phenomic platform for 
each crop was proposed which would include a 
database of unbiased measurement of multiple traits 
(e.g., components to total yield are treated as 
individual traits and are recorded in well-
characterized environmental conditions in term of 
seasons, locations, and years (Lippman and Zamir, 
2007). Difficulties in defining specific heterotic 
phenotypes and individual loci that control them 
result predominantly from epistatic interactions 
among many segregating loci throughout the genome 
when F2, backcross, or recombinant inbred line (RIL) 
populations are used (Li et al., 2001; Luo et al., 
2001). Furthermore, when these populations 
segregating for the entire genetic background are 
used, the complex interactions often mask the effects 
of individual loci (Semel et al.,2006). However ILs, 
those are now widely available, helps in identifying 
and isolating QTL more effectively and feasibly, 
because any phenotypic difference between an IL and 
the recurrent parent is attributed to the introgressed 
chromosomal segment, thereby cleaning up most of 
the whole-genome epistatic interactions and 
eliminating the need for complicated statistical 
analyses (Lippman and Zamir, 2007). Recently  
phenomics study on tomato (Solanum lycopersicum)  
by Semel et al.( 2006) has shown that ILs are greatly 
effective for identifying QTL contributing to 

heterosis, particularly those showing over dominance 
effect. Meanwhile, compared with the F2 or the F3 
population, RILs as parents for producing testcross 
progenies offer few advantages as the effects of  
linkage is reduced, maximizes the genetic variance in 
testcross progenies and finally they are immortal.  
The main difference between RILs and ILs is the 
absence of variation for ‘background’ epistasis in the 
ILs, thereby increasing the power to detect QTL 
(Keurentjes et al., 2007; Reif et al., 2009). But with 
ILs epistatic interactions that are important in 
heterosis cannot be directly estimated (Li et al., 2001; 
Luo et al., 2001). Further based on single gene 
effects QTLs displaying over dominant gene action 
are not know, it is now imperative then to distinguish 
between true over dominance and pseudo- over 
dominance, that will require fine mapping  and 
eventual cloning of  over dominant QTLs, and make 
now  possible through  the availability of high- 
density molecular linkage maps.  

QTL mapping has been increasingly used in 
recent years that provide link between genotype and 
phenotype for a complex trait heterosis. Numerous 
QTLs with different levels of dominant, over 
dominant, and epistatic effects have been mapped for 
heterosis in Maize (Stuber et al., 1992; Beavis 1994; 
Lu et al., 2003; Frascaroli et al., 2007, 2009 ;Garcia 
et al., 2008; Schon et al., 2010), Rice (Li et al., 
2001;Luo et al., 2001 and Hua et al., 2003 Tomato 
(Semel et al.,2006), Rapeseed (Brassica napus) 
(Radoev et al., 2008;Dong et al.,2007; Radoev et al., 
2008; Basunanda et al., 2010) and A. thaliana 
(Kusterer et al., 2007; Melchinger et al., 2007;Meyer 
et al., 2010). Besides the involvement of various gene 
actions found in these studies, all the three gene 
actions may condition heterosis in crops (Li et al., 
2008; Swanson-Wagner et al., 2006). These diverse 
results indicate that heterosis may be caused by 
combinations of these mutually nonexclusive 
mechanisms.  Frequently, the comparison across 
studies is confounded by differences in experimental 
design, genetic material, or statistical methods used 
for data analysis. Despite numerous marker-aided 
studies on the genetic basis of heterosis in various 
crops, results have not been conclusive, further from 
QTL studies on the importance of epistasis have been 
rather ambiguous (Stuber et al., 1992; Cockerham 
and Zeng, 1996; Frascaroli et al.,2007).  Even using 
dense genetic maps, marker intervals can still cover 
several hundred genes (Young, 1999), i.e. their 
genetic resolution is low and their ability to account 
for complex interactions between several or many 
genes and their products is limited. 

QTL may not always directly control an 
individual agronomic trait but may instead be 
regulatory in nature, mediated by multi subunit 
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complexes, are dosage dependent that would 
contribute to the multi genic control of the ultimate 
phenotype (Birchler and Veitia, 2010).Furthermore 
the variation observed in the level of expression of a 
gene as a result of genotypic differences is referred to 
as an expression level polymorphism (ELP), and the 
QTL responsible for this type of variation have been 
described as eQTL (Jansen and Nap, 2001; Doerge 
2002; Gibson and Weir, 2005). Advances in QTL 
analysis and genetic genomics involving 
identification of expression QTL (eQTL), have led to 
significant progress in genetic dissection of complex 
traits likely heterosis. When the transcript abundance 
is treated as a continuous trait for the purpose of 
mapping, it is termed an expression trait (eTrait). 
More specifically in eQTL the transcript level 
measured in a mapping population can be treated as a 
quantitative trait like any other phenotypic trait and 
have mapped it to local-acting or distant-acting 
expression quantitative trait loci (eQTLs) (Brem et 
al., 2005). The eQTL analysis, when compared with 
classical quantitative trait analysis, may provide 
relatively more detailed information about a gene 
network controlling a trait, because in this analysis, 
data on thousands of expression traits are recorded 
simultaneously, also there is a one-to-one relationship 
between an eTrait and a gene with its expression 
profile assayed in the mapping population. Provided 
with these tools, expression quantitative trait locus 
(eQTL) analysis has been applied to study inheritance 
of thousands of similar traits in the hope to find 
general rules of genetic control of transcriptional 
regulation (Brem et al., 2002; Schadt et al., 2003;  ). 
Also, the gene expression traits exhibit a high level of 
heritability (Keurentjes et al., 2007), making their 
detection and manipulation more reliable. It has been 
shown that large number of both cis- and trans-acting 
eQTL are responsible for non additive genetic 
variation, which involves transgressive segregation 
and epistatic genetic variation that may sometimes 
alter an entire transcriptional network (Kliebenstein 
et al., 2006; Keurentjes et al., 2007; Potokina et al., 
2008). In future, it is hoped that eQTL analysis will 
be increasingly used as a supplement to classical 
QTL analysis for genetic dissection and manipulation 
of multiple traits. Further with the availability of 
novel genetic and genomic tools that allow for the 
integrated study of the complex interactions between 
genome organization and expression might contribute 
to a better understanding of heterosis. 
4. Heterosis and gene expression   

So far almost all of the documented studies 
on revealing the genetic basis of heterosis are limited 
to classical quantitative genetics and QTL mapping 
using molecular markers. The advancements in 
functional genomics have created a novel avenue to 

study the genetic basis of heterosis at the gene-
expression level. The dynamic genome of an F1 
hybrid is derived from its parents; hybrid 
performance is quite different from its parents due to 
extensive difference in gene expression in hybrids as 
compared to parents. The patterns of gene expression 
changes in hybrids results from unique regulatory 
interactions in hybrids, which give rise in quantitative 
variants, that may be responsible for the heterosis 
observed in the F1 hybrid (Birchler et al., 2010; 
Hochholdinger and Hoecker, 2007). Differences in 
gene expression thought to be an important source of 
phenotypic diversity, and complex trait that, in 
diploid organisms, results from transcription of both 
maternal and paternal allele (Knight, 2004; 
Fontanillas et al., 2010).  Genetic phenomenon like 
dominance, over dominance and epistasis are 
suggested to be generic features of gene regulatory 
networks and might be explained by mechanisms 
likely altered (Mrna) expression levels (Omholt et al., 
2000).   The observed heterosis so produced due to 
allelic expression differences resulting from changes 
in a regulatory region is poorly understood because 
of its complexity and the lack of efficient 
methodology (Cowles et al., 2002; Glazier et al., 
2002; Guo et al., 2004; Xing et al., 2010). Hybrid 
expression patterns can be additive as the average 
expression of parental lines  or non additive as 
between high and  low parent, above the high parent 
(over dominance), or below the low parent (under 
dominance) relative to the expression patterns 
observed in the inbred parents. These quantitative 
changes in gene expression may be the result of cis- 
or trans- variations in gene regulation (Wittkopp et 
al., 2004).  Cis- regulators are genetically tightly 
linked to a gene and influence transcription in an 
allele-specific manner. In contrast, trans-regulators 
are located elsewhere in the genome and modify gene 
expression by interacting with cis-regulators. Genes 
that are completely subject to cis-regulation reflect 
the relative expression levels of the parental inbred 
lines in the allelic ratio of gene expression in the 
hybrid. Genes that are exclusively regulated by trans-
acting factors show equal expression of the two 
alleles in the hybrid. Genes that are subject to cis- 
and trans-regulation fall in between the two classes, 
that is, the relative allelic contribution to gene 
expression in hybrids for this class of genes neither 
displays neither the relative expression levels of the 
parental inbred lines nor an equal expression of both 
alleles. While pure cis-effects imply the preservation 
of parental regulatory function, differential 
expression between parents and hybrid due to trans- 
effects are caused by hybridization that brings two 
genomes together, allowing both alleles to be 
exposed to a common set of trans-elements. 
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Identification of genes associated with 
changes in expression patterns in hybrids is important 
for understanding heterosis. It had been shown that 
differential gene expression between hybrids and 
their parents that are involved in certain complicated 
regulatory networks may be underlying cause of 
heterosis. However responsible molecular 
mechanisms have not been determined and the 
function of specific genes associated with it is still 
unknown. Earlier several studies have reported non 
additive expression for number of genes in maize 
hybrids as compared to their parental inbred lines 
(Romagnoli et al., 1990; Leonardi et al., 1991; Song 
and Mesing et al., 2003; Auger et al., 2005).Based on 
few selected genes they were not sufficient to explain 
the relationship between different gene expression 
and molecular mechanism of heterosis at genomic 
level. Recently, with the advent of new genomic tools, 
non additivity was observed on genome wide scale,  
that have been analyzed in  Maize (Zea mays), Rice 
(Oryza sativa) and Arabidopsis (Arabidopsis 
thaliana), that reveal complex transcriptional 
networks between parental inbred lines and hybrids 
to contribute to heterosis (Sun et al., 2004; Swanson-
Wagner et al., 2006, 2009; Wang et al., 2006; Meyer 
et al., 2007; Uzarowska et al., 2007; Zhuang and 
Adams, 2007; Chen et al.,2008; Guo et al.,2008; 
Hoecker et al., 2008; Pea et al., 2008; Stupar et al., 
2008; Zhang et al., 2008; Li et al., 2009; Tirosh et 
al.,2009; Wei et al., 2009; Andorf et al., 2010; He et 
al.,2010; Jahnke et al., 2010; Paschold et al., 2010; 
Riddle et al., 2010;). Non additive gene expression, 
arise when the combination of diverse alleles leads to 
interaction in hybrids and novel patterns of gene 
action (Birchler et al., 2010), is of common 
occurrence which suggests that altered trans- 
regulation in hybrids is quite prominent and plays 
important role in the manifestation of heterosis. 
Furthermore non-additive gene expression profiles 
have been documented in diploid and triploid maize 
hybrids and found that the non-additive effects in 
reciprocal diploid hybrids (AB versus BA) were 
similar to each other in contrast to the non-additive 
effects between the two types of triploid hybrids 
(Auger et al., 2005), that may be indication that 
dosage of different genomes alters the nature of the 
non-additive expression, suggesting role of 
regulatory effects (Birchler et al., 2005; Birchler and 
Veitia, 2007, 2010;).Additive gene expression was 
also prevalent in other studies for most of the genes 
(Guo et al., 2003,  2006; Vuylsteke et al., 2005; 
Stupar and  Springer, 2006;). These provide evidence 
that in hybrids additive or nearly additive expression 
pattern caused by cis- regulation are prevailed that 
may lead to a potential mechanism of heterosis based 
on mid-parent levels of gene expression.  

The differences found in these expression 
studies might be the result of utilization of diverse 
species, differences in genotypes within species, 
distinct tissues and variety of microarray platforms 
applied in the various studies. However, it might also 
be an indication that in different tissues or 
developmental stages different global expression 
patterns might prevail, which might nevertheless be 
related to heterosis. This notion is supported by the 
observation that different tissues and organs within a 
hybrid plant display significant differences in their 
degree of heterosis (Melchinger, 1999). 

These gene expression profiling studies 
represent a first step towards the definition of the 
complex gene expression networks that might be 
relevant in the context of heterosis. However, they 
cannot associate novel expression patterns in hybrids 
with any heterotic phenotypes, besides there is 
currently no direct link between the classical genetic 
hypothesis and these gene expression profiles. There 
has been no obvious consensus about genes that are 
differentially expressed in hybrids. It is tempting to 
relate such non-additivity of transcription to 
phenomena such as heterosis, but there is no evidence 
that this expression is responsible for phenotypic 
differentiation particularly in regard to economically 
important traits. Nevertheless, there does appear to be 
a correlation between the size of the fraction of genes 
that show non- additive expression and the magnitude 
of the heterotic response (Li et al., 2009; Riddle et al., 
2010), but it is not clear if this effect is causative. 
Further it appears that the number of genes showing 
non-additive effects increases when increasingly 
divergent genomes are combined (Birchler et al., 
2005; Birchler and Veitia, 2010).Up to date the 
studies of gene expression on the whole are 
ambiguous and as to whether any observed changes 
are correlative, causative, or predictive of heterosis 
(Birchler et al., 2010). However, some attempts to 
correlate parental expression with hybrid 
performance show promising (Frisch et al., 2010; 
Thiemann et al., 2010).  
5. Epigenetics as a cause of heterosis 

“Epigenetics” refers to heritable (through 
mitosis or meiosis) alterations in gene expression that 
are independent of DNA sequence (Wolffe and 
Matzke, 1999); different epigenetically regulated 
forms of a gene are known as epialleles. Epigenetic 
regulation of gene expression is accomplished by 
DNA methylation, histone modifications, histone 
variants, chromatin remodeling, and may involve 
small RNAs. As allelic variation can include 
sequence differences (alterations in DNA sequence) 
or regulatory differences (altered expression levels 
and epigenetic changes) found in different parental 
genotypes, and as at some level, heterosis is the result 
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of variation between the parental lines, epigenetic 
variation, like genomic variation, could also combine 
to produce a heterotic phenotype. Thus, if epigenetic 
mechanisms are responsible for allelic- and locus-
specific gene expression in hybrids and 
allopolyploids, they probably operate through cis- 
and trans-acting effects (Wittkopp et al., 2004; Wang 
et al.,2006), chromatin modifications, and/or small 
RNAs ( Chen, 2007; Chen et al.,2008).Among the 
regulatory mechanisms, DNA methylation, is a major 
epigenetic regulatory phenomenon due to its 
important role in cellular activities and more 
importantly in transcriptional inactivation leading to 
gene silencing, and gene regulation (Dong et al., 
2006). Understanding the dynamics and inheritance 
patterns of DNA methylation is essential for 
elucidating epigenetic paradigms in plant 
development, evolution (Zhang et al., 2007) and 
heterosis. The possible role of methylation in the 
expression of heterosis was first suggested by 
Tsaftaris et al., (1997) in maize. Later, Tsaftaris and 
Polidoros, (2000) have suggested that DNA 
methylation could be considered as genome wide 
regulatory mechanism that affects the global 
expression of many genes involved in the 
manifestation of heterosis. DNA methylation is 
generally recognized to function to suppress gene 
expression as regulatory factors (Jacobsen and 
Meyerowitz, 1997; Jones and Takai, 2001). Basically 
heterosis is a result of ‘‘different alleles’’ being 
present at loci that contribute to the regulatory 
hierarchies that control quantitative traits (Birchler et 
al., 2010). These ‘‘different alleles’’, however, can 
arise from differently methylated DNA. If so, 
homozygosity of methylated DNA in such regulatory 
factors suppresses gene expression, while its 
heterozygosity regulates depending on the gene 
actions, dominant, partial dominant or additive. 
Therefore, it can be suggested that inbreeding 
depression partly or primarily results from lower 
levels or fewer genes expressed simply due to 
homozygosity of methylated DNA in regulating 
factors, while heterosis is from higher levels or larger 
number of genes expressed simply due to 
heterozygous conditions between methylated and 
non-methylated DNA in the F1 hybrid.  

Further non-additive gene expression is also 
controlled by posttranscriptional mechanisms via 
RNA-mediated pathways (Chen, 2007; He et al., 
2010). Small RNAs, including microRNAs (miRNAs) 
(Bartel, 2004), small interfering RNAs (siRNAs) 
(Baulcombe, 2004), and transacting siRNAs 
(tasiRNAs), mediate post-transcriptional regulation, 
RNA-directed DNA methylation, and chromatin 
remodeling. RNA interference (RNAi) is an 
evolutionarily conserved mechanism for modulating 

gene expression (Sanghera et al., 2010). Evidence for 
the involvement of RNA-mediated gene regulation in 
heterosis came from characterization of five miRNA 
families in maize, and some miRNAs are 
differentially expressed between hybrid and its 
parental inbred lines (Mica et al., 2006) proposed that 
if siRNAs from one inbred do not match genes from 
the other inbred, the resulting hybrid could exhibit 
novel patterns of gene expression, including over-
dominance or under-dominance. As a result, short 
interfering RNAs (siRNAs) and microRNAs 
(miRNAs) are negative regulators of target transcript 
accumulation. Long non-protein coding RNAs 
(npcRNAs) are identified as precursors of miRNAs 
and siRNAs (Reinhart et al., 2002; Hirsch et al., 2006) 
and differentially expressed siRNAs and miRNAs 
between hybrid and its parental lines may be 
controlled by transcript levels of long npcRNAs. 
Recently in maize seedlings the differential 
expression of some siRNAs was controlled by 
transcript levels of a long npcRNAs named ZmHUR 
and was unregulated in hybrid (Xing et al., 2010). 

 Recently gene expression profiling in 
Arabidopsis had suggested that genes involved in the 
circadian rhythm, such as LHY (LATE 
ENLONGATED HYPOCOTYL) and CCA1 
(CIRCADIAN CLOCK ASSOCIATED 1), both 
MYB-like transcription factors, are associated with 
heterosis (Ni et al., 2009). A circadian rhythm is an 
endogenously generated rhythm with a period of 
about 24 h, approximating the period of the rotation 
of the earth on its axis.  Ni et al. (2009) reported a 
model related to circadian rhythms to explain 
heterosis, in which F1 hybrid and allopolyploid of 
Arabidopsis gained advantages from the control of 
circadian-mediated physiological and metabolic 
pathways. In this model, two key factors, CCA1 and 
LHY (Alabadi et al.,2001), were epigenetically 
modified and repressed in the F1 hybrid and 
allopolyploid during the day and further induced the 
expression of downstream genes involved in 
photosynthesis and carbohydrate metabolic pathways. 
The regulatory network involved in circadian clocks 
affect many physiological and developmental 
processes, including various metabolic pathways and 
fitness traits in animals and plants, and 
photosynthesis and starch metabolism in plants 
( Wijnen and Young, 2006). In addition, a regulatory 
network involving circadian-rhythms and light 
signaling pathways was also found in rice.  The 
similarity of the regulatory network between rice and 
Arabidopsis may imply that the circadian rhythms 
regulatory network in hybrid might be one of the 
molecular mechanisms underlying heterosis in hybrid 
plants. Altering expression of a few genes in the 
circadian clock regulation to promote growth vigor is 
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reminiscent of single locus heterosis, which has been 
documented for the erecta and angustifolia loci in A. 
thaliana and SFT gene in tomato (Redei, 1962; 
Krieger et al., 2010). However, the contribution of 
Epigenetics in producing superior phenotypes is still 
unknown. Though heterosis is of great use in crop 
improvement, the future of it lies in the unraveling of 
appropriate mechanisms at molecular as well as gene 
expression level. Otherwise, pre-mature conclusion 
of one mechanism will mislead our finding from the 
reality of heterosis mechanism in plants.   
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