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1. Introduction  

Selection of technologies is one of the most 
challenging decision making areas the management 
of a company encounters. It is difficult to clarify the 
right technology alternatives because the number of 
technologies is increasing and the technologies are 
becoming more and more complex. However, right 
technologies could create significant competitive 
advantages for a company in a complex business 
environment. The aim of technology selection is to 
obtain new know-how, components, and systems 
which will help the company to make more 
competitive products and services and more effective 
processes, or create completely new solutions 
(Farzipoor Saen, 2006). The rest of the paper is 
organized as follows: The following section presents 
a concise treatment of the basic concepts of fuzzy set 
theory. Section 3 presents the methodology of Fuzzy 
AHP and Interval TOPSIS. The application of the 
proposed framework to technology selection is 
addressed in Section 4. Finally, conclusions are 
provided in Section 5. 
 
2. Fuzzy sets and Fuzzy Numbers 

Fuzzy set theory, which was introduced by Zadeh 
(1965) to deal with problems in which a source of 
vagueness is involved, has been utilized for 
incorporating imprecise data into the decision 
framework. A fuzzy set �� can be defined 
mathematically by a membership function µ��(�), 
which assigns each element x in the universe of 
discourse X a real number in the interval [0,1]. A 
triangular fuzzy number � � can be defined by a triplet 
(a, b, c) as illustrated in Fig 1. 

 
 

 
 
 
 
 
 
 

Fig 1. A triangular fuzzy number �� 
 
The membership function µ��(�) is defined as 
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Basic arithmetic operations on triangular fuzzy 
numbers A1 = (a1,b1,c1), where  a1 ≤ b1 ≤ c1, and A2 = 
(a2,b2,c2), where a2 ≤ b2 ≤ c2,can be shown as follows: 
 
Addition:  A1 ⊕ A2 = (a1 + a2 ,b1 + b2,c1 + c2)         (2)                                                                   
 
Subtraction:  A1 ⊝ A2 = (a1 - c2 ,b1 - b2,c1 – a2)       (3)                  

Multiplication:  if  k  is a scalar 
 

k ⊗ A1 = �
(��� , ���, ���),    � > 0
(��� , ���, ���) ,   � < 0

�  

 
A1 ⊗ A2 ≈ (a1a2 ,b1b2,c1c2) ,  if   a1 ≥  0 , a2 ≥  0       (4)                                                                      
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Division: A1 Ø A2 ≈ ( 
��

��
 ,

��
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 ,

��

��
)  ,  if  a1 ≥  0 , a2 ≥  0                                                                                                 

(5) 
         
Although multiplication and division operations on 
triangular fuzzy numbers do not necessarily yield a 
triangular fuzzy number, triangular fuzzy number 
approximations can be used for many practical 
applications (Kaufmann & Gupta, 1988). Triangular 
fuzzy numbers are appropriate for quantifying the 
vague information about most decision problems 
including personnel selection (e.g. rating for 
creativity, personality, leadership, etc.). The primary 
reason for using triangular fuzzy numbers can be 
stated as their intuitive and computational-efficient 
representation (Karsak, 2002). A linguistic variable is 
defined as a variable whose values are not numbers, 
but words or sentences in natural or artificial 
language. The concept of a linguistic variable appears 
as a useful means for providing approximate 
characterization of phenomena that are too complex 
or ill defined to be described in conventional 
quantitative terms (Zadeh, 1975). 
  
3. Research Methodology  

In this paper, the weights of each criterion are 
calculated using of Fuzzy AHP. After that, Interval 
TOPSIS is utilized to rank the alternatives. Finally, 
we select the best technology based on these results. 
 
3.1. Fuzzy AHP 

Despite of its wide range of applications, the 
conventional AHP approach may not fully reflect a 
style of human thinking. One reason is that decision 
makers usually feel more confident to give interval 
judgments rather than expressing their judgments in 
the form of single numeric values. As a result, fuzzy 
AHP and its extensions are developed to solve 
alternative selection and justification problems. 
Although FAHP requires tedious computations, it is 
capable of capturing a human's appraisal of 
ambiguity when complex multi-attribute decision 
making problems are considered. In the literature, 
many FAHP methods have been proposed ever since 
the seminal paper by Van Laarhoven and Pedrycz 
(1983). In his earlier work, Saaty (1980) proposed a 
method to give meaning to both fuzziness in 
perception and fuzziness in meaning. This method 
measures the relativity of fuzziness by structuring the 
functions of a system hierarchically in a multiple 
attribute framework. Later on, Buckley (1985) 
extends Saaty's AHP method in which decision 
makers can express their preference using fuzzy 
ratios instead of crisp values. Chang (1996) 
developed a fuzzy extent analysis for AHP, which 

has similar steps as that of Saaty's crisp AHP. 
However, his approach is relatively easier in 
computation than the other fuzzy AHP approaches. In 
this paper, we make use of Chang's fuzzy extent 
analysis for AHP. Kahraman et al. (2003) applied 
Chang's (1996) fuzzy extent analysis in the selection 
of the best catering firm, facility layout and the best 
transportation company, respectively. Let O = {o1,o2, 
. . .,on} be an object set, and U = {g1,g2, . . .,gm} be a 
goal set. According to the Chang's extent analysis, 
each object is considered one by one, and for each 
object, the analysis is carried out for each of the 
possible goals, gi. Therefore, m extent analysis values 
for each object are obtained and shown as follows: 
 
����

�  , ����
�  ,…, ����

�  , i=1, 2,…,n  

 

Where ����

�
(j=1,2,3,…, m)  are all triangular fuzzy 

numbers. The membership function of the triangular 
fuzzy number is denoted by M(x). The steps of the 
Chang's extent analysis can be summarized as 
follows: 
 
Step 1: The value of fuzzy synthetic extent with 
respect to the ith object is defined as: 
 

Si  = ∑ ����

��
�� �   ⊗   [∑ ∑ ����
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�� �

�
�� � ]��                            (6)                                                                                                                 

                                                                                                                                       

Where  ⊗  denotes the extended multiplication of 

two fuzzy numbers. In order to obtain ∑ ����

��
���  

We perform the addition of m extent analysis values 
for a particular matrix such that, 
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And to obtain  [∑ ∑ ����
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���

�
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fuzzy addition operation of ����

�
 (j =1,2,…,m)  values 

such that, 
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Then, the inverse of the vector is computed as,  
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Where  ui  , mi , li > 0 
 
Finally, to obtain the Sj , we perform the following 
multiplication: 
 

Si  = ∑ ����
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∑ �� 
�
�� �   ⊗   � ∑ ��

�
�� � )                                           (10)                                              

                          
Step 2: The degree of possibility of ��� = (l2 ,m2 ,u2) 
≥ ��� = (l1 ,m1 ,u1) is defined as 
 

 
Fig 2: The degree of possibility of ��� ≥ ��� 

 
 
V (��� ≥ ��� ) = s��[ min (���(x) , ��� (y))]          (11)                                             

 
This can be equivalently expressed as, 
 
V (��� ≥ ��� ) = hgt (��� ∩  ���) = ��� (d) 

=�

1             �� � � ≥ � �           
0              �� �� ≥ ��              

�����

(� ����)�(� ����)
 , ��ℎ������    

�                      (12)                                         

 
Fig. 2 illustrates   V (��� ≥ ��� ) for the case d for the 
case m1< l1< u2< m1 , where d is the abscissa value 
corresponding to the highest crossover point D 
between ��� and ���,To compare ��� and ��� , we 
need both of the values V(��� ≥ ���) and V(��� ≥ ���). 
 
Step 3: The degree of possibility for a convex fuzzy 
number to be greater than k convex fuzzy numbers 
Mi (I=1, 2… K) is defined as   
 

V (��  ≥ ���  , ��� ,….,���) =min V(��   ≥ ���) ,    i 
=1,2,…,k 
 
Step 4: Finally, W=(min V( s1 ≥ sk ) min V( s2 ≥ sk 
),….,min V( sn ≥ sk ))

T, is the weight vector for   
 k = 1,…,n. 

In order to perform a pairwise comparison 
among the parameters, a linguistic scale has been 
developed. Our scale is depicted in Fig.3 and the 
corresponding explanations are provided in Table 1. 
Similar to the importance scale defined in Saaty's 
classical AHP (Saaty, 1980), we have used five main 
linguistic terms to compare the criteria: ‘‘equal 
importance’’, ‘‘moderate importance’’, ‘‘strong 
importance’’, ‘‘very strong importance’’ and 
‘‘demonstrated importance’’. We have also 
considered their reciprocals: ‘‘equal unimportance’’, 
‘‘moderate unimportance’’, ‘‘strong unimportance’’, 
‘‘very strong unimportance’’ and ‘‘demonstrated 
unimportance’’. For instance, if criterion A is 
evaluated ‘‘strongly important’’ than criterion B, then 
this answer means that criterion B is ‘‘strongly 
unimportant’’ than criterion A. 
 

 
Fig 3: Membership functions of triangular fuzzy 

numbers corresponding to the linguistic scale 
 

Table 1:   The linguistic scale and corresponding triangular fuzzy numbers 

Linguistic scale Explanation 
triangular fuzzy 

numbers 
The inverse of 

triangular fuzzy 
numbers 

Equal Importance Two activities contribute equally to the 
objective 

(1, 1, 1) (1, 1, 1) 

Moderate Importance 
Experience and judgment slightly favor one 

activity over another 
 

(1, 3, 5) 
 

(1/5, 1/3, 1) 

Strong importance 
Experience and judgment strongly favor one 

activity over another 
 

(3, 5, 7) 
 

(1/7, 1/5, 1/3) 

Very strong importance 
An activity is favored very strongly over 
another; its dominance demonstrated in 

practice 

 
(5, 7, 9) 

 
(1/9, 1/7, 1/5) 

Demonstrated  importance 
The evidence favoring one activity over 

another is highest possible order of affirmation 
 

(7, 9, 11) 
 

(1/11, 1/9, 1/7) 
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3.2. The TOPSIS Method with Interval Data 
Considering the fact that, in some cases, 

determining precisely the exact value of the attributes 
is difficult and that, as a result of this, their values are 
considered as intervals, therefore, Jahanshahloo et al. 
(2006) extend TOPSIS for these interval data. 
Suppose A1,A2, . . . ,Am are m possible alternatives 
among which decision makers have to choose, C1,C2, 

. . . ,Cn are criteria with which alternative 
performance are measured, x�� is the rating of 

alternative Ai with respect to criterion Cj and is not 

known exactly and only we know x��ϵ�x��
�x��

� �. A 

MCDM problem with interval data can be concisely 
expressed in matrix format as follow: 

 
Table 2:   The interval decision matrix 

     Cj 
Ai 

C1 … C j … C n 

A1 ����
�,���

� � … ����
�,���

� � … � ���
�, ���

� � 

…
 

…
  

…
  

…
 

Ai ����
�,���

� � … ����
�,���

� � … � ���
�, ���

� � 

…
 

…
  

…
  

…
 

Am ��� �
�,�� �

� � … ����
�,���

� � … ����
�,���

� � 

W � � … … … � �  

 
where wj is the weight of criterion Cj. 

A systematic approach to extend the 
TOPSIS to the interval data is proposed in this 
section by Jahanshahloo et al. (2006). First they 
calculate the normalized decision matrix as follows: 

The normalized values ����
�  and ����

�  are 

calculated as 
 

����
� = � ��

� /� ∑ �����
� �

�
+ ����

� �
�

��
���  ,    � = 1, … , �, 

   � = 1, … , �,                                                          (13) 

����
� = � ��

� /� ∑ �����
� �

�
+ ����

� �
�

��
���  ,    � = 1, … , �, 

   � = 1, … , �.                                                          (14) 
 

Now interval �����
� ����

� � is normalized of 

interval����
� ���

� �. The normalization method 

mentioned above is to preserve the property that the 
ranges of normalized interval numbers belong to [0, 
1]. 

Considering the different importance of each 
criterion, the weighted normalized interval decision 
matrix construct as follow: 
 
����

� = � �����
�      � = 1, … , �,    � = 1, … , �,             (15)                                                                               

����
� = � �����

�     � = 1, … , �,     � = 1, … , �,             (16)                                                                        

 
where wi is the weight of the ith attribute or criterion, 
and ∑ ��

�
��� = 1  Then, Jahanshahloo et al. (2006) 

identified positive ideal solution and negative ideal 
solution as 
 

��̅ = {���
� , … , ���

� }= ���max� ����
� �����, ��min� ����

� ������,                                                               

(17) 
 

��̅ = {���
�, … , ���

�}= ��min� ����
� ����, ��max� ����

� ������,                                                               

(18) 
 

Where I is associated with benefit criteria, 
and J is associated with cost criteria. The separation 
of each alternative from the positive ideal solution, 
using the n-dimensional Euclidean distance, can be 
currently calculated as: 

d��
� = �∑ �u���

� − u��
� �

�
��� + ∑ �u���

� − u��
� �

�
��� �

�

�
,    

 
 j = 1, … , m.                                                           (19) 
 

Similarly, the separation from the negative 
ideal solution can be calculated as 
 

d��
� = �∑ �u���

� − u��
��

�
��� + ∑ �u���

� − u��
��

�
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   j = 1, … , m.                                                         (20) 
 

A closeness coefficient is defined to 
determine the ranking order of all alternatives once 
the d��

�  and d��
� of each alternative Aj has been 

calculated. The relative closeness of the alternative Aj 
with respect to A��  is defined as 
 

��� = d��
�/�d��

� + d��
� �,    j = 1, … , m.                       (21)                                                                                     

 
Obviously, an alternative Aj is closer to the 

A�� and farther from A�� as R�� approaches to 1. 

Therefore, according to the closeness coefficient, we 
can determine the ranking order of all alternatives 
and select the best one from among a set of feasible 
alternatives. In sum, an algorithm to determine the 
most preferable choice among all possible choices, 
when data is interval, with extended TOPSIS 
approach is given in the following: 
     Step 1: Establishing system evaluation criteria that 

relate system capabilities to goals 
(identification the evaluation criteria). 

     Step 2: Developing alternative systems for 
attaining the goals (generating alternatives). 
     Step 3: Evaluating alternatives in terms of criteria 

(the values of the criterion functions 
which are intervals). 

     Step 4: Identifying the weight of criteria. 
     Step 5: Construct the interval decision matrix and 

the interval normalized decision matrix 
(using the formulas (13) and (14)). 

     Step 6: Construct the interval weighted 
normalized decision matrix (using the 
formulas (15) and (16)). 

     Step 7: Determine positive ideal solution and 
negative ideal solution (identification of  
A��  and A��, using the formulas (17) and 
(18)). 

     Step 8: Calculate the separation of each alternative 
from positive ideal solution and negative 
ideal solution, respectively 
(identification of d��

�  and d��
�, using the 

formulas (19) and (20)). 
     Step 9: Calculate the relative closeness of each 

alternative to positive ideal solution 
(identification of ���, using the formula 

(21)). 
     Step 10: Rank the preference order of all 

alternatives according to the closeness 
coefficient.  

 
3.3. Incorporation of ordinal preference 
information into the interval TOPSIS model 

 
Wang et al (2005) proposed a method to 

deal with both interval and ordinal data in DEA 
models. Wang used an innovative method to 
transform the ordinal inputs or outputs into interval 
data ,and then solved the DEA model with only 
interval data .one of the contributions of our paper is 
to use Wang’s strategy to translate ordinal criteria 
into interval criteria. Suppose data of some criteria 
(��) for alternatives (Ai) are given in the form of 

ordinal preference information. Usually, there may 
exist three types of ordinal preference information: 
(1) strong ordinal preference information such as 
X��> X �� which can be further expressed as X��≥

χ X��, where χ >  1 is the parameter on the degree of 
preference intensity provided by decision maker 
(DM); (2) weak ordinal preference information such 
as X�� ≥ X �� ; (3) indifference relationship such as 

X��=  X �� . We can conduct a scale transformation to 
ordinal criteria so that its best ordinal datum is less 
than or equal to unity and then give an interval 
estimate for each ordinal datum. For transforming 
ordinal scale to interval scale, we use the following 
formula: 
 
��� ∈ �����

��� , ��
����, � = 1, … , �              �ℎ��         

�� ≤ ��
���                                                               (22) 

 
Where χ is a preference intensity parameter 

satisfying χ�>1 provided by the DM and σ� is the ratio 

parameter also provided by the DM. According to the 
simplest order relation between two interval numbers, 
i.e. A ≤ B  if and only if a� ≤ b� and a� ≤ b� , where 
A =  [a�, a� ] and B =  [b� , b�  ]are two interval 
numbers, the transformed interval data still reserve 
the original ordinal preference relationships (Wang et 
al, 2005).  

Through the scale transformation above and 
the estimation of permissible intervals, all the ordinal 
preference information is converted into interval data 
and can thus be incorporated into interval TOPSIS 
models. 
 
4. A Numerical Application of Proposed Approach  
         This paper, the proposed methodology that may 
be applied to a wide range of technology selection 
problems is used for robot selection. We considered 
cost as a non-beneficial attribute and Vendor 
reputation, Load capacity and Velocity and as 
beneficial attributes for Technology selection. These 
attributes are taken from Farzipoor saen (2006). These 
attributes are shown in Table 3. 
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Table 3: Attributes for robot selection 

criteria Attributes 

C� 
C� 
C� 
C� 

Cost (10000$) 
Vendor reputation 
Load capacity(kg) 

Velocity(m/s) 
 

        In this paper, the weights of criteria are 
calculated using of FAHP, and these calculated 
weight values are used as Interval TOPSIS inputs. 
Then, after TOPSIS calculations, evaluation of the 
alternatives and selection of technology is realized. 
         Fuzzy AHP: In fuzzy-AHP, firstly, the criteria 
and alternatives’ importance weights must be 

compared. For this reason, there must be linguistic 
terms and their equivalent fuzzy numbers denoting 
comparison measures. The linguistic comparison 
terms and their equivalent fuzzy numbers considered 
in this paper are shown in Table 1. Afterwards, for the 
first step, the comparisons about the criteria and 
alternatives, and the weight calculation need to be 
made. Thus, the evaluation of the criteria according 
to the main goal and the evaluation of the alternatives 
for these criteria must be realized. Then, after all 
these evaluation procedure, the weights of the 
alternatives can be calculated. In the second step, 
these weights are used to Interval TOPSIS calculation 
for the final evaluation. The comparison matrix for 
the criteria can be seen from Table 4. 

 
Table 4: Fuzzy comparison matrix 

Criteria C1 C2 C3 C4 
C1 (1.00, 1.00, 1.00) (3.00, 4.33, 6.00) (5.00, 6.33, 8.00) (0.20, 2.13, 6.00) 
C2 (0.17, 0.25, 0.33) (1.00, 1.00, 1.00) (1.00, 3.25, 5.00) (0.14, 0.83, 2.00) 
C3 (0.13, 0.16, 0.20) (0.20, 0.51, 1.00) (1.00, 1.00, 1.00) (0.20, 1.18, 3.00) 
C4 (0.17, 3.39, 6.00) (0.50, 2.83, 5.00) (0.33, 0.85, 7.00) (1.00, 1.00, 1.00) 

 
           After forming fuzzy pair-wise comparison 
matrix, we calculate the weight of all criteria. The 
weight calculation details are given below. Because 
of the other calculations are similar for each 
comparison matrix, these are not given here and can 
be done simply according the computations below. 
The value of fuzzy synthetic extent with respect to 
the ith object (i = 1,2, . . . ,4) is calculated as 
 
S1= (9.20, 13.80, 21) ⊗ (0.0176, 0.0332, 0.0665) = 
(0.01627, 0.4592, 1.3967) 
S2= (2.31, 5.33, 8.33) ⊗ (0.0176, 0.0332, 0.0665) = 
(0.0408, 0.1772, 0.5542) 
S3= (1.53, 2.85, 8.20) ⊗ (0.0176, 0.0332, 0.0665) = 
(0.0269, 0.0949, 0.5454) 
S4= (2.00, 8.07, 19) ⊗ (0.0176, 0.0332, 0.0665) = 
(0.0353, 0.2686, 0.1.2637) 
 
       Then the V values calculated using these vectors 
are shown in Table 3. 
 

Table 5: V values result 
V S1 S2 S3 S4 
S1 - 1 1 1 
S2 0.3645 - 1 0.4585 
S3 0.3805 1.1337 - 0.4797 
S4 0.9404 1 1 - 

 
       Thus, the weight vector from Table 5 is 
calculated and normalized as 
W � = (0.372355, 0.135759, 0.141711, 0.350174) 

        Interval TOPSIS: The weights of the criteria 
are calculated by fuzzy AHP up to now, and then 
these values can be used in Interval TOPSIS. The 
decision matrix with ordinal and cardinal data for 
each robot is shown in Table 6. These data are taken 
from Farzipoor saen (2006).  
Attributes which are ranked Using of Eq. (22) 
transformed into interval scale. These intervals 
identify the range of attributes. For example, interval 

scale of A1 with (� = 1.12  ، � = .1) is calculated as 
below: 

  ��� ∈ [(0.1)1.12����, 1.12���]= [0.277,1] 
         Similar to ���, the interval scale of other 
alternatives are calculated and shown in the Table 7. 
         The interval decision matrix and interval 
normalized decision matrix are shown in Tables 8 
and 9, respectively. 
           In the next step, the positive ideal solution and 
the negative ideal solution are then determined as: 
��̅ = [0.002847, 0.170673, 0.266347, 0.160721] 

��̅= [0.14233, 0.017067, 0.001211, 0.012054] 
            A comparison between the normalized 
performance ratings of each alternative Ai and ��̅  by 
Eq. (19) (that is shown in Table 11), and between that 
of Ai and ��̅ by Eq. (20) (that is shown in Table 12) 
would indicate how the Robot is performing as 
compared with the best performance and the worst 
performance of all the robots with respect to each 
criterion. 

After that we obtain the interval Weighted 
normalized decision matrix that is shown in Table 10. 
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Table 6: Related attributes for 10 robots (The decision matrix with ordinal and cardinal data) 
Robot 
(No) 

Cost(10000$) 
Vendor 

reputation 
Load 

capacity(kg) 
Velocity(m/s) 

1 0.16 5 [1,4] 0.8 

2 8 1 [10,18] 2 

3 4.8 7 [60,70] 1.1 

4 6.9 10 [10,15] 0.15 

5 2.4 2 [5,8] 1 

6 1.76 8 [4,5] 1 

7 1.07 3 [1,2] 0.3 

8 6.72 9 [9,12] 1.1 

9 4 6 [190,220] 0.75 

10 3.63 4 [8,12] 1 
  

Table 7: Ordinal scale and Interval Scale for Ai in �� 

Robot ( No) 
Vendor 

reputation  
ordinal 

Vendor reputation 
cardinal 

1 5 [0.176, 0.636] 

2 1 [0.277,1.000] 

3 7 [0.140, 0.507] 

4 10 [0.100, 0.361] 

5 2 [0.248, 0.893] 

6 8 [0.125, 0.452] 

7 3 [0.221, 0.797] 

8 9 [0.112, 0.404] 

9 6 [0.157, 0.567] 

10 4 [0.197, 0.712] 

 
Table 8: The Interval decision matrix of 10 alternatives 

Robot(No) Cost(10000$) 
Vendor 

reputation 
Load 

capacity(kg) 
Velocity(m/s) 

 
���

�  ���
�  ���

�  ���
�  ���

�  ���
�  ���

�  ���
�  

A1 0.16 0.16 0.176 0.636 1 4 0.8 0.8 

A2 8 8 0.277 1 10 18 2 2 

A3 4.8 4.8 0.14 0.507 60 70 1.1 1.1 

A4 6.9 6.9 0.1 0.361 10 15 0.15 0.15 

A5 2.4 2.4 0.248 0.893 5 8 1 1 

A6 1.76 1.76 0.125 0.452 4 5 1 1 

A7 1.07 1.07 0.221 0.797 1 2 0.3 0.3 

A8 6.72 6.72 0.112 0.404 9 12 1.1 1.1 

A9 4 4 0.157 0.567 190 220 0.75 0.75 

A10 3.63 3.63 0.197 0.712 18 12 1 1 
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Table 9: The Interval normalized decision matrix 
Robot(No) Cost(10000$) Vendor reputation Load capacity(kg) Velocity(m/s) 

  ����
�  ����

�  ����
�  ����

�  ����
�  ����

�  ����
�  ����

�  

A1 0.008 0.008 0.081 0.292 0.003 0.013 0.173 0.173 

A2 0.382 0.382 0.127 0.458 0.033 0.059 0.432 0.432 

A3 0.229 0.229 0.064 0.232 0.195 0.228 0.237 0.237 

A4 0.330 0.330 0.046 0.165 0.033 0.049 0.032 0.032 

A5 0.115 0.115 0.114 0.409 0.016 0.026 0.216 0.216 

A6 0.084 0.084 0.057 0.207 0.013 0.016 0.216 0.216 

A7 0.051 0.051 0.101 0.365 0.003 0.007 0.065 0.065 

A8 0.321 0.321 0.051 0.185 0.029 0.039 0.237 0.237 

A9 0.191 0.191 0.072 0.260 0.618 0.715 0.162 0.162 

A10 0.173 0.173 0.090 0.326 0.059 0.039 0.216 0.216 

 
Table 10: The Interval weighted normalized decision matrix 

Robot(No) Cost(10000$) Vendor reputation Load capacity(kg) Velocity(m/s) 

  ����
�  ����

�  ����
�  ����

�  ����
�   ����

�  ����
�  ����

�  

A1 0.003 0.003 0.030 0.109 0.001 0.005 0.064 0.064 

A2 0.142 0.142 0.047 0.171 0.012 0.022 0.161 0.161 

A3 0.085 0.085 0.024 0.087 0.073 0.085 0.088 0.088 

A4 0.123 0.123 0.017 0.062 0.012 0.018 0.012 0.012 

A5 0.043 0.043 0.042 0.152 0.006 0.010 0.080 0.080 

A6 0.031 0.031 0.021 0.077 0.005 0.006 0.080 0.080 

A7 0.019 0.019 0.038 0.136 0.001 0.002 0.024 0.024 

A8 0.120 0.120 0.019 0.069 0.011 0.015 0.088 0.088 

A9 0.071 0.071 0.027 0.097 0.230 0.266 0.060 0.060 

A10 0.065 0.065 0.034 0.122 0.022 0.015 0.080 0.080 

 
Table 11: Distance of each alternative from the positive ideal solution 

d��
�  d��

�  d��
�  d��

�  d��
�  d��

�  d��
�  d��

�  d��
�  d���

�  
0.315 0.315 0.267 0.353 0.304 0.313 0.327 0.327 0.192 0.298 

 
Table 12: Distance of each alternative from the negative ideal solution 

 d��
�  d��

�  d��
�  d��

�  d��
�  d��

�  d��
�  d��

�  d��
�  d���

�  

0.175 0.215 0.144 0.052 0.182 0.144 0.172 0.096 0.290 0.148 

 
 
 
 
Finally we calculate the relative closeness of 

each alternative to positive ideal solution and we rank 
the alternatives that show in Table 13. 

According to Table 13, A9 is the best 
technology among other technologies and other 
alternatives ranked as follow: A9 >A2 >A5 >A1>A3 

>A7 >A10 >A6 >A8 >A4. 
 
 
 
 
 
 

Table 13: Closeness coefficient and ranking 

Alternatives ��
�  Rank 

A1 0.357 4 
A2 0.405 2 
A3 0.351 5 
A4 0.127 10 
A5 0.374 3 
A6 0.315 8 
A7 0.344 6 
A8 0.227 9 
A9 0.602 1 
A10 0.331 7 
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5. Conclusions  
Selection of technologies is one of the most 

challenging decision making areas the management 
of a company encounters. It is difficult to clarify the 
right technology alternatives because the number of 
technologies is increasing and the technologies are 
becoming more and more complex 

This paper illustrates an application of fuzzy 
AHP along with Interval TOPSIS in selecting best 
technology. Fuzzy set theory is incorporated to 
overcome the vagueness in the preferences. A two 
step fuzzy-AHP and Interval TOPSIS methodology is 
structured here that Interval TOPSIS uses fuzzy-AHP 
result weights as input weights. Then a numerical 
example is presented to show applicability and 
performance of the methodology. It can be said that 
using linguistic variables makes the evaluation 
process more realistic. Because evaluation is not an 
exact process and has fuzziness in its body. Here, the 
usage of fuzzy-AHP weights in Interval TOPSIS 
makes the application more realistic and reliable.  
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