Some Studies on the Diagnosis of Mycoplasma Gallisepticum in Chicken

*Lamyaa M. Reda and **L.K. Abd El-Samie

*Central Lab., Vet. Hospital, Faculty of Vet. Med., Zagazig Univ., Egypt
**Vet. Hospital, Faculty of Vet. Med., Zagazig Univ., Egypt
Tota.16@live.com

Abstract: Avian mycoplasmosis are considered one of the most important economic problems for chicken industry. The current research aims to obtain complete picture of (M. gallisepticum). One hundred and eighty specimens were collected from sixty naturally infected chicken of different age, sex and breed from different localities in El-Sharkia Governorate. Bacteriological examination of the samples revealed that, the total incidence of mycoplasma were 14.4%. The results of serological identification by SPA test for detecting M. gallisepticum antibodies showed that 31 isolates (51.6%) were positive and 29 isolates (48.3%) were negative, while the ELISA test revealed that 29 isolates (48.3%) were positive and 22 isolates (36.3%) were negative. The antibiotic sensitivity test of M. gallisepticum showed that all the isolates were sensitive to lincospectin, spectinomycin and tylosin, but all examined isolates were resistant to enrofloxacin, erythromycin, ampicillin, oxytetracycline and chloramphenicol.

Keywords: Mycoplasma Gallisepticum-chicken-SPA-ELIZA

1. Introduction

Avian Mycoplasmosis is considered as one of the major economic problems facing poultry industry all over the world. Avian mycoplasmosis can be caused by several species of Mycoplasma (class Mollicutes, order Mycoplasmatales, family Mycoplasmataceae) including Mycoplasma gallisepticum, M. synoviae, M. meleagridis and M. iowae. (Yoder et al., 1984) M. gallisepticum is a very small prokaryotic organism lacking a cell wall and bounded by plasma membrane.

The shape of mycoplasma cell is sphere, 0.3-0.8 µm in diameter. Mycoplasma is characterized by lacking of the cell wall that explains many of unique properties such as sensitivity to osmotic shock and detergents, resistance to penicillin and formation of the fried egg shaped colonies. The clinical signs seen in avian mycoplamosis are coughing, sneezing, ocular and nasal discharges, decreased feed intake and egg production, increased mortality, poor hatchability. Mycoplasma species are transmitted horizontally from bird to bird and vertically from dam to offspring through the eggs (Pitcher and Nicholas, 2005 and Razin and Hayflick, 2010). The aim of the present work was to compare the traditional and the recent techniques for the diagnosis of Mycoplasma gallisepticum, antibiotic sensitivity testing of isolated Mycoplasma gallisepticum for different antimicrobial agents.

2. Material and Methods

Samples:
A total of 180 lung, trachea and air sac specimens of 60 naturally infected chickens with respiratory manifestations and nasal discharge were used in this study. Also, 60 blood samples were collected via wing vein puncture of each examined bird. All chicken were collected from El-Sharkia Governorate during September 2010 till August 2011 from different breeds with different ages. All the samples were submitted to the laboratory for bacteriological and serological examination.

Isolation and identification of Mycoplasma species (Sabry and Ahmed, 1975):
Tissue samples (trachea, lung and air sac) were minced under aseptic condition, diluted in mycoplasma broth (approximately 5gm tissue sample in 25 ml broth). Each swab sample from broth was inoculated into 5 ml. PPLO broth, then incubated at 37°C for 3days, 0.02ml of broth culture was inoculated and streaked on PPLO agar. The agar plate was incubated at 37°C in a moist candle jar under reduced oxygen tension. The plates were observed daily from the 3rd to the 10th day post incubation by dissecting microscope for the presence of fried-egg colonies.

Purification and maintenance of the isolates (Sabry, 1968):
A single with fried egg colony shape was picked up with an agar block and transplanted into a broth medium for obtaining a pure culture of the isolates. The purified isolates were maintained at 20°C in a form of agar blocks.

Genus determination using digitonin test: for differentiation between Mycoplasma and Acholeplasma species as described by Freundt et al., (1973)

Biochemical characterization tests: were carried out using glucose fermentation and arginine deamination...
as previously mentioned by Sabry,(1968).

Serological identification:

A-Growth inhibition test as described by Clyde (1983)

B-Serum plate agglutination test by using stained Mycoplasma gallisepticum standard antigen that obtained from (Intervet International, B.V., Boxmeer, Holland, was applied as described by Stipkovits and El-Ebeed (1977)

C- Enzyme linked immunosorbantassay: this test was performed according to Higgins and Whithear (1986) using Mycoplasma gallispticum antibody Kits (Kierkegaard and Perry Laboratories (KPL) Gaithersburg Maryland, U.S.A.

Antibiotic sensitivity test as described by Clyde (1964):

Mycoplasma gallispticum isolates were culture on brain heart infusion agar using running drop technique, commercial antibiotic discs (Oxoid Lab.) were placed on the inoculated plates and pressed gently into agar. Plates were incubated at 37°C in moist candle jar for 3-4 days, the plates were examined daily macroscopically and microscopically for inhibition of the growth of the colonies (inhibition zone) which were measured in millimeters.

3. Results and Discussion

Mycoplasma gallisepticum is a major poultry pathogens and causes severe economic losses for poultry industry. Therefore, methods for their control should be applied to protect against infection.

Incidence of Mycoplasma isolates from chicken:

Table (1) showed that the total number of Mycoplasma isolates was 26 with an incidence of (14.4%) out of 180 samples collected from 60 examined chicken, also Metwalli (1980), El-Shater (1986) and Zeinab (1997) isolated mycoplasma at different localities from Egypt with an incidence of (11.8%), (16.7%) and (13.3%) respectively. The highest rate of Mycoplasma was from the air sac with an incidence of (23.3%), also Zeinab (1997) who stated that the highest rate of mycoplasma isolated from air sac were (21.5%).

Table (1): incidence of Mycoplasma isolates from different organs of naturally infected chicken

<table>
<thead>
<tr>
<th>Types of samples</th>
<th>No. of isolates/ No. of examined samples(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air sac</td>
<td>14/60(23.3%)</td>
</tr>
<tr>
<td>Trachea</td>
<td>7/60(11.6%)</td>
</tr>
<tr>
<td>Lung</td>
<td>5/60(8.3%)</td>
</tr>
<tr>
<td>Total</td>
<td>26/180(14.4%)</td>
</tr>
</tbody>
</table>

Results of isolation and differentiation between Mycoplasma and Acholeplasma species:

Regarding the isolation of Acholeplasma, it could not be isolated from chicken samples and all the isolates were digitonin positive.

These results were also supported by that found by Abd El-Latif (1999) who reported that there was no isolation of Acholeplasma species from chicken samples.

Also, our data in were nearly similar with those obtained by Erno and Stipkovits (1973) and Edward and Razin (1974) but Sokkar et al., (1986) who isolated Acholeplasma amxanthum and Acholeplasma amlaidlawii by percentages of 28% and 32% respectively from trachea, sinus and air sac.

Table (2): Biochemical characterization of mycoplasma isolates from naturally infected chickens

<table>
<thead>
<tr>
<th>Mycoplasma isolates from naturally infected chicken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of organs</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Air sac</td>
</tr>
<tr>
<td>Trachea</td>
</tr>
<tr>
<td>Lung</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

Result of Biochemical characterization of mycoplasma isolates:

Biochemical characterization was carried out to simplify identification as shown in table (2). Two biochemical groups were be detected, group one was 92.3% which is glucose +ve, and arginine -ve and group two which is glucose -ve, and arginine +ve with an incidence of (7.6%) result is agreed with that mentioned by Fatma (2004), Rania (2005) and Sally (2010) who classified mycoplasma isolates into the same two biochemical groups.

Serological identification of Mycoplasma isolates by GIT:

The results of serological identification of Mycoplasma isolates using known specific reference antisera showed that 24 isolates were M. gallisepticum belonging to biogroup I and 2 isolates were antigenically related to M. gallinarum belonging to biogroup II. These results were agreed with the results obtained by (Sabry1968) who could isolate M. gallisepticum and M. gallinarum from respiratory tract of CRD infected chickens, but Fawkia (1986) and Fatma (2004) who could isolate different serotypes of avian mycoplasma related to M. gallisepticum, M. gallinarum, M. pullorum and M. gallinecum.

Comparison between SPA and ELISA tests used for serelogical detection of M. gallisepticum antibodies in the sera of naturally infected chicken:
M. gallisepticum antibodies were detected by SPA, it was found that 31 serum samples were positive (51.6%) and 29 serum samples were negative (48.3%). These results nearly similar to that recorded by El-Shabiny et al., (1990), El-Shater et al., (1990), El-Shabiny et al., (1997), Zeinab (1997) and Mohamed (2003) who reported that antibodies of M. gallisepticum were detected by SPA in a rate of 48%, 53.3%, 45%, 45% and 56% respectively, but Singab (1987) who recorded M. gallisepticum in a rate of 40%. With regard to the result of ELISA for detection of antibodies of M. gallisepticum in 60 serum samples collected from naturally infected chickens, 29 serum samples were positive with an incidence of 48.3% and 22 serum samples were negative with an incidence of 36.6% and 9 serum samples were suspected as shown in Table (3). These findings nearly similar to that obtained by Kempf et al., (1994) who examined serum samples for detection of M. gallisepticum antibodies by ELISA test and their results were 33% positive, 28% suspected and 29% negative. (Talkington et al., 1985) reported their ELISA to be less sensitive, but more specific than SPA test and more sensitive than haemagglutination inhibition test for mycoplasma. In our investigation we noticed that the overall recovery rate of mycoplasma isolates was low (14.4%) when compared with high rate of specific antibodies against mycoplasma in the sera of examined chicken, this finding is in agreement with those of El-Shabiny et al., (1990). This may be due to mycoplasma is difficult to be grown in the artificial media. In addition of SPA is rapid and sensitive for detection of M. gallisepticum, but often give false positive reactions connected with antigen preparation techniques (Optiz and Cyr, 1986). Bad quality of sera to be tested (Bradbury and Jordan, 1972) or use oil emulsion vaccines (Yoder, 1989). Also the presence of M. gallinarum infection in flocks to be tested will give problem with cross reacting antibodies in serological test (Osland, 1984). The results of serological tests proved that ELISA test gave better results and higher sensitivity than SPA test for detection of specific antibodies for M. gallisepticum. These results agreed with that recorded by Abdel-Gawad (2005) and Sally (2010).

Table (3): Comparative results of SPA and ELISA tests used for serological detection of M. gallisepticum antibodies in the sera of naturally infected chicken

<table>
<thead>
<tr>
<th>SPA results</th>
<th>No. of +ve serum sample / total no. of examined serum sample (%)</th>
<th>No. of suspicious serum sample / total no. of examined serum sample (%)</th>
<th>No. of –ve serum sample / total no. of examined serum sample (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA results</td>
<td>No. of +ve serum sample / total no. of examined serum sample (%)</td>
<td>No. of suspicious serum sample / total no. of examined serum sample (%)</td>
<td>No. of –ve serum sample / total no. of examined serum sample (%)</td>
</tr>
<tr>
<td>No. of +ve serum sample / total no. of examined serum sample (%)</td>
<td>31/60 (51.6%)</td>
<td>29/60 (48.3%)</td>
<td>29/60 (48.3%)</td>
</tr>
</tbody>
</table>

Antibiotic sensitivity tests for M. gallisepticum isolates:

From results recorded in table (4), it was clear that all isolates were highly sensitive to lincospectin, spectinomycin and tylosin, these results similar to those reported by Soliman (1984) and Reece et al., (1986), but these isolates were moderate sensitive to gentamycin and neomycin. On the other hand, the isolates were resistant to enrofloxacin, erythromycin, ampicillin, chloramphenicol and oxytetracycline. This resistance may be attributed to miss use of antibiotics in the field which resulted to development of acquired resistance of field isolates to these antibiotics as shown in table (4).

It could be concluded that mycoplasma infection in chicken should be considered as an important disease which act as a source of transmission of the disease to different species of chicken. Our data revealed that SPA that test can be used as an easy and simple screening test, while ELISA test can be used as a confirmatory test.

Table (4): Results of antibiotic sensitivity tests for 20 isolates of M. gallisepticum

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Disc potency µg</th>
<th>No. of sensitivity isolates/total no (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectinomycin</td>
<td>100</td>
<td>18/20 (90%)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>10</td>
<td>5/20 (25%)</td>
</tr>
<tr>
<td>Lincospectin</td>
<td>100</td>
<td>19/20 (95%)</td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>5</td>
<td>6/20 (30%)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>10</td>
<td>7/20 (35%)</td>
</tr>
<tr>
<td>Tylosin</td>
<td>100</td>
<td>17/20 (85%)</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>30</td>
<td>15/20 (75%)</td>
</tr>
<tr>
<td>Neomycin</td>
<td>30</td>
<td>14/20 (70%)</td>
</tr>
<tr>
<td>Oxytetracycline</td>
<td>30</td>
<td>9/20 (45%)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>30</td>
<td>4/20 (20%)</td>
</tr>
</tbody>
</table>
Moreover ELISA test had a higher degree of specificity. The antibiotic sensitivity test of \textit{M. gallisepticum} showed that all the isolates were sensitive to lincopectin, spectinomycin and tylosin, but all examined isolates were resistant to enrofloxacin, erythromycin, ampicillin, oxytetracycline and chloramphenicol.

References

