Application of Principal Component Analysis to Investigate the Proliferation of Armed Movements and Insurgencies in Recent Time in Sudan.

Mohamed Hassan, Sharaf Obaid Ali, Abdallah M Mohamed Zain.

¹.Department of Statistics, College of Economics and Political Sciences, Omdurman Islamic University, Sudan, Department of Mathematics, College of Arts and Sciences, Shagra University, kingdom of Saudi Arabia
².College of Computer Science, Alzaeim alazhari University, Sudan, Department of Mathematics, College of Sciences, Shaqra University, kingdom of Saudi Arabia

³ Department of Statistics, College of Economics and Political Sciences, Omdurman Islamic University, Sudan, Department of Mathematics, College of Sharia and Islamic Studies, Department of Management, Al-Imam Muhammad Ibn Saud Islamic University, kingdom of Saudi Arabia.

sharafobaid@gmail.com

Abstract: This article describes thepplication of principal component analysis to investigate the proliferation of armed movements and insurgencies in recent time in Sudan.

[Mohamed Hassan, Sharaf Obaid Ali, Abdallah M Mohamed Zain. Application of Principal Component Analysis to Investigate the Proliferation of Armed Movements and Insurgencies in Recent Time in Sudan. *Nat Sci* 2014;12(3):66-72]. (ISSN: 1545-0740). <u>http://www.sciencepub.net/nature</u>. 9

Keyword: Principal component, Proliferation, armed

1- Introduction:

The difficulty of the study of analyzing multi variables can be attributed in the first place to the need to understand and explain the tangled relationships between the variables that affect the phenomena understudy. A second obstacle is the plethora of data that has to be analyzed. As well as the need to include many advanced mathematical model in order to derive statistical methods that can aid statistical inference regarding multi variables reduction. Factor analysis, based mainly on the possibility to aggregating variables regarding their correlation coefficient is viewed as one of method analyze of multi variables.(5)

The motivation of this paper comes from the proliferation of armed movement in recent time in Sudan. The researcher has employed a multi variable method –factor analysis using principal component method to reduce large number of variables into considerably viewer one, however the difficulties of this approach lies in problem of naming listed variables from among larger.

It is believed that the rise of armed insurgency against ruling regimes is a factor that hampering development in all fields, equally to these rebellions bloodshed among citizen of and, indeed wars of every kind weaken internal solidarity.(7)

This study is intended to identify the major factors related to the rise of armed movements, be they economic political, foreign,...ect. Moreover, we aim to furnish our library with reference on this little studied subjects.

The importance springs from the fact that it attempts to reach solutions for a problem that has

preoccupied intellectuals, leaders, government and parties in Sudan on addition solution proposed are grounded.

The researcher adopted the statistical data including factor analysis, considered one most important approaches which fact that testifies to accuracy of the results. The study follows the deductive approach in order to pinpoint the theoretical frame is used to collect, classify and present the study data through the appropriate statistical methods.

2- Hypothesis of study:

In the first place "in this research following hypothesis postulated: mainly factors can played for the rise of armed movement in Sudan,". A second hypothesis to be testified is that:"there are many potential factors that can draw recruit to these armed forces".

3- Data and Methodology:

Source of Data: A questionnaire was employed to obtain the primary data of the study, in the form of triple Likert scale with options ranging from(agree (three points), neutral (2points) and disagree (one point).

A sample method was used to determine a size on the following equation:

$$n = \frac{pqz^2}{d^2} \implies n = \frac{(0.5)*(0.5)*(1.96)^2}{(0.05)^2} = 384$$

Such that: n=sample size, z= confidence interval,

p=proportion of those previously joined to armed

movements and, $d^2 = estimation error.(6)$

3-1 PCA:

Principal component analysis is a variable reduction procedure. It is useful when you have

obtained data on a number of variables (possibly a large number of variables), and believe that there is some redundancy in those variables. In this case, redundancy means that some of the variables are correlated with one another, possibly because they are measuring the same construct. Because of this redundancy, you believe that it should be possible to reduce the observed variables into a smaller number of principal components (artificial variables) that will account for most of the variance in the observed variables.

The main components method leads to disclosure of relationships and new interpretations have never thought of existence.(5)

Principal component analysis (PCA) involves a mathematical procedure that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components.(1) The best results can be obtained from the analysis is when the original variables high correlation positively or negatively The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible.

The other main advantage of PCA is that once you have found these patterns in the

data, and you compress the data, ie. by reducing the number of dimensions, without

much loss of information. This technique used in image compression, as we will see

in a later section.(3)

Apply PCA to Reduce the Dimension of the Armed Forces:

Step 1: Organize the dataset in a matrix X.

Step 2: Normalize the data set using Z-score.

Step 3: Calculate the singular value decomposition of the data matrix. X = UDV T

Step 4: Calculate the variance using the diagonal elements of D.

Step 5: Sort variances in decreasing order.

Step 6: Choose the p principal components from V with largest variances.

Step 7: Form the transformation matrix W consisting of those p PCs.

Step 8: Find the reduced projected dataset Y in a new coordinate axis by applying W to X. (2)

3-2 Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy Kaiser-Meyer-Olkin's sampling adequacy criteria (usually abbreviated as KMO) with MSA (individual measures of sampling adequacy for each item): Tests whether there are a significant number of factors in the dataset:

Technically, tests the ratio of item-correlations to partial item correlations. If the partials are similar to the raw correlations, it means the item doesn't share much variance with other items. The range of KMO is from 0.0 to 1.0 and desired values are > 0.5*5. Variables with MSA being below 0.5 indicate that item does not belong to a group and may be removed form the factor analysis.(4)

If two variables share a common factor with other variables, their partial correlation (a_{ij}) will be small, indicating the unique variance they share.

$$a_{ij} = (r_{ij} \bullet 1, 2, 3, \dots, k)$$

KMO = $(\sum_{ij} \sum_{j} r_{ij}^{2}) / (\sum_{ij} \sum_{j} r_{ij}^{2} + \sum_{j} \sum_{j} a_{ij}^{2})$

If $a_{ij} = 0$, The variables are measuring a common factor, and KMO \approx 1.0, while

KMO ≈ 0.0 if $a_{ij} = 1$, therefore The variables are not measuring a common factor. 4-Results:

The study showing that correlation matrix-which is two large-to present in this study, it apparent there is a proportional correlation and inverse one between the various variables, equally only a weak or moderate correlation exist probably due to the employment of triple Likert Scale used in the questionnaire.

Table(1): Kaiser-Meyer-Olkin)KMO) Measure of Sampling Adequacy and Bartlett's Test of Sphericity:

KMO and Bartlett's Test					
Kaiser-Meyer-O Sampling	.872				
Bartlett's Test of Sphericity	Approx. Chi- Square	14638.191			
	Degree of freedom	2145			
	Sig.	.000			

From table(1) display KMO measure adequacy and Bartlett's test Sphericity. It can shown that value equals to 0.872 which is more than 0.05 and this is an evidence of increase reliability of factors obtained from Factor Analysis and so, we can be sure of a adequacy of the sample. Moreover the probability value reach through Bartlett's test is 0.00 which is less than 0.05 and this can be interpreted as meaning that correlation is not equal to the identity matrix, and that some measure of correlation exist and consequently the factor analysis for the data is visible.

In table (2) : illustrating initial and extract values for the communalities the common factors can explain high proportion of variance of variable since all of these exceed 0.5 with exception of the value x48 which is equals 0.493 which approximates 0.5, indicating that 49.3% of variance within the variable value of x48 is explicable through the common factor. Tables - (3-1), (3-2) and (3-3) display the total explained variance which comprises three parts:

Communalities			 Communalities				
Var	Initial	Extraction	Var Initial Extraction				
X1	1	.785	X34	1	.756		
X2	1	.738	X35	1	.688		
X3	1	.724	X36	1	.682		
X4	1	.715	X37	1	.624		
X5	1	.712	X38	1	.666		
X6	1	.734	X39	1	.729		
X7	1	.614	X40	1	.632		
X8	1	.722	X41	1	.662		
X9	1	.603	X42	1	.729		
X10	1	.568	X43	1	.702		
X11	1	.698	X44	1	.710		
X12	1	.496	X45	1	.751		
X13	1	.641	X46	1	.594		
X14	1	.536	X47	1	.667		
X15	1	.743	X48	1	.678		
X16	1	.740	X49	1	.652		
X17	1	.635	X50	1	.656		
X18	1	.550	X51	1	.614		
X19	1	.636	X52	1	.683		
X20	1	.702	X53	1	.678		
X21	1	.621	X54	1	.637		
X22	1	.582	X55	1	.672		
X23	1	.727	X56	1	.676		
X24	1	.687	X57	1	.706		
X25	1	.689	X58	1	.660		
X26	1	.672	X59	1	.659		
X27	1	.563	X60	1	.529		
X28	1	.702	X61	1	.573		
X29	1	.565	X62	1	.696		
X30	1	.731	X63	1	.760		
X31	1	.704	X64	1	.683		
X32	1	.814	X65	1	.613		
X33	1	.781	X66	1	.548		
Extra	ction Meth	od: Principal	Extra	ction Meth	od: Principal		
C	omponent	Analysis.	Component Analysis.				

Table(2): Table():Extraction Method: Principal Component Analysis (Communalities):

The first part deal with initial values which related to imaginary roots of the correlation matrix and which, specifies the factors remaining for the analysis as the factors having values less than 1 shall be excluded. Moreover the initial solution shall be undertaken in the assumption that a number of factors equals to the number of variables entered. Thus we have the following:

1- "The total column" include the Eigen roots of each factor, taken into consideration the fact that the total value of this column is equal to the number of the variables, i.e

13.325+7.666+4.027+2.728+2.728+...+0.088=66

2- "The displaying ratio of the variance explained through each factor will be calculated as follows": the variance ratio of each factor equal to:

 $\frac{\textit{Eigen root}}{\textit{No.of.var ibles}} \times 100\%$

T-11-	(2 1)
I able	3-1)

	Total V	ariance Explained	1					
Component	Initial Eigenvalues							
•	Total	% of Variance	Cumulative %					
1	13.325	20.190	20.190					
2	7.666	11.616	31.806					
3	4.027	6.102	37.907					
4	2.728	4.133	42.041					
5	2.428	3.679	45./19					
0	2.125	3.219	48.938					
/ 8	1.672	2.333	53.062					
9	1.044	2.490	56 171					
10	1 305	1 977	58 148					
11	1.270	1.924	60.072					
12	1.191	1.804	61.876					
13	1.154	1.749	63.625					
14	1.078	1.633	65.258					
15	1.022	1.549	66.807					
16	.959	1.453	68.260					
17	.932	1.413	69.673					
18	.909	1.377	71.049					
19	.885	1.341	72.390					
20	.823	1.247	73.637					
21	.777	1.177	74.815					
22	.762	1.154	75.969					
23	.727	1.101	77.070					
24	.690	1.046	78.115					
25	.681	1.032	79.147					
26	.655	.993	80.140					
27	.640	.969	81.109					
28	.623	.943	82.052					
29	.589	.893	82.945					
30	.369	.862	83.807					
31	.525	.792	85 278					
32	.514	740	86.127					
33	.494	737	86.864					
35	458	694	87 558					
36	448	679	88 237					
37	.424	.643	88.880					
38	.410	.621	89.501					
39	.409	.619	90.120					
40	.391	.592	90.713					
41	.370	.561	91.273					
42	.354	.537	91.810					
43	.346	.525	92.335					
44	.336	.509	92.844					
45	.322	.488	93.331					
46	.309	.469	93.800					
47	.300	.455	94.255					
48	.287	.435	94.691					
49	.280	.424	95.115					
50	.273	.413	95.528					
51	.261	.396	95.924					
52	.246	.373	96.297					
53	.230	.548	96.645					
54	.229	.54/	90.992					
<u> </u>	.21/	.530	97.322					
50	.207	.314	97.030					
5/	.205	.311	97.947					
	.195	.290	98.243					
	.183	.201	90.324					
61	162	245	90.701					
62	153	231	99 257					
63	147	223	99 480					
64	139	210	99.690					
65	116	176	00.866					

Table	(3-2)
I and to	

Total Variance Explained							
Component	Extr	Extraction Sums of Squared Loadings					
	Total	% of Variance	Cumulative %				
1	13.325	20.190	20.190				
2	7.666	11.616	31.806				
3	4.027	6.102	37.907				
4	2.728	4.133	42.041				
5	2.428	3.679	45.719				
6	2.125	3.219	48.938				
7	1.672	2.533	51.471				
8	1.644	2.490	53.962				
9	1.458	2.209	56.171				
10	1.305	1.977	58.148				
11	1.270	1.924	60.072				
12	1.191	1.804	61.876				
13	1.154	1.749	63.625				
14	1.078	1.633	65.258				
15	1.022	1.549	66.807				

Table(3-3)

Total Variance Explained						
Component	Ro	tation Sums of Squar	ed Loadings			
	Total	% of Variance	Cumulative %			
1	11.154	16.900	16.900			
2	7.265	11.007	27.907			
3	3.372	5.109	33.016			
4	2.568	3.891	36.907			
5	2.238	3.390	40.298			
6	2.225	3.372	43.670			
7	2.219	3.362	47.032			
8	1.924	2.916	49.947			
9	1.770	2.681	52.629			
10	1.657	2.511	55.140			
11	1.634	2.476	57.615			
12	1.588	2.406	60.022			
13	1.584	2.399	62.421			
14	1.447	2.193	64.614			
15	1.447	2.193	66.807			

Table(4): Unrotated Component Matrix^a

			Cor	nponent	Matrix	(a)				
	Component									
	1	2	3	4	5	6	7	8		
X47	.713									
X64	.712									
X34	.710									
X45	.708									
X56	.698									
X58	.679									
X31	.650									
X55	.640									
X62	.639									
X57	.627							405		
X36	.624									
X38	.617									
X63	.617									
X6	.609									
X61	.574									
X19	.572									
X44	.557	398								
X23	.534			.461		397				
X65	.533									
X37	.526									
X4	.523									

X43	.517								
X30	.510	446							
X32	.507	492		457					
X40	.500								
X27	.500								
X51	.497	366							
X33	.497	402		461					
X25	.482			.482		374			
X5	.482								
X49	.403	.362							
X13		582							
X42	.362	554							
X20		541							
X21		541							
X28		539							
X41	.353	535							
X35	.399	515							
X22		504							
X46	.451	461							
X17		.455	.423						
X39	.439	453							
X12		.441							
X24	.380	416							
X9		.412							
X66		409							
X11		.406	.395						
X7	.352	391							
X3		.384	.350						
X60		.383							
X29		.379							
X10		.364							
X48			.532						
X1			.476			.406			
X50		.387	.460						
X18			.433			.351			
X2		.399	.410						
X15				.459					
X54	.359			454					
X59	.351				371				
X26	.400					438			
X8			.424			.426			
X14									
X52									
X16		371							
	a 15 components extracted.								

For instance: the variance ratio explained through the first factor is $\frac{13.325}{66} \times 100\% = 20.19$ 3- "the cumulative Ratio column": represent the

3- "the cumulative Ratio column": represent the ascending correlate variance ratio for the cumulative column.

Part two: is the Extraction Sums of Squared Loadings before rotating of factors, this section includes the same data as in part one, except for the factor that have been extracted, the second section contains the same data as of the first one. Hence, this relates to the factor making up the Eigen roots with values larger than 1.(Tables 4,5).

There are only 15 factors of that kind while the residual factors have been excluded, these factors constitutes 61% of the total variance.

		0	Compon	ent Ma	trix(a)		
	0	10		mponen	t 12	1.4	1.5
V 47	9	10	11	12	13	14	15
X47							
A04 V24							
A34 X45							
X56							
X58							
X31							
X55							
X62							
X57							
X36							
X38							
X63							
X6							
X61							
X19							
X44							
X23							
X65						<u> </u>	
X37						<u> </u>	
X4							
X43							
X30 X22							
Л.52 V 40							
X40 X27							
A27 X51							
X33							
X25							
X5							
X49							
X13							
X42							
X20							
X21							
X28							
X41							
X35							
X22							
X46							
X17							
X39							
X12 X24							
X24		204					
А9 Х66		.394					
X11							
XT X7							
X3	369						
X60							
X29						1	
X10						İ	
X48						İ	
X1	.377						
X50							
X18							
X2							
X15					358		
X54							
X59							
X26							
X8							
X14		.404				<u> </u>	
X52			.432	12.0		L	
X16				.430		L	
X53				427	l I	1	

Part three: contains the Rotation Sums of Squared Loadings table include the same set of data extracted factors as in part 2 only after rotation. Here the variance ratios explained by the extracted factors after rotation have been redistributed in an equal manner, using the varimax technique for rotation.

Table (4) shows Un rotated Component Matrix.

	Component Matrix(a)							
	Component							
	1	2	3	4	5	6	7	8
X64	.797							
X56	.770							
X47	.769							
X34	.759							
X38	.729							
X45	.723							
X19	.706							
X62	.688							
X58	.671							
X63	.664					.360		
X57	.660							
X37	.659							
X55	.648							
X36	.644			.359				
X31	.635			.440				
X6	.631							
X27	.567							
X61	.556					.428		
X40	.479		.377					
X20		.779						

Table(5):	rotated	Component	Matrix	a

X28		.729					
X21		.702					
X13		.668					
X35		.660					
X22		.626					
X24		.586					.440
X66		.545					
X7		.544					
X44	.364	.517					374
X41		.511					
X46		.510					
X43		.486					396
X18		.482					
X51	.381	.442					
X50			.717				
X17			.705				
X29			.636				
X49	.394		.588				
X8			.410		.356		352
X33		.400		.692			
X32		.466		.680			
X30		.457		.608			
X14					.663		
X11					.646		
X9					.613		
X10					.490		
X12					.395		
X59						.663	
X60						.532	
X65	444					483	

X2							.789	
X3							.743	
X1							.729	
X23	.444							.603
X25	.408							.459
X4	.439							
X5	.356							
X48		.376						
X42		.506						
X39		.544						
X52								
X53								
X26			.390					
X16		.393						
X15								
a 15 components extracted.								

Component Matrix(a) Component 9 10 15 12 13 14 11 X64 X56 X47 X34 X38 X45 X19 X62 X58 X63 X57 X37 X55 X36 X31 X6 X27 X61 X40 X20 X28 X21 X13 X35 -.396 X22 X24 X66 .438 X7 <u>X4</u>4 X41 .482 X46 X43 X18 -.372 X51 X50 X17 X29 X49 X8 -.382 X33 X32 <u>X30</u> X14 X11 X9 X10

X12								
X59								
X60								
X65								
X2								
X3								
X1								
X23								
X25					.379			
X4	.696							
X5	.680							
X48		.605						
X54		.389						
X42			.629					
X39			.588					
X52				.776				
X53				.683				
X26					.596			
X16						.732		
X15						.715		
a Rotation converged in 12 iterations.								

Shape (1): The Factor Scree Plot for Eigen Roots

Component Number

Table(5)-Rotated Component Matrix- and Shape (1) show the scree plot of Eigen values of the imaginary roots to the corresponding various factor. The figure displays the Eigen values of each factor extracted. It equally illustrated that the amount of variance to which the change in Eigen value is attributable within each of the factor rapidly diminishes in relation to the successive variable. The figure also, shows the accumulation begin to emerge between the 16 and 15 factors correspond to the Eigen value of less than 1.consequantely variables up to 17 are retained.

The first factor includes 11 variables, namely $(x_{44}, x_{45}, x_{47}, x_{46}, x_{43}, x_{42}, x_{39}, x_{41}, x_{40}, x_{64}, x_{22})$ this could designated as the religious factor.

The second factor includes 7 variables, namely $(x_{32}, x_{31}, x_{33}, x_{30}, x_{35}, x_{34}, x_{36}, x_{51})$ this could designated as the foreign factor.

The third factor includes 7 variables, namely $(x_{10},x_{11},x_8,x_9,x_{14},x_{17},x_{12})$ this could designated as the political factor.

The fourth factor includes 7 variables, namely $(x_{54}, x_{53}, x_{52}, x_{50}, x_{55}, x_{49}, x_{29})$ this could designated as the military factor.

The fifth factor includes 3 variables, namely (x_3,x_2,x_1) this could designated as the distribution of recourses and development policies factor.

The sixth factor includes 4 variables, namely $(x_{21}, x_{23}, x_{24}, x_{25})$ this could designated as the conflict between tribes among themselves on one side and central government on the other side factor.

The seventh factor includes 3 variables, namely (x_7,x_5,x_4) this could designated as economic pressure factor.

The eighth factor includes 2 variables, namely (x_{38}, x_{37}) this could designated as the overlapping of border and tribes with neighboring countries factor.

The ninth factor includes 3 variables, namely (x_{62}, x_{63}, x_{61}) this could designated as the poor level of education factor.

The tenth factor includes 3 variables, namely (x_{26}, x_{65}, x_{59}) this could designated as the rise cost of limited education factor.

The eleventh factor includes 2 variables, namely (x_{57}, x_{58}) this could designated as the proliferation of weapon and easy access by people factor.

The twelfth factor includes 2 variables, namely (x_{16},x_{15}) this could designated as the ineffectiveness of Sudanese diplomacy factor.

The thirteenth factor includes one variables, namely (x_{18}) this it hardly designated as it contain only one factor.

The fourteenth factor includes one variables, namely (x_{60}) this it hardly designated as it contain only one factor.

The fifteenth factor includes 2 variables, namely (x_{13}, x_{56}) this could designated as the colonial heritage of militaristic tendencies factor.

The data analysis resulted the following:

The data of those who have joined the armed movements:

The most factors that lead to the emergence of the armed movements were: the take off educational, military, religious, political culture, the civil conflicts that caused by the pretext of new and old colonization, internal policy, religious conflict, the bias for some states, foreign greediness, political factor, educational policies as well as the distribution for resource and development policies, the tribes tensions and conflicts on power, economical living pressures, the take of nationality of armed forces and it rudeness, Islamic groups and parties, the weakness and underestimate of

2/13/2014

the armed forces to settle the situations, and the failure of Sudanese diplomacy.

5-Conclusion:

Regarding the factors of supporting and joining armed movements, statistically significant difference was found for sex, age, and educational level. The study reveals that, the ratio of males was 81.1% compared to that 18.9% for females. Also, we show that the age group "less than 20", :21-30", "31-40", "41-50", "51 and over were represented by ratios of 4.6%, 41.5%, 37.8%, 11.1%, and 5% respectively. In addition, we notice that the ratios of educational levels among those who joined the armed movements were 4.2%, 12.6%, 34.4%, 36.1% and 12.8% for illiterate. basic, higher secondary, university and graduate levels respectively. Also, the ratio of those supporting the rise of armed movement, compared to 49.6% for those opposing that opinion. Among the most significant factors for this phenomenon there are the religious factors, inter-border tribal conflicts, political factors such as the relation between the army and political power. Equally, there are influences of popular administration, foreign intervention, and professionalism of the army as well as prior resources of the army and its incapacity to resolve conflicts. There are economic factors such as economic hardship, unfair distribution of wealth and poor development and educational policies regarding curricula and fees.

References:

- 1. Brian P. C. Manley: Translation of Dr. Abdul Rahman Mohammed Abu uncle of English, The Basis for the Statistical Methods Multivariate, scientific publishing and printing presses, King Saud University, Riyadh, Saudi Arabia, 2001.
- D.Napoleon, S.Pavalakodi, A New Method for Dimensionality Reduction using K-Means Clustering Algorithm for High Dimensional Data Set, Bharathiar University, International Journal of Computer Applications (0975 – 8887), Volume 13– No.7, January 2011.
- 3. Lindsay I Smith, A tutorial on Principal Components Analysis, 2002.
- 4. Minato Nakazawa, R practice: Factor Analysis, 2011.
- Richard Johnson, Dean and Sharan, Arabization: Abdul Hamid patients Azzam, Dr. Review: Boualem Ben Djilali: Statistical Analysis of Multiple Variables of Applied Destination, Mars Publishing House, Riyadh, Saudi Arabia.1998.
- William Cochran, translation Anis Kengo: Statistical Sampling Technique, third edition, King Saud University Press, 1416, Saudi Arabia.
- 7. A.M.Zain. Using Factor Analysis to Study the Movements of Armed in Sudan, Ph.D. thesis, 2012.