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Abstract: We are concerned with the duality of the Hardy spaces of antianalytic functions on the disk is given 

which generalizes a result of Bukhvalov. So we prove that �������
�
≅ �������

�� under the canonical map when ��  

admits analytic projections (��). If � be a complex Banach space and 1 < � < ∞, 1 �⁄ + 1 �⁄ = 1. ��(�) is 

Lebesgue-Bochner space of �-valued integrable functions on the circle and ��(�) its Hardy type subspace �� ∈

��(�) f̂ (�) = 0 ∀ � < 0�. Examples are constructed for bad behavior of the analytic projection and of functions in 

this dual space if � does not belong to the well-known UMD class of Banach spaces. 
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1. Introduction 

If � be a complex Banach space with dual 
space �� and 1 < � < ∞, 1 �⁄ + 1 �⁄ = 1. Let 
��(�) ≔ � �(�;�) be the Lebesgue–Bochner space 
[15] of � − valued pth power integrable functions on 
the unit circle � with respect to normalized Lebesgue 
measure �

 
on �. The space in the title of this paper is 

the vector–valued Hardy space. ��(�):=
�� ∈ ��(�): ��(�) = 0 ∀� < 0�, where ��(�) =

(1 2�⁄ )∫ �(���)
��

�
������� denotes the �th Fourier 

coefficient of � ∈ (� ∈ ℤ). As one might expect, 
��(�) can also be realized, via Poisson integral, as a 
closed subspace of the Hardy space  

��(�) ≔ ��:� → �  analytic: ‖�‖�
�
:=

���0≤�≤112�02����������<∞  

(� denotes the unit disc). ( These spaces "coincide" 
iff � has the "analytic Radon–Nikodým property" a 
RNP, see 2.7). The analogous spaces of �-valued 
antianalytic (resp. harmonic) functions are denoted 

by ���(�) �resp. ℎ�(�)�. See Section 2 for details. 
It is classical that in the scalar theory 

(� = ℂ) the dulality ��́ ≅ ��� holds; more precisely: 

the canonical map ��� → � �́, � ↦ �� ↦ ∫ ����
�

�, 

is an isomorphism [17,7.2]. The crucial ingredient in 
the proof is the ‖∙‖�boundedness of the "analytic (or 

Riesz) projection" �� → � � which assigns to the �� 

function �~∑ ���
���� (�)���� the �� function 

��~∑ ���
��� (�)����. Thus, if � is a Banach space such 

that the analogous map ��(�) → � �(�), � ↦ ��  is 
defined and bounded, the isomorphism ��(�) ≅

������� holds, and the converse is also true (4.5). This 
was observed first by Bukhvalov [8] and rediscovered 

in [33]. Unfortunately, the class of Banach spaces 
admitting this analytic projection is very restrictive: It 
coincides with the well-known class UMD which is, 
e.g., smaller than the class of superreflexive Bacach 
space (see 3.3). The question thus arises how to 
describe ��(�)� for a general Banach space �. In this 
paper, ��(�)� is represented as a certain space ��∗

�(��) 
of analytic ��-valued functions on the disc (4.3, 4.4); 
this space contains ��(��) as a weak* sequentially 
dense subspace. In general ���(��) is in ��∗

�(��) neither 
dense nor closed (4.7): e.g., sufficient for denseness is 
the Radon-Nikodym property of ��; in present of a 
RNP it is also necessary.  

The connection of this description of ��(�)� 
with the analytic projection is still very close: ��∗

�(��) 
consist exactly of the antianalytic projections of 
functions in ℎ�(��) (Corollary 4.5). (Note that for any 

harmonic function ∑ ��
�
���� �|�|���� the analytic 

projection ∑ ��
�
��� �� can always be defined, see 

3.1). It must be said, however, that the norm ‖�‖�
∗  of 

a member � ∈ ��∗
�(��) depends so explicitly on its 

action as a functional on ��(�) that the 
representation theorem can not be regarded as really 
satisfactory. My justification is, first that the function 
is ��∗

�(��)─which, anyhow, are the functional on 
��(�)─can enjoy a rather unwieldy boundary 
behavior. Even if �� has the RNP (in which case 
� ∈ ��∗

�(��) is the limit in norm of the, 
��, ��(�):�(��), � < 1, see 4.7). Cf. the discussion in 
4.8. This is exemplified by the examples living in ��, 
� (predual of JT [46]), ��. These constructions might 
be of interest for other vector- valued Hardy space or 
harmonic analysis as well. Second, the result of 
Bukhavlov mentioned above subordinates itself 
naturally under the representation given here (4.5) 
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and, anyway, some assertions about the position of 

������� in ��∗
�(��) = ��(�)� can be made (4.6, 4.7).  

I am not treating the case � =  1, since this 
has been done, for several variants of vector-valued 
�� spaces, by Blasco [3] and Bourgain [5].  

The organization of this paper is as follows. 
In Section 2, we collect preliminaries on vector-
valued Hardy spaces. In section 3, the analytic 
projection operators are introduced, and first example 
is given of bad behavior of this operation outside the 
UMD class (3.5). The representation of ��(�)� 
described informally above is carried out in Section 4, 

consider �������
�
≅ �������

�� under the canonical 

map when ��  admits analytic projections (��). Last 

but not least, the construction of (counter-) examples 
fills Section 5. 

 
2. Preliminaries on vector-valued Hardy 
spaces 

We begin by recalling some necessary 
definitions and notation on spaces of integrable 
functions. 

In this paper, � is the unit disc in ℂ,� = �� 
the unit circle, � = �� 2�⁄  normalized Lebesgue 
measure on �. All spaces of integrable functions will 
be taken with respect to �, which is therefore 
suppressed innotation. ��  is the indicator function of 
� ⊂ �.�, � denote complex Banach spaces, �ˊ the 

duall space of �, XB  (resp. ���) the closed (resp. 

open) unit ball of �. The term “isometry” does not 
include surjectivity, whereas "isomorphism" does. If 
� is an �-valued and � an �ˊ-valued function,〈�, �〉 
stands for the scalar function 〈�(∙), �(∙)〉. �(�;�)has 
it usual meaning and is abbreviated as �(�);� ≔
�(�;ℂ).  

The basic theory of the Bochner integral and 
Bochner-Lebesgue spaces ��(�) = ��(�;�) is 
supposed to be known [15]. We are going to explain 
the less familiar notion of Gel'fand integral and the 

spaces ����ˊ, �� first. Unless stated otherwise, 
1 ≤ �, � ≤ ∞. 
Definition 2.1. A function �:� → �� is called 
scalarly integrable (w.r.t.�) if the function 〈�, �〉: � →
ℂ is integrable for all � ∈ � in this case, for any 
Borel set � ⊂ �, the Gel'fand integral (�) ∫

�
��� ∈

�� is well–defined by the formula  
〈�, (�) ∫

�
���〉 ≔ ∫

�
〈�, �〉��, � ∈ � [15]. 

The symbol (�) will often be suppressed.  
Now recall that the Banach lattice ��(�;ℝ) 

is order complete [28]; i.e., every order–bounded 
subset of ��  has a supremum in �� (supremum in the 
sense of order in ��, denoted by ��-sup). Put 

����ˊ,�� = ����;�ˊ, �� ≔ ��:� → �ˊ:〈�, �〉 ∈

�� ∀� ∈ � } 
��� {|〈�, �〉|:‖�‖ ≤ 1} �� ����� ������� �� ��. 
Following Bukhvalo [8], one defines for � ∈ ���ˊ, �� 

the �� function �� ≔ �
� sup‖�‖��|〈�, �〉| and the 

semi-norm ‖�‖�:�����
. The null space of the semi-

norm ‖∙‖� on ����ˊ, �� is easily recognized as 

�� ∈ ����ˊ, ��: ∀� ∈ �:〈�, �〉 = 0 a. e.�. (Note that 
in the formulation "∀� ∈ �:〈�, �〉 = 0 a. e.” the 
exceptional null set depends on �. Typical example: 
�:� → ��(�) ≔ � �, the �th unit vector. We have, 
‖�(∙)‖ = 1, but ‖�‖� = 0. )  

Finally, put ����ˊ,�� = ����;�ˊ,�� ≔

����ˊ,�� �‖∙‖�
�

��
(0)�  with the associated norm 

‖�‖� = ‖�‖� �� ∈ ������ˊ, ���. For ������ˊ,��

),(, XxLx P   and (�)∫
�
��� (� ⊂ � �����) 

are well-defined, since independent of the choice of 

representative. Obviously, we have ����ˊ� ⊂

����;�ˊ, �� as a closed subspace (i.e., the canonical 
map is an isometry. 

Now let 1 �⁄ + 1 �⁄ = 1, � ∈ ��(�), g ∈ ����ˊ, ��. 

It is not hard to see that 〈�, g〉: � → ℂ is a (well-
defined!) member of �� satisfying ∫

�
〈�, g〉�� ≤

‖�‖� ‖g‖�, 

so that g acts as a bounded linear functional of norm 
at most ‖g‖�, on ��(�). The importance of the space 

����ˊ, ��lies in the fact that it is the exact dual space 

of ��(�)(1 ≤ � < ∞):
  

Theorem 2.2. Let � be a Banch space, 1 ≤ � <
∞, 1 �⁄ + 1 �⁄ = 1 the map 

����ˊ,�� → � �(�)�, � ⟼ ∫
�
〈∙, g〉�� =:〈∙, g〉 

is a (well-defined) isometric isomorphism. 
It is in a canonical sense equivalent [21] to 

the perhaps more widespread representation of 
��(�)� using the upper integral [24]. 

Lemma 2.3. For ������ˊ, ��, we denote by 
Xdtten 

   2)()(ˆ 2
0

int

 
the nth Fourier 

coefficient (� ∈ ℤ) and by   ,: XDP 
    2)()(:)( 2

0 dtttPreP r
i

  the 

Poission integral of �. (The integrals, of course, 
Gel’fand integrals.) Here �� is the Poisson kernel, 

��(�) =
1 − � �

1 − 2� cos � + ��
. 

An easy computation yields, as in the scalar case,  

   
n

inni
ernreP   )(ˆ)(  

with absolutely and in � locally uniformly 
convergent series.  
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Now let � ⊂ �� be a Banach subspace. The 

following conditions on � ∈ ����ˊ, �� are equivalent 
[21] : 
 
E

Yd Borel; 

  ;111   qpLgYdg p

T


 

Yn )(̂  ∀� ∈ ℤ;   DzYzP )( .  

The space of those ������ˊ,�� is denoted by 

��
���ˊ,�� Obviously ),(),()( XXLXXLyL

PPP   

as closed subspaces. 
An important feature of functions in 

��(�) − that is, of the strongly measurable members 

of ��
���ˊ, �� − is exhibited in the following. 

Theorm 2.4. Let )1)((  PyLf
P  

))(.( YCfresp  . Then �� ∗ � → � (� → 1 ) in 

��(�) �����. �� �(�)�.  
Proof. Since translation in the argument of a function 

� ∈ ��(�) �����. �(�)� is a continuous map 
 YLT p

 

[23] (here the Bochner integrability 

enters), the scalar proof can be carried over without 
difficulty [8].  
Corollary 2.5. Trigonometric polynomials 

 

N

Nn

in
ney 

  Yyn   are dense in ��(�), 1 ≤

� < ∞ and in )(YC . 

Proposition 2.6. For ������ˊ, �� we denote by 

�[�]:� → �ˊ, 

  
 2)()(:)(

2

0
dtttCreC r

i 
 

Cauchy integral of �.
 
Here �� is the Cauchy kernel, 

 CretC it
r ).1/(1)(  is an analytic �ˊ − valued 

function with Taylor series    
0 )(ˆ)( n

nznzC  ; 

in particular,   YDC : if ����
���ˊ, ��, where 

XY  is a Banach subspace. Comparing the 

coefficients of  P  and  C  yields: 

  Pnn  00)(ˆ is analytic     . CP   Any 

������ˊ, �� with these properties is called "of 
analytic type " ("analytic" for short). The (obviously 

closed) subspace of analytic members of ����ˊ, �� 

�����. ��
���ˊ, ��� �����. ��(�)� is donted by 

�����. ��,�
�

��ˊ,��� �����. ��
�(�)� ; of course, 

��
�(�) ⊂ ��,�

� ��ˊ,�� ⊂ ��
���ˊ,��. 

As a corollary of Theorem 2.4. "analytic" 

polynomials  

N

n

in

n
ey0

  Yyn   
are dense in 

��
�(�), 1 ≤ � < ∞. 

Proposition 2.7. We define  YDuYh p  ::)(  

harmonic 
p

u  where 
prrp

uu
1

sup


  

and    .:;: itit

rr
reueuYTu  . A word 

on the notion of a Banach space valued harmonic 
function seems in order. Exactly as in the better 
known case of holomorphic functions [23] any two 
reasonable definitions of harmonicity for a Banach 
space valued function are equivalent. To be more 
specific, any of the following conditions on 

YDu :  implies all the others [21] . 

i.  � is strongly harmonic, i.e, ����(�, �) and 
⊿� = 0. 
ii. � is weakly harmonic, i.e. 〈�, ��〉 is 
harmonic ∀y� ∈ Y�.  

iii. (If XY  ) u is weak* harmonic, i.e., 

〈x, u〉 is harmonic .Xx  

iv. ∃�� ∈ � (� ∈ ℤ) such that ������� =

∑ ��
�
���� �|�|����

 
in � with absolutey and locally 

uniformly convergent series. 
By the usual sub harmonicity argument it is 

easily proved that ‖��‖�  increases with �  for 

�:� → � harmonic, 1 ≤ � ≤ ∞  [21]. Also, one has 
the scale ℎ�(�) ⊃ ℎ�(�) ⊃ ℎ�(�) ⊃ ℎ�(�)  if 
1 ≤ � ≤ � ≤ ∞, the inclusions are of norm ≤ 1.  

The following Poisson integral 
representation theorem [21Theorem (1.5)] is 
essentially a concise formulation of results of 
Grossetete [18, Sect. l] and Bukhvalov [8, Theorem 
2.3]. Let � ⊏ �� as in Lemma 2.2. (e.g.,  
� = ��.  
Theorem 2.8. The Poisson integral defines  

1
0

an isometry       PYhXXLP Y ,,: 11   

2
0

an isometric isomorphism 

      PYhXXLP pp
Y ,,:  if 

.1  p  

For the sake of clarity, I remark that the 
isometry in 1

0

 is never subjective (except � =  0 ). 

The full representation space for ℎ�(�) would be 
�(�), the space of � − valued (� − �������� )vector 
measures with bounded variation on the Borel sets of 

�. The space ��
���ˊ,�� appearing above corresponds 

via the identification � ↦ ��� exactly to the 
subspace ��(�) consisting of �-absolutely 
continuous members of �(�), this is essentially the 
"generalized theorem of Lebesgue Nikodym"[16]. 
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Definition 2.9. ��(�)     .1,::  pYLP p Thus 

��(�) ⊂ ℎ�(�) is a closed subspace and ��(�) ≅
��(�) isometrically; for � ≤  �, ��(�) ⊂ ��(�)with 
norm ≤  1.  
Function in these spaces behave well as regards 
boundary values: 
Proposition 2.10. If � = �[�]∈ ��(�) with 
� ∈ ��(�) then )()(lim 1   eru i

r a.e. Conversely, 

if  Yhup p ,1 and )(:)(lim 1  
  ueru i

r  

exists a.e., then  YLu p  and    .YhuPu p   

Summing up, 
��(�) = {� ∈ ℎ�(�):� ℎ�� ������ ������ �. �.}, 
 1 < � ≤ ∞. 
Proposition 2.11. The analytic vector–valued Hardy 
spaces ��(�) are defined in the range 0 < � ≤ ∞ as  

��(�) ≔ ��:� → � ��������: ‖�‖�
�

≔ sup
���

� ���������
�

� ��

2�
< ∞

��

�

� 

(� < ∞), 

��(�) ≔ ��:� → � ��������:‖�‖�

= sup
�∈�

‖�(�)‖ < ∞�. 

 
Thus, of course,  fYhfYH

PP

:)()(  is analytic}, 

.1  P We also define the vector–valued 

Nevanlinna class  









 



 



2
0

1
0 2

)(lnexpsup::::)(
d

reffanalyticYDfYN i

r

 
Again, the suprema are increasing limits as � ↗ 1 and 
we have the scale . 

�(�) ⊃ ��(�) ⊃ ��(�) ⊃ ℎ�(�) 

 if 0 < � ≤ � ≤ ∞; 
the first inclusion is because 

P

P

P
ff  1

0 for 

YDf : analytic (use Jensen's inequality), the other 

inclusions are clearly of norm 1 . We will make use 

of the following result due to Danilevich [14] in a 
more general Frechet space setting. For a simpler 
proof in the Banach space context [21]. 
Proposition 2.12. Let � be a separable Banach space 
and ).(XNf   Then )(lim 1

irefr exists a.e )( in 

)).,(,( XXX    

Returning to the range ,1 P the following 

Poisson integral representation theorem is, at least if 
� < 1,a trial consequence of the preceding one (2.7), 
by the remarks made in 2.6. It is due to Ryan [34]. 
Let again � ⊂ ��. 
Theorem 2.13. For  p1 the Poisson (or Cauchy) 

integral defines an isometric isomorphism 

�:��,�
� ��ˊ,�� ⟶ ��(�),� ↦ �[�]= �[�] .  

In view of Theorem 2.8 (1°)  and the 
remarks following it, the theorem for � =  1 is 
tantamount to the knowledge that every “analytic” 
member of �(�)  is already in ��(�) , i.e., the 
vector-valued �  and � . Riesz theorem [18, 2. 
Corollary; 21, Theorem (2.3); 25, p. 316; 35, 
Theorem l] which in turn is a trivial consequence of 
the scalar-valued one.  
Definition 2.14. ��(�)    .1)(::  PYLP P

a

 

Thus ��(�) ⊂ ��(�) is closed subspace and for 
1 ≤ � ≤ � ≤ ∞,��(�) ⊂ ��(�).  

 As one might expect, the assertions of 
Preposition 2.7 hold for ��(�) in the full range 
1 ≤ � ≤ ∞; that is, 
��(�) = {� ∈ ��(�): � ℎ�� �. �. ������ ������} 
1 ≤ � ≤ ∞ [11]. In most of what follows, we will 
identify the spaces ��(�) and ��

�(�), more precisel 
y� ∈ ��

�(�) with �[�]∈ ��(�) and ��(�) � ∈
��(�) with its boundary value �∗ ∈ ��

�(�) . 

Proposition 2.15. Bukhualov and Danilevich were 
the first to recognize the close connection between 
the Radon-Nikodym property (���) [15] and the 
theory of valued ℎ� spaces. Their result may be 
summarized as follows: � has ��� iff ℎ� = �� (for 
one (all) � ∈ (1,∞) various extensions of this 
theorem, as regards the extreme values of �, have 
been given independently by Blasco [2] and the 
author [21]. I state here only what is needed later. 
Theorem 2.16. � has the RNP iff ℎ� = �� (that is, 
by Proposition 2.7, iff every bounded harmonic 
function �:� → � has radial limits �. �.). 
Theorem 2.17. A Banach space � has the analytic 
Radom-Nikodym property if the following equivalent 
properties are satisfied:  
1�  ��(�) = ��(�) (that is by Proposition 2.11., 
every bounded analytic function �:� → � has radial 
limits a.e.). 
 2� For all � ∈ [1,∞],��(�) = ��(�) that is by 
Proposition 2.11, every � ∈ ��(�) has radial limits 
a.e.). 
3� Every � ∈ �(�) has radial limits a.e. 
Proof. It obviousty suffices to show 1� ⟹ 3�. But 
this follows trivially from the vector–valued �. and 
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�. If � ∈ �(�), then � = � ℎ⁄  with  � ∈
 ��(�),  ℎ ∈  �� without zeroes. 

For example, �� does not have a ���: 
Consider �:� → ��,�(�)≔ (��)�∈ℕ . It is also clear from 

the above that RNP implies a RNP. The converse is 
not true; an example is provided by the space �� 
which has a RNP, as does every Banach lattice not 
containing �� . This major result is again due to 
Bukhvalov and Danilevich [11], for a simplified 
proof using semi-embedding). 
 

3. Analytic projection 
As in the scalar-valued case, the analytic (or 

Riesz) projection is intimately connected with the 
description of duals of Hardy spaces. Let .XY   

Definition 3.1. For a harmonic function �:� → � 
with series ������� = ∑ ��

�
���� �|�|����, let 

��:� → � be the analytic function ��(�) =
∑ ��
�
��� ��. �� is called the analytic projection of �. 

Thus, for � ∈ ��
� ��ˊ, ��, �[�]�(�) =

∑ ���
��� (�)�� = �[�](�); for simplicity, this will 

often be abbreviated to  .za there may or may not 

be a � ∈ ��
� ��ˊ,�� with    aPP   (equivalently, 

with formal Fourier series �~∑ ��(�)�
��� ����); if 

there is, this (necessarily unique) � is also dented by 
�� and called the analytic projection of � for 
example, the analytic projection of a trigonometric 
polynomial )()( Yyeye n

N
Nn

in
n

i  
 is 

.
0)(  inN

n n
ia eye  

 

For technical reasons, the antianalytic projection, 

denoted by ,ua ,a
 

will also be used: For �,�
 
as 

above, 

  ),(0
0  in

nn
in

n
n

n
ia rezzyeryreu 







  

      zCznzP an
n

a  :)(ˆ0  
, etc. (Here 

�̅ denotes convolution with the complex conjugate of 
the Cauchy kernel.) It is the "adjoint" of the analytic 
projection in the sense that, e.g., for trigonometric 
polynomials 

   dYTYT aa ,,::,:
 

.
0

))(ˆ)(ˆ(,, nnd
n

aa  


  

Definition 3.2. For ,1  P we say "� admits 

analytic" projection (�) " if 
auu   is a bounded 

operator ��(�) → � �(�). Equivalent conditions are 

a : is a bounded operator ��(�) → � �
�(�) (or, 

by denseness, only on the trigonometric 
polynomials); alternatively:   C is a bounded 

operator ��(�) → � �(�). One can also show[22] 
that it is the same to demand that � ↦ �� is a 
bounded operator ℎ�(�) → � �(�), or that ��(�) is 
complemented in ��(�). By duality (see Definition 
3.1), � admits analytic projection (�) iff �� admits 
[anti-] analytic projection (�), 1 �⁄ + 1 �⁄ = 1 [8].  
Lemma 3.3. That ��(�) boundedness of the analytic 
projection is equivalent to ��(ℝ;�) − boundedness of 
the Hilbert transform �, where ��(�) =

lim�→� (1 �⁄ )∫
��|���|��

�(�) (� − � )⁄ �� a.e. (� ∈

ℝ). 
Superreflexivity of � is derived already 

from ��(�) − ��(�)-boundedness of the �-valued 
Hilbert transform on the circle (=conjugate function 
operator, which is trivially equivalent to the analytic 
projection, too). In a similar vein, we have. 
Proposition 3.4. Suppose �� ∈ �(�) for all � ∈
ℎ∞�. Then a RNP implies RNP for �.  
Proof. To derive RNP for �, one has to show that 
every � ∈ ℎ�(�) has radial limits a.e. (Proposition 
2.15.) Putting �(�) ≔ � (�̅), so that � ∈ ℎ�(�) as 
well, one easily obtains 

    )0()()()0()( uzuzuuzuzuzu aaaa 
. 

By assumption, ��, �� ∈ �(�), and if � has a ��� it 
follows that ��, �� have radial limits a.e. (2.17), 
whence the same holds for �.  
Example 3.5.(��). The proposition says in other 
words that if ,\RNPaRNPY then analytic projection 

cannot map ℎ�(�) into �(�). Moreover, the proof 
tells one how to produce examples: Take any 
� ∈ ℎ�(�) without a.e. existing boundary values, 
then necessarily �� ∉ �(�). 

As a concrete example, consider � ≔ � � and 

�:� → ��, �������:= ��(� − ∙). � is harmonic, e.g., 

by condition (ii) of 2.7, and 1)( zu
Y  for all � ∈ �, 

thus � ∈ ℎ�(�). 

Since the series expansion of � is ������� =

∑ ���
|�|�����

���� , where �� ∈ ��, ��(�) = ����, we 
have ),)(()( 0

 i
r

n
n n rezCzezu

a

 
  

so that 






2
)()( 2

0
1 d

CLreu r
ia

Y
 

.:
2

)(2
0 rr

dt
tC 
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r does not depend on ,1, r  and as � → 1,   

)
1

1
(sin

21

1 12
0 H

z
ce

dt

reitr 








   

so that indeed )2/()(ln2
0  dreu

Y

ia




.1)(,.,ln LNuei a
r   . 

Keeping LY 
1

 fixed, we will show now that 

analytic projection is not a bounded operator 
)()( YNYC  in the sense that  01),(sup

a
fYCf

f  

Take � as above and, for ,1R  put )()( itit eRueuR 

then )(YCuR  with 1
Ru for all �. On the 

other hand, as is easy to see, .).()()( Rzuzu aa

R


Thus, as computed above, 
 

,)()()( Rr
Y

ia

Y

ia
R Rreureu  

 

hence

)1(2/)()(2
0 

 rLnLndreuLn RRr
Y

ia
R   

This means ,
0

)1()(  Reu Ra
R


as asserted.  

As a corollary, analytic projection is not a bounded 
operator (and thus; by the closed graph theorem, not 
an operator at all) �(��) → � �(��) for any � > 0, or, 
what amounts to the same, it is not ‖∙‖� − ‖∙‖�-

bounded on the L�-valued trigonometric polynomials. 
Note that even for p = 1 this does not follow directly 
from the result about superreflexivity quoted in 
Lemma 3.3, since the first part of its proof, 
proceeding along the lines of [31, 23.] works with 
step functions and thus outside �(�). For further 
examples of bad behaviour of the analytic projection 
see Examples 5.2,5.3&5.4. 
4. The Dual Space of ��(�) 

Let � be a complex Banach space and 1 < � <
∞, 1 �⁄ + 1 �⁄ = 1 Recall the identifications 
��(�) = ��

�(�) = �� ∈ ��(�): ��(�) = 0 ∀� < 0�, 

��(��) = ��
�
��ˊ, �� = {g ∈ ��(��, �): g�(�) = 0}. 

We Define  
���(��):={g ∈ ��(��, �): g�(�) = 0 ∀� > 0}. 
��
�(��):={g ∈ ��(��, �): g�(�) = 0 ∀� ≤ 0}. 

(Obviously, on the disc we have via Poisson integral 
���(��):={g(z�): g(�) ∈ ��(��)},  

��
�(��) = {g ∈ ��(��): g(0) = 0 }. ) 

The spaces ���(��) �����.��
�(��)� are defined 

analogously, namely as ��(��) ∩ ���(��) (resp. 
��(��) ∩ ��

�(��)).  

Remark 4.1. By general Banach space theory, 
��(�)� = ��(�)� ��(�)�⁄  Where ��(�)� is the 
annihilator of ��(�) In ��(�)�. In 2.1, ��(�)�

 
was 

identified as ��(��, �), and ��(�)� ⊂ ��(��, �) is 
easily recognized as ��

�(��), since analytic 
polynomials are dense in ��(�)�. We arrive at the 
description 

��(�)� = ��(��, �) ��
�(��)⁄  

(canonically isometrically isomorphic), but of 
course one aims at a description of ��(�)� as a 
space of functions, not equivalence classes. 

Consider the canonical injective operators 
���(��) → � �(�)�, g ↦ 〈∙, g〉 = ∫〈∙, g〉��; ���(��) →
��(��, �) ��

�(��)⁄ . 
which is the composition ���(��) ↪ ��(��, �) ↠
��(��, �) ��

�(��)⁄ . 
 

If � is a UMD space, then � is an 
isomorphism, since ��� is then given by the 
antianalytic projection )(),(, XHXXL qqa 

modulo its kernel ).(XH q  Vice versa, if � is an 

isomorphism , it is immediate to verify that 

��(��, �) ↠ ��(��, �) ��
�(��)⁄

 J−1 
�⎯� ���(��) 

is the antianalytic projection. We arrive at a theorem 
of Bukhvalov [8]: ��(�)� ≅ ���(��) canonically⟺
� admits analytic projection (�) ⟺ �� admits [anti-] 
analytic projection (�) i.e., � ∈ ��� (see 3.2, 3.3). 
The scalar multiplication in �� is to be understood as 
(���) ≔ � ̅��(�) (� ∈ ℂ, � ∈ �, �� ∈ ��),[37]. This 
makes the dual pairing 〈�, ��〉 ∶= ��(�) sesquilinear 

and allows one to replace ���(��) by ��(��) in all 
of these consideration [8]. Alternatively, the latter 
effect could also be achieved by giving the dual 
pairing 〈�, �〉, defined as ∫〈�(���), g(���)〉��(�), here 

and in [8] ����(�), g ∈ ��(��, �)�, the new 

meaning ∫〈�(���), g(����)〉��(�), as in [10], similar 
to the case of Bergman spaces in [9].)  

The problem arises to describe ��(�)� for a 
general Banach space � as a space of functions–the 
more, since the UMD condition on � is extremely 
restrictive. The description (4.6) of ��(�)� as 

��∗
�(��), a space of antianalytic ��- valued functions 

on the disc, is an attempt in this direction. Since the 

norm ‖g‖�
∗  of g ∈ ��∗

�
��′� depends rather explicitly 

on g’� action as a functional or ��(�), this answer is 
not really satisfactory. For instance, in the concrete 
case � = �� it does not yield an illuminating 
description of ��(��)

� but this might well be in the 
nature of things because of the bad behavior of ��- 
valued analytic projection exhibited in Example 5.4. 
On the other hand, Bukhvalov's theorem mentioned 
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above subordinates itself in a natural way as a special 
case (4.5), and some assertions about the position of 

���(��) in ��(�)� = ��∗
�
��′� can be made (4.10, 

4.12). 
In what follows, for a function � on � and 

0 ≤ � < 1, �� denotes function ��(�) = �(��) on � 
and/or on �. If � is defined on � (and �[�] makes 
sense ), �� means �[�]� = �� ∗ �. 
Lemma 4.2. Let 0 ≤ � < 1, �:� → �, g:� → �� 
harmonic with corresponding series expansions  

������� = � ��

�

����

(�)�|�|����, 

g������ = � g�

�

����

(�)�|�|����. 

1� � ∈ ��(�) = ��(�) ⇒ 〈�, g�〉

= � 〈�� (−� ), g�(�)〉

�

����

�|�| 

2� g ∈ ℎ�(��) = ��(��, �) ⇒ 〈��, g〉

= � 〈�� (�), g�(−� )〉

�

����

�|�|. 

 

 
 

In particular, if � ∈ ��(�) and g ∈ ��(��, �) then 
〈�, g�〉 = 〈��, g〉. 

Proof. �����
��� = ∑ ���

���� (�)�|�|���� with 
uniformly convergent series on � (� is fixed). Thus  

〈��, g〉 = � � 〈��(�)�|�|����, ������〉��(�)

��

�

�

����

 

= � 〈�� (�), g�(−� )〉

�

����

�|�|. 

 
The other equality is proved in the same way.  
Corollary 4.3. Let � ∈ ��(�), �:� → �� harmonic, 
0 ≤ �, � < 1.  
1� 〈�, g��〉 = 〈��, g�〉 
2� g ∈ ℎ�(��) = ��(��, �) ⇒ 〈�, g〉 = lim

�→�
〈�, g�〉. 

Proof. 1� apply the lemma to g� 
2� Follows from the lemma and 〈�, g〉 =

lim�→� 〈��, g〉; the latter because �� → �  in ��(�) 
(2.3). 

Part 2 of this corollary says, in other words, 
that g� → �  as � → 1  weak* in ℎ�(��) =
��(��, �) = ��(�)�, a fact which also follows 
directly from the general theory of Poisson integral 
representation [8]. 
Definition 4.4. Let 1 < � < ∞, 1 �⁄ + 1 �⁄ = 1. 

��∗
�(��) ∶= �g:� → �� ������������: ‖g‖�

∗

∶= ��������‖g�‖��(�)′ < ∞�.  

(Note that g� is in ���(��), thus in ��(�)� after the 
discussion in 4.1) 

Remarks 4.5. Let g:� → �� be antianalytic then: 

1�  ��∗
�(��) with ‖∙‖�

∗  is a normed space 

(completeness will follow later).  

2� ‖g�‖��(�)′ increases to‖g‖�
∗  as � ↗ 1.  

3� sup 
�∈�,‖�‖≤1

‖〈�, g〉‖� ≤ ��‖g‖�
∗ ≤ ��‖g‖�, 

Where �� is a constant independent of g (and �), and 

thus ���(��) ⊂ ��∗
�(��) 

⊂ �g:� → �� ������������: ���‖�‖��‖〈�, g〉‖� <

∞, the first inclusion being continuous. 

4� g ∈ ���(��) ⇒ ‖g‖�
∗ = ‖g‖��(�)�; in particular: 

� ∈ ��(�), g ∈ ���(��) ⟹ |〈�, g〉| ≤ ‖�‖�‖g‖�
∗. 

5� ‖g�‖�
∗ = ‖g�‖��(�)′ increases to ‖g‖�

∗  as � ↗ 1
 

in particular, for � ∈ ��(�), g ∈ ��∗
�(��), � < 1 ∶

 |〈�, g�〉| ≤ ‖�‖��g���
∗
≤ ‖�‖�‖g‖�

∗. 

Proof. 1�  If at all only "‖g‖�
∗ = 0⟹ g = 0" 

requires proof. ‖g‖�
∗ = 0 means 〈∙, g�〉 = 0

 
in 

��(�)� hence , g� = 0 in ���(��) (all �), the 
canonical map ���(��) → ��(�)� being injective. 
Hence g(rz) = 0 ∀r ∈[0�, �1) ∀z ∈ D, �, �. , g = 0 . 

2�  Take arbitrary �, � ∈ [0�, �1). By Lemma 4.2, 1�  

 






 rR

pf

xpHf
XpHrR gfg ,sup

1

)(

 

 
 

.,sup

1








XpHrr

pF

xpHF

ggf

 

3�  First inequality: fix � ∈ �, ‖�‖ ≤ 1, � < 1. of 

course, 〈�, g〉� = 〈�, g�〉 ∈ ��� ≅ ���by scalar theory 
(or the discussion in 4.1). Hence ( cf. [17, p. 113] ) 







dgxAgx r

p

pH

qqr  





,sup,

1

 

 

dgfA r

p
f

XpHf

q  





,sup

1

 

 
.

XHrq pgA  

Now let � → 1.  
Second inequality:  



 Nature and Science 2014;12(8)   http://www.sciencepub.net/nature 

 

http://www.sciencepub.net/nature                                      naturesciencej@gmail.com  8

‖g‖�
∗ ≤ sup 

���
 sup

�∈��(�)

‖�‖���

�〈�, g
�
〉� 

= sup
���

 ‖g�‖� =  ‖g‖�. 

 

4�  By Lemma 4.2, if g ∈ ���(��),  

‖g‖�
∗ ≤ sup 

���
 sup

�∈��(�)

‖�‖���

�〈�
�
, g〉� 

≤  sup
�∈��(�)

‖�‖���

|〈�, g〉| = ‖g‖��(�)′ . 

On the other hand, by Lemma 4.2, 2�  

‖g‖��(�)′ =  sup
�∈��(�)

‖�‖���

 �lim
�→�

〈�, g
�
〉�

≤  sup
�∈��(�)

‖�‖���

 sup 
���

�〈�, g
�
〉� = ‖g‖�

∗ . 

 

5� Apply 4� to g�; then 2� .  
Corollary 4.6. Let {g�}���

� , be a sequence where 
g�:�� → � �

� be antianalytic then,  

i. ��∗
������ with ‖∙‖��

∗ .  

ii. ∑‖(g�)�‖�������
�  increases to  

∑ ‖g�‖��
∗�

���  where � → 1 .  

iii.  sup
��∈��
‖��‖��

 ∑ �〈��, g�〉���
�`
��� ≤

��� ∑ ‖g�‖��
∗ ≤�`

��� ∑ ���
�`
���   

such that ��� is independent of g�,�� . 

Hence �������
�� ⊂ ��∗

������ ⊂ �g�:�� → ��
�� an 

antianalytic and  

sup
‖�‖��

 ��〈��, g�〉���

∞

�=1

< ∞. 

iv. g� ∈ �������
�� implies that  

 .
11












i
XHi

i
qi

j
jp

i

gg
 

For �� ∈ ��������,∑ g
�

∞
�=1 ∈ �������

��,

 implies that 

.,
11










 
jjj

qi
i

pj
i

q
ij gfgf

 

v. ∑ ‖��‖��
∗�

��� = ∑ ‖(��)�‖�������
�
���  

increases to ∑ ‖g�‖��
∗�

���  as � → ∞.
 For  

�� ∈ �������,� g
�

∞

�=1

∈ ����
∗ ����, 

  







 

jjj
qri

i
pj

i
q

ij gfgf
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.
1







jj
qi

i
pj gf

 

Proof. i. If 0
1








i
qi

j

g  then .0ig If 

,0
1








i
qi

j

g it means that   0,
1




i
rig

in �������
�
 hence (��)� = 0 in �������

�� and the 

map ��������
�
→ �������

�� is injective.

 
That is   0,

1




i
ji zrg  for every 10  r and 

�� ∈ �� i.e. g� = 0. 

ii. For 0 ≤ �, � ≤ 1, Corollary 4.3, shows that 

�‖(g�)��‖�������
�

�

���

=  sup
��∈�

������

������
≤1

 ��〈��
�
�
�
, �g

�
�
�
〉�

��
.

∞`

�=1

 

Theorem 4.7. The map ��∗
�(��) → � �(�)�, � ↦ �, 

where 
�� lim

�→�
〈�, g

�
〉 = lim�→� 〈��, g�〉 ����

�(�)�
 is a (well-defined) isometric isomorphism.  

Proof. First of all, for � ∈ ��(�), g ∈ ��∗
�(��), by 

Remark 4.5, 5� 

)1(0,,
*

 rgffgfgf
qPrrrr

 
since ffr in ��(�), as noted earlier. Thus we can 

dispose of the 〈��, g�〉 version.  
Now fix g ∈ ��∗

�(��). For distinction, the 
functional � ↦ 〈�, g�〉

 
on ��(�) (earlier identified 

with g�) will be denoted by �� (0 ≤ � < 1). We have 
sup���‖��‖��(�)� = ‖g‖�

∗ < ∞. 

If f is an analytic monomial 
 imi xeef )(  

)0,(  mXx then fGrr 1lim  exists: 

After Remark 4.5, 3� 
qq LHgx  , Whence 
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)(^,2/,, mgxdgxfegf rr
im

r  

)(^,)(^, mgxmgxrm   as .1r  

Since analytic monomials form a total subset of 

��(�) (2.6), �� lim
�→�

〈�, g
�
〉 exists for all 

� ∈ ��(�), � ∈ ��(�)�, and ‖�‖ ≤ ‖g‖�
∗ .  

If � = 0, the calculation above yields 
,,00)(^, Xxnngx  hence 

〈�, g〉 = 0 in ��� ∀� ∈ �. This proves injectivity.  
Surjectivity and other estimates: Let 

� ∈ ��(�)� be given. Choose a Hahn-Banach 
extension �� ∈ ��(�)�, ���� = ‖�‖; by 2.1, �� is given 

by: GGgXXLg
q

q 
~~),,(~ put 

,:~: XDgg a  the antianalytic projection of g. For 

� ∈ ��(�), by 4.2 and 4.3,  
.)1(

~~,~,,  rGffGgfgfgf rr

Thus g represents � and 
‖g‖�

∗ = sup��� ����∈��(�),‖�‖���
|〈�, g�〉| ≤ ‖�‖,  

which completes the proof. 
 In particular, ��∗

�(��) is a Banach space. In 
terms of the canonical isometric isomorphism 
��(��, �) ��

�(��)⁄ ⟶ ��(�)� (4.1), the proof yields. 
Note 4.8. If g ∈ ���(��), then g defines the functional 
� ↦ 〈�, g〉 on ��(�). On the other hand, by Remark 
4.4, 3�, g ∈ ��∗

�(��)as well and thus defines, after the 
theorem, the functional � ↦ lim

�→�
〈�, g

�
〉. 

Fortunately, these two coincide, by Corollary 4.3, 2�.  
Corollary 4.9.    aqqq XHXHXXL ),()(/),( *0 

 

is an isometric isomorphism. In particular, ��∗
�(��) 

consists exactly of the antianalytic projections of 
functions in ��(��, �) = ℎ�(��). (Here [ ∙ ] denotes 
equivalence class mod ��

�(��). ) 
 I want to show now that Bukhvalov’s 

theorem already derived in Section 4.1 is contained in 
Theorem 4.7: 
Corollary 4.10. (Bukhvalov) ��(�)� ≅ ���(��) 
under the canonical map (see 4.1) iff � admits 
analytic projection (�) (�. �. , � ∈ ���, ��� 3.4). 
Proof. In view of Theorem 4.7 (and note), ��(�)� ≅
���(��) (canonically) iff ��∗

�(��) = ���(��) as spaces 
of functions on the disc, with (then automatically 
(4.3, 3�) equivalent norms ‖∙‖�

∗ = ‖∙‖�. Suppose this 

holds and let ‖∙‖� ≤ ��‖∙‖�
∗ . For any trigonometric 

polynomial � ∈ ��(�), �� ∈ ��(�), whence  
 
 











gfgff a
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XqHg
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q
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P

a ,sup,sup
)(

1
*

)(

 

 Pq

qCqg
XqHg

fCgf 





,sup
)(

 

(last equality because g is of antianalytic type), so 
that � admits analytic projection (�). Conversely, if 
this latter condition is fulfilled with norm ��, say, 

then for any g:� → �� antianalytic,  
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Pf

XPLfr
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r
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gfgg ,supsupsup

1

)(11

 










r

PAPF

XPHFr
r

a

Pf

XPLfr

gFgf ,supsup,supsup
)(1

1

)(1

 

,
*

qP gA  

so that ��∗
�(��) = ���(��) (with equivalent norms). 

Corollary 4.11. �������
�
≅ �������

�� under the 

canonical map when ��  admits analytic projections 

(��). 

Proof. Theorem 4.7 can show that �������
�
≅

�������
�� if and only if ��∗

����∗
��� ≅ ��∗

�����
�� as 

spaces of functions on the disc with equivalent norm 
‖∙‖��

∗ = ‖∙‖��. Now let ‖∙‖�� ≤ ����‖∙‖��
∗  for any 

trigonometric polynomial sequence �� ∈

�������,��
� ∈ �������, where 

 
n

a
j

gg

XHgg
p

a
j ggff

jqn

j
jq

jn
j








...,sup 1

1...
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1

1
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n
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Cgg

XHgg
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...,sup 1
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1

1
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jqn

j
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pjqnj
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XHgg
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Then ��  admits analytic projections ����. 

Hence for any XDgg n
:,...,1
 antianalytics, then  

 
jj qrn

r
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ggf
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...,supsup 1

1

1
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q
j
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XLfr
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jpj
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~
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where 
jpA

~
is a norm, so that ��∗

�����
�� ≅ �������

��. 

I continue with some assertions about the position of 
���(��) in ��∗

�(��). As regards the weak* topology, 
Proposition 4.12. 1� If g ∈ ��∗

�(��), then lim�→� g� =

� in the weak* topology � ���∗
�(��),��(�)�, and 

‖g�‖∗
�
↗ ‖g‖∗

�
 as � ↗ 1.  

2� Antianalytic polynomials are weak* sequentially 
dense in ��∗

�(��). What is more, 
���∗

�
����⋂ {antianalytic polynomials} �� ����∗ 

sequentially dense in ���∗
�
����. 

Proof. 1� Clear by Note 4.8 and Remark 4.5, 5�.  
 2� Note that weak* denseness alone of antianalytic 
polynomials in ��∗

�(��) would follow already from 
the "abstract" criterion: � a Banach (or locally 
convex) space, � ⊂ �� a vector subspace, then � is 
weak* dense in ��

 
iff 

   .00,::  VyyyYyV Put 

here � ∶= ��(�), � ∶={antianalytic polynomials}. 

To prove (the second assertion of) 2� take 
g ∈ ���∗

�
���� and choose a sequence �� ↗ 1, then 

g�� ∈ ���(��), g�� → g  weak* (� → ∞ ) and 

�g����
∗
≤ ‖g‖�

∗ ≤ 1. Put ℎ� ≔ � �g��, then also 

ℎ� ∈ ���(��), ℎ� → g  weak* and ‖ℎ�‖�
∗ < 1, i.e., 

ℎ� ∈ �̇��∗
�
����⋂��

�(��) ⊂ ��∗
�(��). This is a ‖∙‖� 

open set in ���(��), because the inclusions ���(��) ⊂
���(��) ⊂ ��∗

�(��) are continuous by 4.5, 3�. Since 
antianaltyic polynomials are ‖∙‖� dense in ���(��), 

we can choose one, say ��, in �̇��∗
�
���� with  ‖�� −

ℎ�‖� ≤ 1 �⁄ . For � ∈ ��(�) we have 
 

,0)/1(, 
PqnnPnn fnhpfhPf  

so that �� → �  weak* in ��∗
�(��) as well. 

Corollary 4.13. ��-valued antianalytic polynomials, 
equipped with ‖∙‖�

∗ , norm ��(�), that is ,  
  

‖�‖� = ����|〈�, g〉|:g: � → ��, ‖g‖�
∗ ≤ 1�  

 
������������ ����������, ��� ��� � ∈ ��(�). 

 As regards the norm topology, we have  
Theorem 4.14. 1� If �� has RNP, then g� → g  for all 
g ∈ ��∗

�(��).. 
2� The following are equivalent: 

(a) �� has RNP  
(b) �� has a RNP and ���(��) is dense in ��∗

�(��) 
3� The following are equivalent: 
 
      (a) ���(��) = ��∗

�(��) (�. �. , � ∈ ���) 
      (b) ���(��) is closed in  ��∗

�(��) 
      (c)  ���(��) is closed in  ��∗

�(��) 
Proof. 1� By Corollary 4.7, the antianalytic 
projection hh a is a bounded surjective operator 

��(��, �) → ��∗
�(��) [36] but if ��has RNP, then. 

��(��, �) = ��∗
�(��) 

Now fix g ∈ ��∗
�(��) take any ℎ ∈ ��(��) with 

hg a , and use that hhr in ��(��). (2.3). It 

follows that 
.)()( ghhhg a

r
a

r
q

r 
 

2� (a)⟹(b) Follows from 1�. (b)⟹(a) by Corollary 
4.7, we can identify ��∗

�(��)with ��(��, �) ���
�(��)⁄ . 

The density assumption then says that the canonical 
map )(/),()( 0 XHXXLLXH qqqq  has dense 

image. Since �� has a RNP, we have 
)()()( 00 XLXHXH qqq  (2.17) and it is clear 

that the map )(/),()(/)(: 00 XHXXLXHXLi qqqq 

is an isometry.  
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It follows that � has dense image as well and is thus 
surjectve . This means   

)()()(),( XLXHXLXXL qqqq   so that �� has 

RNP [36]. 
3� (a) ⇒ (b) ⟹ (c)are trivial. (c) ⇒ (a)

 
let ��be a 

constant such that ‖∙‖� ≤ ��‖g‖∗
�
 over ���(��). For a 

trigonometric polynomial ),(),( XHfXLf PaP   

whence by Corollary 4.12,  

pq
a fCgf

q
g

XqHg
P

af 





 ,

1*
)(

sup
 

exactly as in the proof of Corollary 4.10, which also 
proves now (a) 
Remarks 4.15. (a) Part 2� shows that ���(��) is in 
general not dense in ��∗

�(��), e.g., certainly not if 
geRNPRNPaX .,\ if .,   LXlX  

(b) In other words, the canonical map 
)(/),()( 0 XHXXLXH qqq  in general does not 

have dense image. In contrast to this, the analogous 
map ���(��) → � �(��) ��

�⁄ (��) always has dense 
image--it contains all equivalence classes (mod 
��
�(��) of ��--valued trigonometric polynomials. 

(c) In the proof of 2�, we have had 
��
�(��) = ��

�(��) and it was therefore trivial that 

�:��(��) ��
�⁄ (��) → � �(��, �) ��

�⁄ (��) is an 
isometry. I claim that this is always true, i.e., without 
the a ��� assumption on ��: 

Take g ∈ ��(��). since g� → g  in ��(��) 
after 2.3, one can write 

�g + ��
�(��)�

�����,�� ��
�

� ����
 

= inf
�∈��

�(��)
‖g + ℎ‖�����,�� 

= inf
�∈��

�(��)
sup
���

‖g� + ℎ�‖� ≥ sup
���

 inf
�∈��

�(��)
‖g� + �‖� 

≥ lim
�→�

 �g� +��
�(��)�

������ ��
�

� ����

=�g +��
�(��)�

������ ��
�

� ����
. 

 
The reverse inequality being trivial, the claim is 
proved.  

(d) Combining (b) and (c) yields: ���(��) is 
dense in ��∗

�(��) iff �: ��(��) ��
�⁄ (��) →

��(��, �) ��
�⁄ (��) is an isometric isomorphism. 

Since in general, ��∗
�(��) ⊋ ���(��) and 

even ���(��) functions on the disc posses "boundary 
values" g∗ ∈ ��(��, �) on the circle only in a very 
weak sense, not much can be expected about 
boundary values of ��∗

�(��) functions. Anyway, if 
g ∈ ��∗

�(��), then 〈�, g〉 ∈ ��� (4.5, 3�) with radial 

limit function 〈�, g〉∗ ∈ ��, for all � ∈ �. I will pursue 
the question if this collection of �� functions 
〈�, g〉∗ (� ∈ �) give rise to single function g∗:� → �� 
with the property that for all 〈�, g∗〉 = 〈�, g〉∗ a.e. (the 
exceptional set allowed to vary with �). (Of course, if 
g ∈ ���(��), then its "boundary value") g∗ ∈
��(��, �) − the unique g∗ ∈ ��(��, �) with g =
�[g∗]− does this job. But for a general g ∈ ��∗

�(��), 
such a g∗ − automatically scalarly measurable w.r.t. 

� –might exist without being in ��(��, �). The 
remote aim of this attempt would be, of course, to 
replace the action of the functional g ∈ ��∗

�(��) =
��(�)� as lim�→� ∫〈�, g�〉���� ∈ ��(�)� by a 

single integral ∫〈�, g∗〉��. 
       After Corollary 4.8, ��∗

�(��) = { �ℎ:ℎ ∈
��(��, �)}. Fix g =� ℎ ∈ ��∗

�(��) = �ℎ ∈ ��(��, �)�. 

Then, for any function g∗:� → ��, the condition 
∀� ∈ �:〈�, g∗〉 = 〈�, g〉∗ a.e. is equivalent to saying 
∀� ∈ �:〈�, g∗〉 = 〈�,  �ℎ〉∗ = ( �〈�, ℎ〉)∗ =  �〈�, ℎ〉 
a.e., where the last equality sign identifies the scalar 
��� − function  �〈�, ℎ〉 with its boundary value. 

In the following examples , it will be shown 
that, even for ℎ ∈ ��(��, �), such a function 
g∗:� → �� need not exist. In these examples, 
� = ��, ��, ��. In the first one, ℎ is even strongly 
measurable, that is, ℎ ∈ ��(��) = ��(��). Since 
��
� = �� has RNP, thus ��(��, ��) = ��(��), this is 

naturally also the case in the last example. What 
makes this one more interesting is the fact that, due to 
the RNP of �� = �� and Theorem 4.14, g� → �  
strongly in ��∗

�(��) for all g ∈ ��∗
�(��), and the 

boundary behavior of g can still be as bad as it can 
be. 

It is of course equivalent to construct these 
examples with the analytic instead of the 
antiana1lytic projection. 
 
5. Examples 

Lemma 5.1. For 0 ≤ � < � < 2� and � ∈ �: 

.),[ ln
2

1
)(Im

ze

ze
z

is

it
a

ts








 

Proof. This is an elementary calculation and, of 
course, well known.  

I need some notation. The infinite dyadic 
tree is denoted by �� ≔ {(�, �) ∈ ℕ�

�: � ∈ 2�} [27]. 
For (�, �) ∈ �� put ��� ≔ �2

��. 2�, ��� ≔

(� + 1)2��. 2�, so that ��� ≔ ����, ���� ⊂
[0�, �2�) = �, is the �th dyadic interval of the �th 
generation. A number � ∈ � is called dyadic if it is of 
the from � = ���  for some (�, �) ∈ ��. For � ∈ � 

non–dyadic let �� ∶= �(�, �) ∈ ��:� ∈ ���� be the 

"branch" of the tree associated with �. Obviously, 
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⋂ ���(�,�)∈��
= {�}. For � = (��)�∈�� ∈ ℂ�� put 

Im �:=(Im��)�∈�� ∈ ℝ��.  
Example 5.2. (��). There is � ∈ ��(��) such that. 
(a) ����→� �

������� exists for �� � ∈ � in 

���, �(��, ��)�. In particular, �� ∉ �(��) because of 
Proposition 2.12;  
(b) there exists no function �:� → �� with the 
property ∀� ∈ ��:〈�, �(�)〉 = 〈�, �(∙)〉� (�) a.e. (�). 
 
Proof . I realize c� as c�(��) and denote it again by 
c�. Let (��)�∈ℕ�

 be a positive null sequence, which 
will be specified later. 

 Put �:� → c�, �(�) ∶= ����[���,����
(�)�

(�,�)∈��
. By 

the Pettis measurability theorem [15], ).( 0cLf  By 

Lemma 5.1, 

Im�������� = �
−1

2�
��ln�

����� − �� ��

1 − �� ��
��

(�,�)∈��

, 

 
so that for � non–dyadic,  

lim
�→�

Im�������� = �
−1

2�
��ln�

����� − � ��

1 − � ��
��

(�,�)∈��

∈ ℝ��, 
 the limit taken coordinate-wise. (if � is dyadic, the 
coordinate-wise radial limit does not exist). To prove 
(a) and (b), it suffices to choose (��) in such a way 
that this last tuple does not blong to ��:= ��(��), for 

all (non-dyadic) � ∈ �. �(��)
� has to be independent 

of �, of course.) Now fix � ∈ � non-dyadic. Since 

always ���ln�1 − �
����

(�,�)
∈ ��, one only has to 

estimate ���ln��
���� − � ����

(�,�)∈��
, or the same 

expression only along (�, �) ∈ ��. but for (�, �) ∈
��, 

 �� ln������ − � ��� ≤ �� ln���� − � �  

≤ ��ln(2
��. 2�) = −��� ln2 + �� ��(2�) → −∞  

(� → ∞ ),  
e.g., for �� ∶=��� �⁄ , 

The next example lives in the canonical 
predual � of the James tree space �� = �� [27]. Since 
there is no lack of examples in more elementary 
Banach spaces. 
Example 5.3. (B). There is � ∈ ��

�(���, ��) such that  

(a) lim�→� Im�������� exists for no � ∈ �
 

in ����, �(���, ��)� in particular, �� ∉ �(�) because 
of Proposition 2.12 (note that �� = �[�]:� → �and 
that �� is separable [27] );  
(b) there exists no function �:� → ��� with the 
property ∀� ∈ ��:〈�, �(�)〉 = 〈�, �(∙)〉� (�) a.e. (�).  
Example 5.4. (��). There is � ∈ (��) such that  

(a) ����→� �
������� exists for �� � ∈ � in 

���, �(��, ��)�. In particular, �� ∉ �(��) because of 
Proposition 2.12;  
(b) there exists �� function �:� → �� with the 
property ∀� ∈ ��:〈�, �(�)〉 = 〈�, �(∙)〉� (�) a.e. (�).  
Proof . I realize �� as ��(��) and denote it again by ��. 
Let (��)�∈ℕ�

 be a positive summable sequence, 
which will be specified later.  

 Put �:� → ��, �(�) ∶= �������
(�)�

(�,�)∈��
. It is 

clear that �(�) is really in �� = ��(��) for all � and 
that ‖�(�)‖� = ∑ ��

�
��� . Moreover, � is strongly 

measurable by Pettis theorem [15]; that is � ∈ ��(��)  
By Lemma 5.1, 

Im�������� = �
−1

2�
��ln�

����� − �� ��

1 − �� ��
��

(�,�)∈��

, 

So that for � non–dyadic , 

lim
�→�

Im�������� = �
−1

2�
��ln�

����� − � ��

����� − � ��
��

(�,�)∈��

∈ ℝ��, 

�ℎ� ����� ����� ����������–����. (If � is dyadic, 
the coordinate-wise radial limit does not exist.) To 
prove (a) and (b), it suffices to choose (��) in such a 
way that this last tuple does not belong to �� =
��(��), for all (non-dyadic) � ∈ �. This will be 
achieved through the following. 
Lemma 5.5. For � non-dyadic, � ≥ 3,  
 

��(�):=� �ln�
����� − � ��

����� − � ��
��

����

�

≥ ln
2�

2�
 

.  
Accepting the lemma for a moment, we 

conclude as follows: fix � ∈ � non-dyadic,  
 

)()(Imlim2
311

 



 m
mm

ia

r
Sref

 

 


 3
)2ln2ln(

m
m m 

 

,

33

)2ln()2ln( 






 m
mm

m

m 
 

e.g, for �� = ���, 
Proof. W.l.o.g., � ∈ ��� (if

� � ∈ ���, 0 ≤ � < 2�, 
then putting �� ≔ � − � �� ∈ ��� gives ��(�) =
��������. Now 
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since 
0mT . 

  Note. Would we not have given away half 
of the terms in the first estimate, we could achieve 
the (irrelevant) improvement )2/2ln(2)(  m

mS  . 

Remark 5.6. Let ))(( 1 trLLf   be the function just 

constructed. Since �� =
�

�
�� + 1 and � is coordinate- 

wise real, we have  �� =
�

�
�[�]+ ��(0) − � ����, 

and �� ��  is the function just computed. Bearing in 

mind that, by Corollary 4.9,  �� ∈ ��∗
����(��)� =

�����(��)�
�
 (all � ∈(1,∞), 1 �⁄ + 1 �⁄ = 1), there 

seems to be little hope for a simple description of 
−e. g. −� �(��)

�. 
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