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Abstract: In the multiple linear regression analysis, the ridge regression estimator is often used to address 
multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. 
We propose new biased estimators robust ridge regression called the ridge least median squares (RLMS) estimator 
in the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to 
see the difference between the proposed method and the existing methods in terms of their effectiveness; the mean 
square error. In our simulations, the performance of the proposed method RLMS is examined for different number 
of observations, and the different percentage of outliers. The results of different illustrative cases are presented. 
This paper also provides the results of the RLMS on a real-life data set. The results show that RLMS is better than 
the existing methods. (OLS, RLAV and Ridge Regression) in the presence of multicollinearity and outliers. 
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Multicollinerity and Outliers Problems. Nat Sci 2014;12(11):122-128]. (ISSN: 1545-0740). 
http://www.sciencepub.net/nature. 19 
  
Keywords: Multicollinearity, ridge regression, outliers, robust estimation, robust ridge methods 
 
1. Introduction 

It is well known that the classical least 
squares (LS) estimation has many desirable statistical 
properties, particularly when errors are normally 
distributed. The variance of LS estimations are the 
smallest among all sorts of unbiased estimator class. 
Nevertheless, LS estimators frequently are influenced 
by two types of problem, outliers and 
multicollinearity which in turn lead to highly unstable 
LS estimates. 

To overcome the influence of 
multicollinearity, many biased estimators were 
introduced to handle the mlticollinearity problem in 
regression model. (Hoerl and Kennard, 1970 a, b), 
first proposed a useful tool called ridge regression for 
improving prediction in regression situations with 
highly correlated regressors variables. This method 
has been successfully applied to many fields. 
However, the ridge regression method is not robust, it 
is sensitive to observations that is considered as 
contaminated data usually called outliers. 

The robust ridge regression estimation has 
been investigated, to remedy the effect of 
multicollinearity and outliers. The parameter 
estimation is more difficult when both problems are 
present in the data set. Different robust estimation 
methods have been used in the literature to estimate 
the parameter of regression model in the presence of 
outliers and multicollinearity. (Pariente, 1977; Askin 
and Montgomery, 1980; Pfaffenberger and Dielman,  
1984; Pfaffenberger, 1985 and Nikolai Krivulin, 
1992), among others  presented several new ideas 
concerning the LMS estimator so as to provide some 

theoretical framework for efficient regression 
algorithms. (Desire and Leonard, 1986) introduced a 
procedure to determine the minimum redundancy of a 
measurement set and the non-redundant samples of 
measurement that is robust against outliers and 
multicollinearity. 

This paper propose a new estimation method 
of a robust ridge estimator that has a high breakdown 
point called the robust ridge regression estimation 
method based on least median squares (RLMS). The 
least median squares estimator has 50% breakdown 
point and was proposed by  (Rousseeuw, 1984, 
1985), who replaced the least sum of squares (LS) 
that has 0% breakdown point with the least median of 
squares LMS. (Hampel, 1975), explains the 
breakdown point as the smallest percentage of 
contaminated data that can cause the estimator to take 
a random large abnormal value.  

The aim of evaluating these alternatives 
biased robust methods is to find the estimator of the 
parameters of the model that is highly efficient and 
effective in the presence of outliers and 
multicollinearity. The performance of the robust 
ridge estimators is examined by using the standard 
errors (SE) on a hald data set. The remainder of the 
paper is organized as follows. After a brief review of 
ridge regression in Section 2, we define a robust 
regression and ridge robust estimators in Section 3. 
Numerical example is given in section 4, and 
simulation is presented in Section 5, in order to 
compare between the proposed and the existing 
methods. It will illustrate that the new estimation 
method is better than the existing methods when 
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multicollinearity and outliers occur simultaneously. 
Finally, in section 6 conclusions are presented. 
 
2. Material and Methods  
2.1.  Ridge Regression  

When the least-squares method is applied to 
non-orthogonal data, we obtained weak estimates of 
the regression coefficients (Hoerl and Kennard, 
1976).  
The assumptions of the least squares method that 
β̂ is  an unbiased estimator of β . 

The Gauss-Markov property assures that the least-
squares estimator has a minimum variance in the 
class of unbiased linear estimators in the presence of 
multicollinearity (Marquardt and Snee, 1975). 

One way to reduce this problem is to 
descend the requirement that the estimator of β  be 

unbiased. Assume that a biased estimator of β  is 

found to say β̂  that has smaller variance than the 

unbiased estimator β̂ . The mean square error of β  is 

defined as 

 
2垐 ?( )=VAR( ) E( ) MSE β β β β         (1) 

Assuming a small amount of bias in β̂ , the variance 

of β̂ can be made small such that 

the MSE of β̂ is less than the variance of the 

unbiased estimator β . 

A number of procedures have been 
improved in obtaining biased estimates of regression 
coefficients. One of these procedures is ridge 
regression, primarily proposed by (Hoerl and 
Kennard, 1970). More specifically, this estimator is 

defined as the solution to    1ˆ K


 β X'X I X'y  where 
0K   is a constant selected by the analyst. The 

constant K is usually refers to the biasing parameter, 
it is obvious that if 0K  then the ridge estimator is 
the least squares estimator. Hence, on the other hand, 

when 0K  the bias ˆ
ridge

β increases. However, the 

variance decreases as K increases. 
In this ridge regression, we would like to 

select a value of K such that the decrease in the 
variance term is greater than the increase in the 
squared bias. If this can be done, the mean square 

error of the ridge estimator ˆ
ridge

β will be less than 

the variance of the least square estimator β̂ . (Hoerl 

and Kennard, 1976), proved that there exists a non- 
zero value of K for which the mean squares error 
(MSE) is less than the variance of the least squares 

estimator β̂ . We can select a reasonably small value 

of K at which the ridge estimates ˆ
ridge

β are steady. 

Mostly, this will produce a set of estimates with 
smaller MSE than the least-squares estimates. (Hoerl 
and Kennard, 1976), have suggested that an 

appropriate choice of K is where β̂  and  
2

̂  are 

found by the least squares solution. 
2.2. Robust Regression Estimators 

Robust regression analysis available is an 
alternative to a least squares regression model when 
essential assumptions are unaccomplished by the 
nature of the data. When the researchers estimate a 
regression model and test their assumptions, it is 
always observed that the assumptions are 
dramatically violated. Sometimes, the analyst can 
transform the variables to conform to those 
assumptions. But often, a transformation will not 
reduce the leverage of effective outliers that bias of 
the prediction. Under these situations, robust 
regression that is resistant to the influence of outliers 
may be the only reasonable recourse. 

There are several different classifications of 
robust estimates that exist to handle these violations. 
One important estimator is called the least median 
squares estimator (Rousseeuw and Leroy, 1987), 
which has the advantage of minimizing the influence 
of the residuals. According to (Venables and Ripley, 
1999), this algorithm minimizes the median of 
ordered squares of residuals in order to get the 

regression coefficients β and can be written as 

equation 2. 
Least Median of Squares = Min median 

 
2

LMSiy - x β
           

(2) 

(Martin, 2002) describes the median squared 
residuals lack a smooth squared residual function and 

the asymptotic rate is 

1

3n to convergence efficiently 
under normality. Also, it takes a long time to 
converge. Least median of squares (LMS) estimator 
is one of the true high breakdown point estimators 
that reached the above mentioned upper boundary of 
the breakdown point. (Rousseeuw, 1984). 
2.2.1. Robust Ridge Regression Estimators (RRR)
 (Pfaffenberger and Dielman 1985, 1990), 
proposed robust ridge regression by extending the 
development of their technique by performing Monte 
Carlo simulation studies to compare various 
approaches. The proposed method in this paper 
combines the LMS estimator with the ridge 
regression estimator which is referred to as the 
RLMS estimator. So, RLMS robust ridge estimators 
will be resistant to multicollinearity problems and 
less affected by outliers. The RLMS estimator can be 
written as equation 3. 

 RLMS LMS
ˆ K

-1
β X'X + I X'Y

   
(3) 



 Nature and Science 2014;12(11)   http://www.sciencepub.net/nature 

 

124 

The value of K is determined from data using 
equation 4. 

2
LMS

LMS '垐
LMS LMS

pS
K 

β β
 and  

2
LMS

2 1
LMS

n
i

iS
n p





  (4) 

where p is the number of independent variables, n is 

the number of observations in the data, ˆ
LMS

β  is the 

estimates of β and 
2
LMS

ε  is the residuals from LMS 

method. 
 
3. Results  
3.1. Numerical Result 

A real data set from (Hald, 1952), is 
considered to assess the effectiveness of the proposed 
robust ridge regression method. This data set consists 
of 4 variables and 13 observations with 3 outliers. 
The response variable (y) is the heat evolved for a 
particular mixture of cement, and the covariates are 
tricalcium aluminate (x1), tricalcium silicate (x2), 

tetracalcium alumina ferrite (x3), and dicalcium 
silicate (x4).  

Table 1 contains the parameter estimates, 
the standard error of the parameters estimates and 
VIF analysis of the Hald Data. The VIF for each of 
these predictors are all extremely high, indicating 
troublesome multicollinearity with the presence of 
outliers in the data, the use of robust method provides 
more stable parameter estimates.  

With this aim, initial robust regression 
estimates was first calculated to obtain robust ridge 
estimates in the presence of both multicollinearity 
and outliers; these estimates are given in Table 1. 

The standard error of the proposed RLMS 
method is lower than the existing RLAV in the 
presence of outliers. Table 1 shows that this data 
have a high VIF for all variables with three outliers.  

Also, the standard errors of the parameter 
estimates for RLMS are less than all. But the 
mentioned existing methods except for the ridge 
regression the difference is small. 

 

Table 1. Estimated parameter and SE of ˆ
1β  , ˆ

2β  , ˆ
3β and ˆ

4β  for the different methods with the variance inflation 

factor. 

Coef. Estimate VIF LS RIDGE RLMS RLAV 

ˆ
1β

 
parameter 

s.e. 
38.4962 

1.5511 
0.7448 

0.5081 
0.0791 

0.3964 
0.1036 

0.6466 
0.1325 

       

ˆ
2β

 
parameter 

s.e. 
254.423 

0.5102 
0.7238 

0.3102 
0.0916 

0.3545 
0.1070 

0.6082 
0.2726 

       

ˆ
3β

 
parameter 

s.e. 
46.8684 

0.1019 
0.7547 

-0.0605 
0.0777 

-0.0480 
0.1012 

0.1253 
0.1392 

       

ˆ
4β

 
parameter 

s.e. 
282.513 

-0.1441 
0.7091 

-0.3879 
0.0925 

-0.3548 
0.1064 

-0.0859 
0.2856 

 
3.2. Simulation Study 

We carry out a simulation study to compare 
the performance of the different methods LS, RR and 
RLAV with the proposed estimator RLMS. The 
simulation is designed to allow both multicollinearity 
and non-normality to exist simultaneously. The non-
normal distributions are used to generate outliers. 
Suppose, we have the following linear regression 
model  20. (Siti Meriam et al., 2012) 

 y = β + β x + β x + β x + e
i o 1 i1 2 i2 3 i3 i

  

where i=1, 2, 3               (5)   

The parameter values β
o

, β
1

, β
2

 and β
3

 

are set equal to one. The explanatory variables  x
i1

, 

x
i2

and x
i3

 are generated using equation (6) 

 
2

(1 )x z
ij ij

      i=1, 2,…, n, j =1, 2, 3  (6)  

where, z
ij

are independent standard normal random 

numbers generated by the normal distribution. 
The explanatory variable values were 

generated for a given sample size n. The sample sizes 
used were 50 and 100. The value of   representing 

the correlation between any two explanatory 
variables, and its values were chosen as: 0.0, 0.5 and 
0.99. The percentage of outliers present in this data 
set is 20%. 

The number of replications used is 500. The 
statistics computed are the bias, root of mean squared 
error (RMSE), standard error (SE), and 6 pairwise 
MSE ratios of the estimators.  
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The bias and MSE are given as: Bias
i i
    

where 1

k
i

i
i k






 500k  , and the mean squared 

error ( MSE ) is 
5001 2ˆ( )

500 1
MSE

i



β -βi i , therefore, 

the RMSE  is given by 1/2ˆ[ ( )]MSE β
j

   

 where j= 0, 1, 2, 3  
The VIF for the simulated data are shown in Table 2. 
 

Table 2. The VIF for the simulated data 
 = 0.99 

Var X1 X2 X3 
VIF (N=50) 126.1541 204.3971 112.0508 
VIF (N=100) 133.8203 238.6387 141.2589 

Here the maximum VIF is 238.6387 when 
the correlation between independent variables was 
very high with different sample size. So it is clear 
that the multicollinearity problem exists.  

 

Table 3 Bias, RMSE and SE of ˆ
1β , ˆ

2β and ˆ
3β  with error normal (0,1)  distribution of the sample size n=50 correlation 0.0, 0.5, 

0.99  outliers  0% and 20% 

  0% outliers 

Value of 
  

Coef. Parameter LS RIDGE RLAV RLMS 

ˆ
1β  

Bias -0.0015 -0.4994 -0.5016 -0.4929 

 
RMSE 0.1491 0.5064 0.5084 0.4998 

S.e 0.1491 0.0835 0.0831 0.0831 

0.0 ˆ
2β  

Bias -0.0046 -0.5018 -0.5039 -0.5032 

 
 

RMSE 0.1467 0.5092 0.5112 0.5098 

 
S.e 0.1466 0.0866 0.0863 0.0814 

 
ˆ

3β  

Bias 0.0008 -0.5008 -0.5029 -0.5023 

 
 

RMSE 0.1537 0.5071 0.5091 0.5084 

 
S.e 0.1537 0.0795 0.0791 0.0786 

  20% outiers 
 Coef. Parameter LS RIDGE RLAV RLMS 

 
ˆ

1β  

Bias 1.7531 -0.9020 -0.9701 -0.9696 

 
 

RMSE 51.923 1.7526 0.9862 0.9796 

 
S.e 51.893 1.5027 0.1774 0.1401 

0.5 ˆ
2β  

Bias -1.4783 -1.0238 -0.9686 -0.9704 

 
 

RMSE 67.532 2.2031 0.9772 0.9761 

 
S.e 67.515 1.9507 0.1293 0.1057 

 
ˆ

3β  

Bias -0.2814 -0.9854 -0.9757 -0.9694 

 
 

RMSE 48.457 1.7307 0.9896 0.9793 

 
S.e 48.456 1.4227 0.1655 0.1388 

 20% outiers 
 Coef. Parameter LS RIDGE RLAV RLMS 

 
ˆ

1β  

Bias 2.1057 -0.9066 -0.9751 -0.9744 

 
 

RMSE 62.365 1.7566 0.9907 0.9842 

 
S.e 62.330 1.5046 0.1755 0.1383 

 ˆ
2β  

Bias -1.7756 -1.0289 -0.9733 -0.9745 
0.99 RMSE 81.113 2.2077 0.9817 0.9800 

  
S.e 81.094 1.9533 0.1281 0.1045 

 ˆ
3β  

Bias -0.3379 -0.9904 -0.9804 -0.9741 

 
RMSE 58.203 1.7349 0.9940 0.9837 

  
S.e 58.202 1.4245 0.1638 0.1370 
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Table 4 Bias, RMSE and SE of ˆ
1β , ˆ

2β and ˆ
3β  with error normal (0,1) distribution of the sample size n=100 correlation 0.0, 0.5, 0.99  

outliers 0% and 20% 
 0% outliers 

Value of 
  

 

Coef. Parameter LS RIDGE RLAV RLMS 

 
Bias 0.0055 -0.4987 -0.4991 -0.4984 

ˆ
1β  

RMSE 0.1032 0.5018 0.5022 0.5015 

S.e 0.1031 0.0562 0.0561 0.0557 

0.0 
 

Bias 0.0146 -0.496 -0.4964 -0.4951 

 ˆ
2β  

RMSE 0.1078 0.4991 0.4995 0.4982 

 
S.e 0.1068 0.0557 0.0556 0.0551 

  
Bias -0.0040 -0.5003 -0.5007 -0.4953 

 ˆ
3β  

RMSE 0.1023 0.5039 0.5043 0.4988 

 
S.e 0.1022 0.0604 0.0603 0.0596 

 20% outiers 
 Coef. Parameter LS RIDGE RLAV RLMS 

  
Bias -1.5448 -1.0143 -0.9750 -0.9695 

 ˆ
1β  

RMSE 33.827 1.4107 0.9969 0.9856 

 
S.e 33.7918 0.9806 0.2077 0.1774 

0.5 
 

Bias 3.2966 -0.8810 -0.9654 -0.9651 

 ˆ
2β  

RMSE 48.607 1.6624 0.9812 0.9776 

 
S.e 48.495 1.4098 0.1752 0.1559 

  
Bias -1.8926 -1.0194 -0.9753 -0.9683 

 ˆ
3β  

RMSE 32.248 1.3915 0.9941 0.9851 

 
S.e 32.193 0.9472 0.1923 0.1810 

 20% outiers 
 Coef. Parameter LS RIDGE RLAV RLMS 

  
Bias -1.8554 -1.0192 -0.9798 -0.9743 

 ˆ
1β  

RMSE 40.630 1.4151 1.0008 0.9895 

 
S.e 40.588 0.9816 0.2041 0.1725 

0.99 ˆ
2β  

Bias 3.9596 -0.8858 -0.9706 -0.9703 

 
RMSE 58.383 1.6661 0.9857 0.9822 

  
S.e 58.2486 1.4112 0.1719 0.1522 

 ˆ
3β  

Bias -2.2732 -1.024 -0.9800 -0.9820 

 
RMSE 38.734 1.3959 0.9980 0.9977 

  
S.e 38.667 0.9482 0.1886 0.1759 

 

Table 5 MSE ratios of 6 pairwise estimators of ˆ
1β , ˆ

2β , ˆ
3β  with errors normal (0,1)  distribution and 0% and 20% of outliers. 

                   ˆ
1β                    ˆ

2β                    ˆ
3β      

Estimator 1 vs Estimator 2 vs Estimator 3   Values of   

   
 
 

RLMS 
 
 
 
 
 

RLAV 
 
 
 

RIDGE 

 
0.0 0.5 0.99 0.0 0.5 0.99 0.0 0.5 0.99 

LS 11.24 0.00 0.00 12.08 0.00 0.00 10.94 0.00 0.00 
 23.59 0.00 0.00 21.37 0.00 0.00 23.77 0.00 0.00 

RIDGE 0.97 0.31 0.31 1.00 0.20 0.20 1.01 0.32 0.32 

 
1.00 0.49 0.49 1.00 0.35 0.35 0.98 0.50 0.51 

RLAV 0.97 0.99 0.99 0.99 1.00 1.00 1.00 0.98 0.98 

 
1.00 0.98 0.98 0.99 0.99 0.99 0.98 0.98 1.00 

 
         

LS 11.63 0.00 0.00 12.15 0.00 0.00 10.97 0.00 0.00 

 
23.66 0.00 0.00 21.48 0.00 0.00 24.30 0.00 0.00 

RIDGE 1.01 0.32 0.32 1.01 0.20 0.20 1.01 0.33 0.33 

 
1.00 0.50 0.50 1.00 0.35 0.35 1.02 0.51 0.51 

 
         

LS 11.53 0.00 0.00 12.05 0.00 0.00 10.89 0.00 0.00 
 23.62 0.00 0.00 21.45 0.00 0.00 24.26 0.00 0.00 

 
The measure of convergence was computed 

as the number of times estimator 2 or 3 to the true 
parameter while the value in Tables 3 and Table 4 
show the summary statistics such as bias, root of 
mean squared error (RMSE) and standard error (SE) 
of the estimators of the normal distributions for 

sample size 50 and 100 with 0% and 20% of outliers 
and different value of  .   

On the other hand, when we apply these 
methods to the simulated data with different sample 
size in the presence of different percentage of outliers 
and different levels of multicollineaity, we obtained 
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that the standard errors for proposed method are less 
than the standard errors of the mentioned existing 
methods. 

Table 5 shows the efficiency of the 
estimators by looking at the MSE ratios of the 
estimators written as follows. 

 
 RMSE (proposed method)

MSE
RMSE (existing method)ratios

   (7) 

MSE
ratios

less than 1 denote that the estimator is 

more efficient, however, values more than 1 denote 
that the other estimator is more efficient.  

From Tables 3 and Table 4 we can see that 
the RMSE of the LS is relatively smaller than the 
other estimators when the errors are normally 
distributed that is, without outliers and no 
multicollinearity.  

As expected, the LS gives the best result in 
the ideal situation. Also, the result in Table 5 is in 
favor of LS. However, we see in Table 5 that the of 
RLMS to LS is greater than 1.00 denoting that the LS 
is more efficient than the RLMS when no outliers and 
no multicolliearity.   

On the other hand, we can see from  the 
Tables 3 and Table 4 that the RMSE of the RIDGE is 
relatively smaller than the RLAV. Also, the MSE 
ratios of the estimators the values of ridge less than 1 
indicates that the estimator is less efficient than 
RLAV and RLMS when the errors are normally 
distributed without outliers and no multicollinearity. 

While, for non-normal error distribution and 
when correlation and outliers are present in the data, 
RLMS is better than the LS, RIDGE and RLAV. 
RLAV its almost as good as RIDGE and LS. 

The MSE in Table 5 supported the result 
obtained from Tables 3 and Table 4. These ratios 
show the efficiency of RLMS relative to other 
estimators. Values less than one indicate that RLTS is 
more efficient, however, values greater than one 
denote that the other estimators are more efficient 
than 
RLMS.  

Consequently, we can see that the RMSE of 
the RLMS is relatively smaller than the other 
estimators when the errors are normally distributed in 
the presence of outliers and multicollinearity. It 
obviously shows that RLMS is more efficient than 
RLAV and RIDGE but certainly much more efficient 
than LS when in the presence of outliers and 
multicollinearity. 

The simulation results for larger samples, 
that is for n=100 are consistent with the results of the 
smaller sized samples. The results also denoted that 
the estimator for larger samples are more efficient 

than those of smaller samples since the values of 
RMSE are smaller. 
 
4. Discussions  

Multicollinearity data sets with outliers are 
very common in real life endeavors. In order to 
remedy both problems, robust biased estimation 
methods are applied. The best model is chosen by 
looking at the RMSE value. 

The simulation study in section 5 provide 
RMSE values, bias and standard errors of the LS, 
ridge, RLAV and RLMS estimators. It can be 
observed that the RMSE obtained from RLMS is the 
minimum. Thus, RLMS is the best method. When 
there is no outliers and multicollnearity, ridge 
regression has the least RMSE value, thus the best 
method. But when there is multicollinearity and 
outliers in the data, then RLMS has the least RMSE 
value, thus it is considered the best method.   

We also use a the real-life data set to study 
the effect of multicollinearity and outliers. The 
results obtained from our proposed method of RLMS 
are better than the OLS, Ridge and RLAV in terms of 
their RMSE values. Consequently, in this study, it is 
shown that results obtained from the numerical data 
set and simulation study with both multicollinearity 
and outliers, RLMS gives better results followed by 
RLAV method. This result is true for  =0.0, 0.5 and 

0.99 with the sample size of n=50 and 100. 
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