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Abstract: The multicollinearity and non-normal errors are common problems in multiple regression models, that 
produce inappropriate effects on the least squares estimators. So, it is important to use methods of estimation 
designed to tackle these problems. The proposed method in this paper is the Ridge Least Trimmed of Squares 
(RLTS). The performance of this method is compared with the Ordinary Least Squares (LS); Ridge Regression (RR) 
and Ridge Least Absolute Value (RLAV). Bias, Standard Error (SE) and Root Mean Square Error (RMSE) are 
obtained for all the methods. The efficiency of the proposed method is compared with the alternatives using Mean 
Squared Error (MSE) ratios. The experimental evidence displays that RLTS is the best among the three estimators 
for many combinations of errors distribution and degree of multicollinearity. 
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1. Introduction 

Multicollinearity and non-normal errors are 
important problems considered in a multiple linear 
regression analysis. The ordinary least squares (OLS) 
estimators of coefficients are known to have certain 
best properties when the explanatory variables are not 
correlated among themselves. Consider the linear 
regression model as 

Y = Xβ + e   (1) 
and the least squares estimates of the parameter 

β is given by  

 ˆ -1
β = X'X X'Y

LS   (2)   

The least squares estimate of β is determined by 

minimizing the function, 
   

2 2
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n n

i i
  
 

'y -x β ri i i
 (3) 

The property of least squares (LS) is unbiased 
with minimum variance among all unbiased linear 
estimators if the errors are independent, identically 
and normally distributed. But, it is commonly 
impossible to interpret the estimates of the individual 
coefficients if the explanatory variables are highly 
correlated. Such problem is known as 
multicollinearity problem. Although LS estimates are 
unbiased in the presence of multicollinearity. 

Multicollinearity increases the standard errors of 
the coefficients. Increased standard errors in turn 
means that coefficients for some independent 
variables may be found not to be significantly 
different from 0, whereas without multicollinearity 
and with lower standard errors, these same 
coefficients might have been found to be significant 
and the researcher may not have come to null 
findings in the first place. 

In other words, multicollinearity misleadingly 
inflates the standard errors. Thus, it makes some 
variables statistically unimportant while they should 
be otherwise important. In the literature, there exist 
many procedures to tackle the problem of 
multicollinearity. One of them is the ridge regression 
which is alternative to the LS. It shows that the ridge 
regression estimator enhances the precision of the 
regression coefficient estimates, (Hatice and Ozlem 
Alpu, 2010). (Hoerl and Kennard, 1970 a, b) 
suggested to estimate the parameter K. (Hoerl and 
Baldwin, 1975) introduced that ridge regression 

shrinks the parameter β by imposing a penalty on the 
size of the coefficients. (Alkhamisi and Shukur, 
2007) proposed a new method to estimate the ridge 
parameter by introducing some new estimators by 

adding max1/ 
to some well-known estimators, 

where max
is the largest eigenvalue of X′X. 

However, (Al-Hassan, 2010) applied the modification 
mentioned in (Alkhamisi and Shukur, 2007) to the 
estimator suggested by (Hocking et al., 1976) in 
order to define a new estimator. In these and other 
studies, the achievement of the ridge estimators was 
mainly compared using real data and simulation 
studies. 

In addition, the least squares estimator can 
produce extremely poor estimates in the presence of 
non-normal error distribution. Nevertheless, (Midi et 
al., 2007) expressed that these procedures are not 
strong enough to deal with non-normal heavy-tailed 
distribution as a result of outliers. Outliers which 
arise from bad data points can have an influence on 
the ridge estimates and LS estimates. However, the 
problem is more complex when both 
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multicollinearity and outliers are present in the data. 
In recent years, several authors have proposed 
reliable estimates, especially in the presence of 
multicollinearity and also non-normal error 
distribution. Although, we typically think these two 
problems occur separately, however in practical 
situations, these problems occur simultaneously. 

(Montgomery and peck, 1982) has proposed that 
either robust or ridge estimation methods alone can 
be enough to tackle with the combined problem. To 
tackle these two problems together many robust ridge 
regression estimators have been used, so these 
estimates are much less influenced by non-normality 
and multicollinearity. (Askin and Montgomery, 1980) 
and (Pfaffenberger & Dielman, 1984, 1985) proposed 
combining the ridge and the least absolute deviation 
(LAD) robust regression techniques. (Maronna, 
2011) suggested robust MM estimator in ridge 
regression for high dimensional data. (Siti Meriam et 
al., 2012) used Weighted Ridge MM-estimators 
(WRMM) to remedy the problem of multicollinearity 
only. 

In this paper, an improved and more robust 
technique to overcome multicollinearity and outliers 
problems is proposed. This method is a combination 
of the ridge regression and a high breakdown point 
and efficient estimator, the least trimmed of squares 
(LTS). From here onwards the proposed method is 
referred to as the Ridge Least Trimmed Squares 
(RLTS) estimator that should be able to give a good 
estimate of the regression coefficients even in the 
presence of multicollinearity and outliers. 

This paper consists of six sections. The 
background is discussed in Section 1. The ridge 
regression estimator is discussed in Section 2, and a 
search for the robust estimation techniques will be 
explained in Section 3. In Section 4, the proposed 
method RLTS is discussed. Section 5 presents the 
results of numerical example and a simulation study 
to investigate the performance of the proposed 
method. The concluding remarks are presented in 
Section 6. 
 
2. Ridge Regression Estimators 

The Least Squares (LS) estimator in equation 
(2) is very weak and inaccurately estimating the 
regression coefficients in the presence of 

multicollinearity in X'X  matrix. The degree of 
multicollinearity is often denoted by the variance 

inflation factor (VIF) value of the X'X matrix. We 
call this is variance inflation factor or VIF, written as 
in equation (4), Marquardt (1970). 

2 1
(1 )VIF R


                                          (4) 

The VIF for each term in the model measures 
the combined effect of the dependencies among the 

regressors on the variance of that term. One or more 
large VIF indicate multicollinearity.Practical 
experience indicates that if any of the VIFs exceeds 5 
or 10, it is an indication that the associated regression 
coefficients are poorly estimated because of 
multicollinearity. Complete removal of 
multicollinearity is not possible but we can reduce 
the degree of multicollinearity present in the data, 
(Marquardt, and Snee, 1975). 

The technique of Ridge Regression (RR) is one 
of the most popular techniques and it was introduced 
by Hoerl and Kennard (1970 a, b). It is the best 
performing alternatives to the LS methods. LS has no 
bias, but it has a bigger variance than the ridge 
regression estimator in the presence of 
multicollinearity. The Ridge regression estimator can 

improve the estimation of β by adding a small 
constant to the diagonal of the matrix, which will 
reduce significantly the variance influential factor in 
the matrix. Ridge regression is proven as an effective 
and efficient remedial method to deal with the 
general problems caused by multicollinearity. 

The ridge regression is defined as follows: 

  1ˆ K
Ridge


 β X'X I X'Y

                            (5) 

where K  is the unknown biasing constant and 
I  is the (p × p) identity matrix. There are several 

methods for determining K  value and have been 
shown in the literature such as described by (Hoerl 
and Kennard, 1970) and (Gibbons, 1981). The 

estimator of the constant K  is given by 
2pSLSK

HK '垐
LS LS


β β

                                          (6) 
here  

   
'垐

LS LS2
S

LS n-p


y-xβ y-xβ

                            (7) 
The main advantage of this method in multiple 

regression is to reduce MSE of the regression 
parameter by adding a positive value of ridge 
parameter, such that the increase of the bias is less 
than the reduced of the variance. (Hoerl and Kennard, 
1970 a, b) have shown that there always exists a 

positive value K> 0 such that 
垐MSE( ) < MSE( )β β
R LS . It is also true that 

ˆ 0
Ridge

β
when the estimator K  . When K= 0

, 
垐
Ridge LS

β β
and when 

ˆ0,K
Ridge

 β
is biased, 

but more accurate and stable. 
 
3. Robust Regression Estimators 
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Outliers are points that are lying far away from 
the pattern formed by the good points. OLS is 
affected by the extreme leverage points having 
randomly very large residuals, (Alamgir, 2013). The 
presence of outliers and influential cases can 
drastically change the magnitude of regression 
coefficients and even the direction of coefficient 
signs. Robust regression estimators are used to 
decrease the effect of outliers. It has been shown to 
be efficient, more reliable and provide fixed stable 
results than the LS estimator, especially so when 
error are non-normal that have heavier tails than the 
normal distribution, (Midi, 2007). Outliers greatly 
influence the estimation of coefficients, standard 
errors, test statistics and confidence interval. 

There are more robust estimators that can 
reduce the sum of squares residuals such as least 
trimmed squares (LTS). (Betül Kan, 2013) applied 
robust ridge and robust Liu estimator for regression 
based on the LTS estimator. This technique is used to 
fit a regression by using estimators that dampen the 
impact of influential points and it is resistant to the 
presence of outliers in both dependent variable and 
the explanatory variables. In fact, the LTS estimates 
are very inefficient if the data are actually normally 
distributed. The robust regression estimators 
performed worse than the LS estimates when the data 
are clean (without outliers). Thus, it is better to 
determine whether the error are normally distributed 
or not and then use the appropriate technique. 
3.1. Measurement of Robustness 

There are two common measures of robustness, 
breakdown point and influence curve. In this paper 
we discussed a breakdown point, which measures 
how well an estimate can resist bad data before it 
fails, in other words, it is a measure of stability of the 
estimator when the sample contains a large fraction 
of outliers. (Hampel, 1975) explained that breakdown 
point (BDP) of a regression estimator is the smallest 
fraction of contamination that can cause the estimator 
to (break down) and no longer represent the trend in 
the bulk of the data. When an estimator breaks down, 
the estimate produced from the contaminated data 
can become arbitrarily far from the estimate it would 
give when the data was uncontaminated. For example 
the breakdown point of the sample mean, least 
squares estimates and Least absolute deviation is 1/n. 
This indicates that only one outlier can make the 
estimate useless. But the estimators of the LMS and 
LTS have breakdown points near 1/2. (Rousseeuw 
and Leroy, 1987) introduced, the most of robust 
estimators having the highest breakdown point, that 
are known as Least Median Squares (LMS) and Least 
Trimmed Squares (LTS). 

The most commonly used robust estimator is the 
Least Trimmed Squares (LTS), which was proposed 

by (Rousseeuw, 1984). The estimated β̂
LTS can be 

defined as the solution of the following 

(8) 

where 
       
2 2 2 2

ε ε ε ,..., ε
1 2 3 n
   

 denotes the 
order statistics of a set of residuals, from smallest to 
largest. LTS are calculated by minimizing the h 

ordered squares residuals, where 

 p+1n
h = ,

2 2

  
      

with n and p being the sample size and the number of 
parameters, respectively. The objective function of 
LTS estimator is the sum of h smallest squared 
residuals and was indeed proposed as a remedy to the 
low asymptotic efficiency of LMS. The largest 
squared residuals are excluded from the summation 
in this method, that allows those outlier data points to 
be excluded completely. According to the value of h 
and the outlier data configuration, LTS can be very 
efficient. 

If indeed the exact numbers of outlying data 
points are trimmed, this method is mathematically 
equivalent to OLS. On the contrary, LTS is not 
efficient if the number of trimmed data points is more 
than the actual outliers as some good data will be 
excluded. LTS is considered a high breakdown 
method with 50% breakdown value, (Rousseeuw and 
Leroy, 1987; Rousseeuw Van Driessen, 1998). Thus, 
the effect of outliers on the LTS estimates will be less 
than that of LS estimate. 
 
4- Proposed Method (RLTS) 

Despite β̂
Ridge working better in the presence of 

multicollinearity, nevertheless, it is not robust when 
there are deviation from normality for the 
disturbances. Thus, we need to combine this 
procedure with some robust estimation procedures to 
produce robust ridge regression estimator. It is hoped 
that by combining the robust and ridge regression 
techniques, the problems of outliers and 
multicollinearity can be solved. 

There have been some studies related to 
estimation using the robust ridge regression 
estimators in the literature such as (Hoerl, 1975; 
Askin and Montgomery, 1980; Moawad El-Fallah et 
al., 2013 and Betül Kan, 2013). Our proposed method 
to estimate the regression parameters is known as 
RLTS. We would expect the modified method to be 
more robust than the Ridge Least Absolute Value 
(RLAV) estimator. 

The RLTS estimator of the parameter   can be 
calculated using the following formula. 

h

i=1

min 2
iε
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  1ˆ KLTSLTS


 β X'X I X'Y
  (9) 

where the value of K is given by 
2pSLTSK

'垐
LTS LTS


β β

  (10) 
and   

   
'垐

LTS LTS2
S

LTS n-p


y-xβ y-xβ

  (11) 

The 
2
LTSS

 is the estimated variance, n is the 

sample size and 
p

 is the number of estimated 

parameters. The value of K is calculated using 
equation (10) with two changes. First, the LTS 

estimator of β  is used rather than the LS estimator. 

Second, the estimator of
2 used in equation (11) is 

modified by using the LTS coefficient estimates 
rather than the least squares estimates. With these 
changes we are able to reduce the effect of extreme 
points on the value chosen for the biasing parameter. 
5. Application 

A numerical example is provided here to 
illustrate the application of the proposed method, the 
dataset used is the body fat data, (Penrose et al., 
1985). This data contained 152 outliers, and VIF for 
the multicollinarity are shown in table 1. This data set 

consist of 14 variables and 252 observations. The 
variables in the data set are: 

y= PCTBF, x1= Density, x2= Age, x3= Weight, 
x4= Height, x5= Neck, x6= Chest, x7= Abdomen, 
x8= Hip, x9= Thigh, x10= Knee, x11= Ankle, x12= 
Biceps, x13= Forearm, x14= Wrist 

 
Table 1. The VIF for the boy fat data 

Var. VIF 
X1 3.8183 
X2 2.2747 
X3 34.032 
X4 1.6778 
X5 4.3965 
X6 9.4722 
X7 18.120 
X8 14.961 
X9 7.8877 
X10 4.6123 
X11 1.9200 
X12 3.6516 
X13 2.2370 
X14 3.5215 

 

Here the maximum VIF is 34.031683. So it is 
clear that the multicollinearity problem exists. The 
summary of the parameter estimates and the standard 
error for the different methods can be seen in Table 2. 
From this table it can be seen that, the proposed 
method RLTS performed the best compared to the 
other methods.  

Table 2 Estimated parameters and SE of 
ˆ

1β
, 

ˆ
2β

, ..., 
ˆ

14
β

 for the different methods 
 Estimate LS RIDGE RLAV RLTS 

ˆ
1β

 
parameter 

s.e. 
-411.2 
8.258 

-1.0014 
0.0196 

-0.9956 
0.0197 

-0.9301 
0.0185 

β̂ 2  
parameter 

s.e. 
0.0126 
0.0096 

0.0029 
0.0152 

-0.0084 
0.0153 

0.0193 
0.0143 

β̂
3  

parameter 
s.e. 

0.0101 
0.0160 

0.0058 
0.0561 

0.0094 
0.0563 

0.0323 
0.0528 

β̂
4  

parameter 
s.e. 

-0.0080 
0.0284 

-0.0030 
0.0130 

-0.0038 
0.0131 

-0.0036 
0.0123 

β̂ 5  
parameter 

s.e. 
-0.0285 
0.0694 

0.0006 
0.0211 

0.0037 
0.0212 

-0.0088 
0.0199 

β̂ 6  
parameter 

s.e. 
0.0268 
0.0294 

0.0036 
0.0305 

-0.0015 
0.0307 

0.0269 
0.0288 

β̂ 7  
parameter 

s.e. 
0.0186 
0.0318 

0.0002 
0.0419 

0.0037 
0.0421 

0.0305 
0.0395 

β̂ 8  
parameter 

s.e. 
0.0192 
0.0434 

0.0076 
0.0380 

0.0000 
0.0382 

0.0156 
0.0358 

β̂
9  

parameter 
s.e. 

-0.0168 
0.0430 

-0.0046 
0.0282 

-0.0112 
0.0283 

-0.0095 
0.0266 

β̂
10  

parameter 
s.e. 

-0.0046 
0.0716 

-0.0019 
0.0216 

0.0037 
0.0218 

-0.0012 
0.0204 

β̂
1 1  

parameter 
s.e. 

-0.0857 
0.0658 

0.0006 
0.0140 

-0.0027 
0.0141 

-0.0170 
0.0132 

ˆ
1 2β

 
parameter 

s.e. 
-0.0550 
0.0509 

-0.0028 
0.0193 

-0.0035 
0.0194 

-0.0193 
0.0182 

ˆ
1 3

β  
parameter 

s.e. 
0.0339 
0.0595 

0.0008 
0.0151 

-0.0048 
0.0153 

0.0087 
0.0143 

ˆ
1 4

β  
parameter 

s.e. 
0.0073 
0.1617 

-0.0041 
0.0190 

0.0027 
0.0191 

-0.0001 
0.0179 
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5.1 Simulation Study 
We carry out a simulation study to compare the 

performance of the different methods LS, RR and 
RLAV with the proposed estimator RLTS. The 
simulation is designed to allow both multicollinearity 
and non-normality to exist simultaneously. The non-
normal distributions are used to generate outliers. 

Suppose, we have the following linear 
regression model: 

1 1 2 2 3 3
y x x x e

i o i i i i
       

 
where i=1, 2, 3  (12) 

The parameter values 
, ,  and 

0 1 2 3
   

 are set 
equal to one. The explanatory variables 

, and 
1 2 3

x x x
i i i  are generated using the 

equation  (13) 
2

(1 )x z
ij ij

   
 

i=1, 2,…, n, j =1, 2, 3  (14) 

where, ijz
 are independent standard normal 

random numbers generated by the normal 
distribution. The explanatory variable values were 
generated for a given sample size n. The sample sizes 

used were 25 and 50. The value of  representing the 
correlation between any two explanatory variables, 
and its values were chosen as: 0.0, 0.5 and 0.99. One 
important factor in this study is the error distribution, 
we have taken 25% of ourtliers. The standard normal 
distribution is used with 500 trials for each sample 
size. The statistics computed are the bias, 

RMSE, standard error (SE), and 6 pairwise 

MSE ratios of the estimators.  

The bias and MSE are given by:  

Bias
i i
  

where 

1

k
i

i
i k








, 500k  and the 

mean squared error is 

5001 2ˆ( )
500 1

MSE
i



β -βi i
, 

therefore, the RMSE is given by 
1/2ˆ[ ( )]MSE β

j                      where j= 0, 1, 2, 3 
The VIF for the simulated data are shown in 

Table 3. 
Here maximum VIF is 284.5107 when the 

correlation between independent variables is very 
high with different size number of observations. So it 
is clear that the multicollinearity problem exists. 
Thus, the VIF can help identify which regressors are 
involved in the multicollinearity. The measure of 
convergence was computed as the number of times 

estimator 1 was closer than estimator 2 or 3 to the 
true parameter β while the value in Table 4 and Table 
5 showed the summary statistics such as bias, RMSE 
and SE of the estimators of the normal distributions 
for sample size 25 and 50 with 0% and 25% of 

outliers and different value of  . 
 

Table 3 The VIF for the simulated data 


= 0.99 
Variable X1 X2 X3 
VIF (N=25) 125.9631 284.5107 108.2148 
VIF (N=50) 91.68085 215.92021 106.24795 

 
Table 6 shows the efficiency of the estimators 

by looking at the MSE ratios of the estimators. 
Values less than 1 denote that the estimator is more 
efficient, however, values more than 1 denote that the 
other estimator is more efficient. 

From Table 4 and Table 5 we can see that the 
RMSE of the LS is relatively smaller than the other 
estimators when the errors are normally distributed 
without outliers and no multicollinearity. As 
expected, the LS give the best results in the normal 
situation. Also, the result in Table 6 is in favor of LS. 
However, we see in table 6 that MSE ratios of RLTS 
to OLS is greater than 1.00 denoting that the LS is 
more efficient than the RLTS when no outliers and 
no multicolliearity. On the other hand, in the same 
Table 4 and Table 5, we can see that the RMSE of the 
RIDGE is relatively smaller than the RLAV also, 
looking at the MSE ratios of the estimators show that 
the values of ridge more than 1 indicate that this 
estimator is more efficient than RLAV and RLTS 
when the errors are normally distributed without 
outliers and no multicollinearity. However, for non-
normal error distribution and when correlation and 
outliers are present in the data, RLTS is better than 
LS and RIDGE, RLAV and its performance is almost 
as good as RIDGE and LS. Else, the LS is superior. 
The MSE in table 6 supported the result obtained 
from Table 4 and Table 5. These ratios indicate the 
efficiency of RLTS relative to other estimators. 
Values less than one indicate that RLTS is more 
efficient, however, values greater than one denote 
that the other estimators are more efficient than 
RLTS. 

Consequently, we can see that the RMSE of the 
RLTS is relatively smaller than the other estimators, 

when the errors are normally distributed in the 
presence of outliers and multicollinearity, it 
obviously shows that RLTS is almost as efficient as 
RLAV and RIDGE but certainly more efficient than 
with the presence of outliers and multicollinearity. 
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Table 4 Bias, RMSE and SE of 
β̂
1 , 

β̂
2  and 

β̂
3  with error normal (0,1) distribution of the sample size n=25 

correlation 0.0, 0.5 and 0.99 outliers 0% and 25%. 
0% outliers 

Value of 
  

Coef. Parameter LS RIDGE RLAV RLTS 

 
Bias -0.0735 -0.7065 -0.6593 -0.8253 

β̂
1  

RMSE 0.2160 0.9894 1.5704 1.3199 
S.e 0.2031 0.6926 1.4253 1.0300 

  
Bias 0.0078 -0.6791 -0.7273 -0.6498 

0.0 
β̂

2  
RMSE 0.1491 1.2014 2.0982 1.5016 

 
S.e 0.1489 0.9910 1.9681 1.3537 

  
Bias 0.0574 -0.6636 -0.6619 -0.5771 

 β̂
3  

RMSE 0.1823 0.9574 1.4377 1.1064 

 
S.e 0.1730 0.6901 1.2762 0.9439 

25%outiers 
 Coef. Parameter LS RIDGE RLAV RLTS 

  
Bias -6.5247 -1.1478 -0.9751 -0.9775 

 β̂
1  

RMSE 78.537 2.3385 0.9802 0.9775 

 
S.e 78.265 2.0374 0.1005 0.0018 

  
Bias 7.7103 -0.7565 -0.9759 -0.9774 

0.5 
β̂

2  
RMSE 112.78 3.0444 0.9811 0.9774 

 
S.e 112.51 2.9489 0.1008 0.0016 

  
Bias -1.4323 -1.0158 -0.975 -0.9773 

 β̂
3  

RMSE 80.608 2.3722 0.9805 0.9773 

 
S.e 80.595 2.1437 0.1002 0.0018 

25%outiers 
 Coef. Parameter LS RIDGE RLAV RLTS 

  
Bias -7.8369 -1.1523 -0.9792 -0.9814 

 β̂
1  

RMSE 94.332 2.3421 0.9843 0.9814 

 
S.e 94.006 2.0391 0.1001 0.0012 

 β̂
2  

Bias 9.2610 -0.7605 -0.9801 -0.9813 
0.99 RMSE 135.46 3.0475 0.9852 0.9813 

  
S.e 135.14 2.9511 0.1006 0.0012 

 β̂
3  

Bias -1.7204 -1.0206 -0.9795 -0.9812 

 
RMSE 96.819 2.3761 0.9847 0.9812 

  
S.e 96.804 2.1457 0.1008 0.0012 

 
 
From Table 6 values less than one indicate that 

the first estimator (first column) is more efficient 
than the other estimator (other column); values 
greater than one indicate that the second estimator 
(other column) is more efficient than the first 
estimator (first column). 

The simulation results for larger samples, that is 
for n = 50 are consistent with the results of smaller 
samples. The results also verify that the estimator for 
larger samples are more efficient than those of 
smaller samples it is clear by the smaller values of 
RMS. 

 
 
 
 

6. Conclusion 
A simulation was designed to compare the 

performance of RLTS with some existing methods in 
dealing with multicollinearity and non-normal errors. 
The results of the comparisons show that ridge least 
trimmed squares (RLTS) estimator is better than 
other methods (ridge and robust regression 
estimators) for the different combinations of 
multicollinearity and outliers. From Table 4 and 
Table 5, RLTS is always better than LS. Only LS 
outperform RLTS in the cases when disturbances are 
normal with no multicollinearity and no outliers. In 
addition, The numerical analysis and simulation 
studies show clearly that RLTS estimator is the most 
suitable option over other estimators when both 
multicollinearity and outliers are present.  



 Nature and Science 2014;12(12)   http://www.sciencepub.net/nature 

 

7 

Table 5 Bias, RMSE and SE of 
β̂
1 , 

β̂
2 and 

β̂
3 with normal (0,1) error distribution of the sample size n=50 correlation 0.0, 0.5 and 

0.99 outliers 0% and 25% 
0% outliers 

Value of 
  

Coef. Parameter LS RIDGE RLAV RLTS 

 
Bias -0.0156 -0.6906 -0.7078 -0.6995 

β̂
1  

RMSE 0.4665 0.8367 1.3350 0.9733 
S.e 0.4663 0.4724 1.1320 0.6768 

  
Bias -0.0703 -0.7040 -0.6882 -0.6875 

0.0 
β̂

2  
RMSE 0.1249 0.9713 1.7888 1.1494 

 
S.e 0.1032 0.6692 1.6511 0.9211 

  
Bias 0.0854 -0.6542 -0.6532 -0.6632 

 β̂
3  

RMSE 0.4478 0.8001 1.3420 0.8950 

 
S.e 0.4396 0.4607 1.1723 0.6009 

25%outiers 
 Coef. Parameter LS RIDGE RLAV RLTS 

  
Bias 0.7658 -0.9364 -0.9731 -0.9742 

 β̂
1  

RMSE 54.112 1.7432 0.9746 0.9742 

 
S.e 54.107 1.4703 0.0539 0.0016 

  
Bias 0.8508 -0.9620 -0.9724 -0.9741 

0.5 
β̂

2  
RMSE 71.982 2.1755 0.9744 0.9741 

 
S.e 71.977 1.9512 0.0629 0.0016 

  
Bias -1.7518 -1.0224 -0.9736 -0.974 

 β̂
3  

RMSE 51.756 1.7561 0.9742 0.9740 

 
S.e 51.726 1.4279 0.0337 0.0017 

25%outiers 
 Coef. Parameter LS RIDGE RLAV RLTS 

  
Bias -1.2362 -0.9410 -0.9776 -0.9779 

 β̂
1  

RMSE 67.589 1.7468 0.9782 0.9780 

 
S.e 67.578 1.4717 0.0337 0.0054 

 β̂
2  

Bias -4.2877 -0.9664 -0.9770 -0.9777 
0.99 RMSE 91.327 2.1795 0.9784 0.9775 

  
S.e 91.226 1.9536 0.0527 0.0050 

 β̂
3  

Bias 5.6092 -1.0271 -0.9782 -0.9775 

 
RMSE 62.164 1.7603 0.9796 0.9775 

  
S.e 61.910 1.4295 0.0525 0.0049 

 

Table 6 MSE ratios of 6 pairwise estimators of 
β̂
1 , 

β̂
2, 

β̂
3with errors normal (0,1) distribution and 0% and 25% of outliers 

β̂
1                                         

β̂
2                                    

β̂
3  

Estimator 1 vs Estimator 2  vs Estimator 3 Values of   

 
 

RLTS 
 
 
 
 

RLAV 
 
 
 
 

RIDGE 

 
0.0 0.5 0.99 0.0 0.5 0.99 0.0 0.5 0.99 

 
LS 

 
37.34 

 
0.00 

 
0.00 

 
101.36 

 
0.00 

 
0.00 

 
36.85 

 
0.00 

 
0.00 

 
4.352 0.00 0.00 84.70 0.00 0.00 3.994 0.00 0.00 

RIDGE 1.780 0.175 0.176 1.562 0.103 0.104 1.335 0.170 0.171 

 
1.353 0.312 0.313 1.400 0.201 0.201 1.251 0.308 0.308 

RLAV 0.706 0.995 0.994 0.512 0.992 0.992 0.592 0.994 0.993 

 
0.532 0.999 0.100 0.413 0.999 0.999 0.445 1.000 0.996 

 
         

LS 52.86 0.00 0.00 197.92 0.00 0.00 62.22 0.00 0.00 

 
8.189 0.00 0.00 205.15 0.00 0.00 8.981 0.00 0.00 

RIDGE 2.519 0.176 0.177 3.050 0.104 0.105 2.255 0.171 0.172 

 
2.546 0.313 0.314 3.392 0.201 0.202 2.813 0.308 0.310 

 
         

LS 20.98 0.001 0.001 64.89 0.001 0.001 27.59 0.001 0.001 

 
3.22 0.001 0.001 60.48 0.001 0.001 3.193 0.001 0.001 
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