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Abstract: The main purpose of this study is study the feasibility of making smart office buildings, especially in 
Germany and Italy, with the focus on power energy control. In an attempt to overcome the defects of quiescent 
power shutdown system, smart quiescent power control system has been developed. However, due to its higher 
investment costs, feasibility evaluation must be conducted. Energy management system (EMS) is a system of 
computer-aided tools used by operators of electric utility grids to monitor, control, and optimize the performance of 
the generation and/or transmission system. The evolution of the electricity grid towards the smart network is kind of 
energy sources in smart office buildings: a combination of local power generation, battery storage and controllable 
loads can greatly increase the energetic self-sufficiency of a smart office buildings, enabling it to maximize the self-
consumption of electricity, thus taking advantage of control their electrical building loads and time-variable tariffs to 
achieve economic savings. The performance is compared to the optimal energy usage scheduling, which would be 
obtained assuming the exact knowledge of the future energy production and consumption trends. In addition, 
sensitivity analysis is carried out to quantify accuracy of estimates. 
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1. Introduction 

Smart office building technology typically 
delivering energy savings and maintenance 
efficiencies. In large office buildings with centralized 
building automation systems, relatively inexpensive 
devices can be connected to the building control panel 
to enable a smart office building management system 
to extract and analyze real-time equipment and system 
performance data and use it to fine-tune building 
performance. 

In smaller office buildings that do not have 
centralized smart systems, the availability of 
affordable wireless sensors combined with this new 
smart building technology makes it possible to deploy 
a building automation system. Making installation of a 
smart building management system much more 
affordable. 

The smart grid concept is not only 
revolutionizing the electricity grid infrastructure, but 
also incentivizing awareness of a more sustainable 
energy utilization: “green” solutions for residential 
and commercial buildings have been investigated with 
the aim of increasing the diffusion of renewable 
energy sources. However, the inherently intermittent 
production patterns of renewables increase the 
unpredictability of the overall power availability, thus 
raising power balancing issues in the management of 
the smart office buildings. 

Smart building systems are more energy-
efficient than legacy systems, but can also reduce 

operational risks, improve building performance and 
enable more accurate capital planning. Concurrently, 
the “smart office building” paradigm aims at 
improving the energy efficiency and occupant’s 
quality of living by integrating intelligent control 
mechanisms enabled by information and 
communication technologies (ICT). The goal of such 
systems is the optimization of the building operation 
by integrating information about the users’ 
preferences and activities, ambient conditions and 
electricity supply availability. In particular, demand-
response interactions make it possible to equalize the 
load experienced by the grid by lowering the 
consumption in the case of power production scarcity 
or by increasing power absorption when production 
exceeds demand. To do so, the smart building must 
include distributed generation plants, storage 
capabilities and controllable electrical loads. Each 
smart office building can be managed by a dedicated 
control system, which schedules the charge/discharge 
cycles of the storage bank and the runtime of the 
power loads, in case they exhibit some malleability: 
several management policies have been investigated, 
mostly aimed at the minimization of the operational 
costs in the presence of time-variable energy tariffs. 

A smart office architecture in which the energy 
usage of an office equipped with a photovoltaic plant, 
a storage bank and a set of loads (either non-
deferrable or deferrable) is controlled by means of an 
energy manager, which makes decisions based on 
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energy production and consumption forecasting 
algorithms and exploits the following peculiarities of 
the smart office ecosystem: 

 Heating, cooling and lighting consumption 
can be forecasted according to the utilization 
schedules of the rooms (e.g., the usage of conference 
rooms is mostly pre-planned by means of a booking 
mechanism; the occupation of offices depends on the 
traveling and time-off patterns of the employees); 

 Deferrable loads, such as the battery recharge 
of laptops and mobile devices, can be planned 
according to the periods in which the devices are 
plugged in at the working stations, which can be 
declared in advance by the device owners according to 
their daily working schedule. 

In this paper, energy management service 
(EMS), which can be provided by a specialized third 
party, by the utility or by the distribution was 
discussed. The EMS defines the amount of 
charged/discharged energy in/from the local storage 
bank, the runtime of controllable loads and the 
amount of energy to be absorbed/injected into the grid 
based on the electricity tariffs. 

Several optimization methods for the energy and 
comfort management of both residential and 
commercial smart buildings have been proposed by 
the scientific community, with strategies ranging from 
day-ahead to real-time planning. 

A consistent body of recent works has 
specifically addressed the peculiarities of smart office 
and smart campus environments. Guan et al. designed 
a MILP for the minimization of gas and electricity 
bills of a university campus building equipped with a 
controllable combined heat-power system, battery 
storage and a photovoltaic plant. 

Barbato et al., which enables the integration of 
renewable local energy sources, storage banks and 
controllable loads, and supports demand response 
with the electricity grid operators. 

Guan et al. designed a MILP for the 
minimization of gas and electricity bills of a 
university campus building equipped with a 
controllable combined heat-power system, battery 
storage and a photovoltaic plant. The program is 
applied both under the assumption of a deterministic 
scenario or of a “scenario tree”, where uncertainty 
about future power usage is taken into account by 
means of a weighted objective function, including 
various production/consumption patterns, each one 
occurring with different probabilities. 

Methods for knowledge extraction to 
automatically infer and adapt rule sets for the 
management of a smart office (or a generic smart 
building) are proposed by Gupta et al. [20] and Anjos 
et al. By analyzing data gathered from electricity 
meters, sensors and actuators deployed within the 

office environment and combining them with the 
users’ preferences, control rules can be dynamically 
generated, modified and deleted. This enables the 
system to provide monitoring and control capabilities 
for the photovoltaic installation, the backup batteries, 
air condition, blinds, lights, power plugs, window 
sensors, and humidity, temperature, brightness and 
power meters. 

A hierarchical multiagent control system for a 
microgrid-integrated smart building is discussed by 
Wang et al. A particle-swarm optimization method is 
applied by the main agent for the maximization of the 
user comfort, whereas additional local agents manage 
controllable loads, room illumination, and temperature 
and air quality by means of fuzzy rules. 

Measured data and control capabilities are 
available via different devices and clients, and all 
information is stored in, or retrieved from, a database. 
In addition, a rule system at the application layer of 
the middleware is used to observe the current status 
and under appropriate conditions to issue commands, 
e.g., to maintain a defined brightness level. 

We observe that many offices nowadays are 
moving towards cloud-based solutions for their 
mission-critical systems, such as management 
software or productivity suites. As a consequence, 
businesses generally have high availability contracts 
with Internet service providers and backup solutions. 
The second major issue is that a centrally-managed 
EMS leaks private information about the ongoing or 
scheduled activities in the office. To this end, there is 
a rich research area discussing how to perform 
privacy-preserving energy scheduling at the expense 
of an increase of computation effort or of potential 
savings. There are a few issues that must be 
considered before deploying a cloud-based solution. 
The first issue is that network connectivity issues 
make the EMS unreachable and, thus, unable to 
manage the devices. 

Employing a cloud-based EMS rather than an 
on-premises solution is a fundamental design choice 
of our framework, which enables the implementation 
of advanced services. Every time epoch, the server 
application collects the state of charge of the storage 
devices, the set of devices that can be managed and 
pushes them to the EMS along with the configuration 
requests, such as the minimum recharge level that 
must be guaranteed to the users of the rechargeable 
devices. Then, the application server enforces the 
decisions of the EMS by translating them into hard 
limits on the charge/discharge rate of the battery and 
on the consumption of deferrable or malleable loads. 
In our experience, a standard server can optimize the 
needs of a single smart office in a few seconds, so the 
server application can receive the answer with very 
limited latency. 
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This is especially important when the smart 
office operates in islanded mode: the server 
application is responsible of early termination of the 
islanded mode if the consumption exceeds the 
available power from the photovoltaic plant plus the 

storage bank. Since the EMS makes decisions by 
using predictions of the consumed/produced power, 
the server application must also ensure that the EMS 
decisions are feasible and do not result in unwanted 
outages if the prediction error happens to be large. 

 

 
Fig. 1. Interrelationships of a premises network, energy resources, external domains, service providers, and energy 
services 
 
 
Consumption Forecast 

A triple exponential smoothing model provided 
were applied to predict the power consumption, since 
seasonal models are supposed to be a simple but 
feasible approach for short-term electricity demand. 
Adequate results have been obtained using a triple 
exponential smoothing model with parameters, which 

correspond to the weight of recent data, trend and 
seasonality, respectively. 

The basis for these models are time series, where 
we use the historical consumption data for the past six 
same days. If we utilized information from the last 
successive days, the strong differences between 
workdays and weekends would distort the forecast 
values.  

 

 
Fig. 2. Demand forecasting of a set of energy loads 

 
 



 Nature and Science 2016;14(9)   http://www.sciencepub.net/nature 

 

67 

Energy Management Algorithm 
The energy management algorithm assumes that 

the optimization horizon is divided into a set of 
epochs T of fixed duration (e.g., in the order of 
minutes) and works under the following assumptions: 

 The battery of the local storage bank can be 
charged (possibly with interruptions) with the energy 
generated by the photovoltaic plant and/or by direct 
feeding from the electricity grid; 

 No more energy than the daily production of 
the photovoltaic plant can be injected into the grid 

(this prevents the smart office from getting state 
incentives for reselling energy bought from the grid); 

 The duration of plug-in periods of 
rechargeable electronic devices is specified by the 
owners at the moment of plugging in the device. 
Alternatively, these periods could be enforced by 
using switchable sockets controlled by the system. 
The recharge process can possibly experience 
intermediate interruptions. Recharge is mandatory if 
the current state of charge of the device battery is 
below a given threshold specified by the user. 

 
Fig. 3. Smart grid interoperation 

 
Performance Evaluation 

To assess the performance of our proposed EMS, 
we tested it in the Smart Energy Lab. The testbed 
includes a photovoltaic plant with peak production of 
8kWp, a storage bank with capacity of 11kWh and 
recharge rate of 1kW, a set of non-deferrable 
appliances (lights, heating/cooling systems, servers 
and desktop computers) and 54 controllable plugs to 
which 33 laptops (device battery capacity of 60Wh, 
recharge rate of 45W) and 33 mobile phones (device 
battery capacity of 7Wh, recharge rate of 4W) can be 
connected. Recharge is mandatory until device 
batteries reach 70% of charge. 

The scheduling horizon is a 24-h period divided 
into 100 epochs of a 20-min duration (though from the 

theoretical point of view, the duration of an epoch can 
be arbitrarily defined, most of the state-of-the-art 
commercialized smart meters use measuring intervals 
of 20 min). We start considering the minimization of 
the overall operational costs. The rewards for the 
recharge of the electronic devices above the 
mandatory threshold are price incentives 
corresponding to the daily average electricity price. 
Note that such incentives do not impact the actual bill, 
since they appear exclusively in the objective function 
of the MILP model. The electricity prices vary 
according to three different tariff types currently 
applied by an Italian energy provider and reported in 
Figure 4: 

 

 
Fig. 4. Time of use and two-tier tariff prices 
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We now detail the analysis of the numerical 

results obtained for two reference days (a sunny 
weekend day and a partially-cloudy working day, 
respectively), assuming the usage of time-of-use 
tariffs. The corresponding energy exchanges with the 
grid obtained by means of the EMS. 

It is worth noting that the time-of-use tariff leads 
to the lowest bills when compared to the other tariff 
options: in this scenario, due to the high variability of 
the energy prices, which exhibit hourly changes, the 
benefits of charging the battery during low-price 
periods and to discharge it when prices are higher 
become more evident. In order to leave a sufficient 
capacity to store the power generated by the solar 
panels, the storage bank is mostly discharged during 
the early morning. The battery is also discharged 
during the evening period, in order to reduce the 
amount of purchased energy when prices are high 
However, in the case of the time-of-use tariff, the 
schedules defined by the EMS lead to the highest bill 
gap with respect to the optimal ones, since with such a 
tariff, even small deviations with respect to the 
optimal schedules, due to inexact forecasts, could 
result in non-negligible additional expenses. 
 
Conclusion: 

This paper describes an energy management 
system for a smart office environment, which 
combines forecasting algorithms for the predictions of 
energy production/consumption trends with an 
optimizer that schedules the smart building operations 
according to the forecasted and actual energy 
utilization patterns, as well as to the current energy 
prices. Based on the presented results, we believe that 
the integration of our proposed system is a valid 
support to achieve nearly-optimal schedules of the 
smart building operational mode and to ensure 
significant cost savings. 
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