
 Nature and Science 2016;14(10)   http://www.sciencepub.net/nature 

 

124 

Evaluation the Application of Image Processing and Digital Signal Processing 
 

Manoochehr Joodi1, Kazem Sahebi2, Shapoor Joodi3 
 

1. B.Sc. of Guilan University 
2. M.Sc. of Artificial Intelligence, Iran University of Science and Technology 

3. Faculty Member of Islamic Azad University Paesabad Moghan 
Manoochehr.joodi@gmail.com 

 
Abstract: The main purpose of this study is evaluation the application of image processing and signal processing in 
various scientific field such as computer science and astronomy and biometry. Besides, Super-resolution (SR) 
technique reconstructs a higher-resolution image or sequence from the observed LR images. Signal Processing has 
evolved into Digital Signal Processing (DSP) allowing computer simulations and digital electronics 
implementations. Today, it’s difficult to consider DSP algorithms without their software implementation and/or a 
proper dataset. Technical details are discussed in this article, including optimization algorithms, parameter selection 
methods, reconstruction models and acceleration strategies. It’s suggested an objective quality meter for quantifying 
the combined blackness and blurriness distortions in frequency domain. 
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1. Introduction 

SR is a technique which reconstructs a higher-
resolution image or sequence from the observed LR 
images. Technically, SR can be categorized as multi-
frame or single-frame based on the input LR 
information. If multiple images of the same scene 
with sub-pixel misalignment can be acquired, the 
complementary information between them can be 
utilized to reconstruct a higher-resolution image or 
image sequence, as Fig. 1 shows. However, multiple 
LR images may sometimes not be available for the 
reconstruction, and thus we need to recover the HR 
image using the limited LR information, which is 
defined as single-frame SR. 

 

 
Fig. 1. The concept of multi-frame super-resolution.  

 
The grids on the left side represent the resolution 

enhancement is therefore still necessary, especially in 
fields such as video surveillance, medical diagnosis, 
and remote sensing applications. Considering the high 
cost and the limitations of resolution enhancement 
through “hardware” techniques, especially for large-
scale imaging devices, signal processing methods, 
which are known as super-resolution (SR), have 
become a potential way to obtain high-resolution 

(HR) images. With SR methods, we can go beyond 
the limit of the low-resolution (LR) observations, 
rather than improving the hardware devices. 

LR images of the same scene with sub-pixel 
alignment, thus the HR image (the grid on the right 
side) can be acquired by fusing the complementary 
information with SR methods. Although SR 
techniques have been comprehensively summarized in 
several studies, this paper aims to provide a review 
from the perspective of techniques and applications, 
and especially the main contributions in recent 
decades. 

This paper provides a more detailed description 
of the most commonly employed regularized SR 
methods, including fidelity models, regularization 
models, parameter estimation methods, optimization 
algorithms, acceleration strategies, etc. Moreover, we 
present an exhaustive summary of the current 
applications using SR techniques, such as the recent 
Google Skybox satellite application and unmanned 
aerial vehicle (UAV) surveillance sequences. The 
current obstacles for the future research are also 
discussed. 
Literature Review: 

Nowadays, charge-coupled devices (CCDs) and 
complementary metal oxide semiconductors (CMOSs) 
are the most widely used image sensors. To obtain an 
HR image, one of the solutions is to develop more 
advanced optical devices. As the spatial resolution is 
governed by the CCD array and optical lens, reducing 
the pixel size is one of the most direct approaches to 
increase the spatial resolution. However, as the pixel 
size decreases, the amount of available light also 
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decreases, and the image quality becomes severely 
degraded by shot noise. Furthermore, nonrectangular 
pixel layouts, as in the hexagonal Fujifilm super CCD 
and the orthogonal-transfer CCD, have been used to 
increase the spatial sampling rate, as shown in Fig. 2. 
Other approaches include increasing the focal length 
or the chip size. However, a longer focal length will 
lead to an increase in the size and weight of cameras, 
while a larger chip size will result in an increase in 
capacitance. Therefore, both of these approaches are 
not considered to be effective due to the limitations of 
the sensors and the optics manufacturing technology 
[4]. Compared with CMOSs, CCDs have advantages 
in sensor sensitivity, imaging resolution, noise 
suppression and technology maturity. 

However, considering the high cost of current 
CCD-based cameras, CMOS-based technologies have 
recently been investigated. For example, Scientific 
CMOS (scoops) sensors feature a higher resolution 
and high signal-to-noise ratio (SNR); however, the 
practical use of this technology remains a problem. 
Overall, due to the limitations of hardware 
technology, it is still necessary to study SR algorithms 
to achieve the goal of resolution enhancement. 

Based on the concept of SR, the first problem we 
need to discuss is the conditions to obtain an HR 
image from multiple LR observed images. In general, 
if there is supplementary information among the 
images, SR is feasible. That is to say, the LR 
observations cannot be obtained from each other by a 
transformation or resampling process, thus they 
contain different information which can be used for 
SR. 

If the relative shifts between the LR images are 
integral, the images after motion registration will 
contain almost the same information. As a result, SR 
cannot obtain effective results. 

To implement SR in a real application, 
researchers have attempted to acquire the images for 

SR through hardware control. By means of designing 
the imaging mechanism by hardware techniques, the 
sensors can acquire observations with known sub-
pixel displacements, or multiple “looks” for the same 
scene. SR is therefore possible. Successful examples 
can be found in various fields. One of the most 
famous successful cases is in the field of remote 
sensing. In the French space agency’s SPOT-5 
satellite system, a specially developed CCD detector 
was used which packages two 12000-pixel CCDs in 
one structure. Two line-array CCDs are shifted with 
each other by half a pixel width in the line-array 
direction, as shown in Fig. 2. 

For the calculation of blockings or blurriness 
index, the image is divided into blocks for block 
processing. The reason for block processing is that if 
we apply the FFT on whole image without block 
processing, then the chances of error is very high 
because the distortion might not be consistent and 
equal in every part of the image so the distortion is 
computed for each block locally and will be 
accumulated in the end as a single quality metric. The 
size 32x32 is chosen because the block size should be 
multiple of 8 (as DCT block size is 8x8) and the 
harmonics must have some distance among them to be 
recognized as harmonics that is why 32x32 window 
size is selected. 

Since the two CCD detectors can capture images 
at the same time, a set of data can therefore be 
acquired at a half-pixel shift in the imaging position. 
Using this device and SR techniques, we can obtain a 
HR image from the two sub-pixel shifted images. 
Leica ADS40 aerial cameras have adopted a similar 
imaging mechanism to SPOT-5. Moreover, some 
CCD pixels comprise sub-pixels with different shapes 
and spatial locations. By combining multiple images 
recorded with different sub-pixel components, we can 
obtain a higher-resolution image via SR. 

 

 
Fig. 2. Sub-pixel imaging for SPOT-5 [23]. A double CCD linear array in (a) generates two classical square 
sampling grids in (b), shifted by half a sampling interval in both row and column directions. 
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Super-resolution technologies and methods 
In this part, we discuss the methods and current 

problems for SR with multiple observations. The key 
problem is how to use the supplementary information 
among the acquired repeat-pass images. In 1964, 
Harris established the theoretical foundation for the 
SR problem by introducing the theorems of how to 
solve the diffraction problem in an optical system. 
Two decades later, Tsai and Huang first addressed the 
idea of SR to improve the spatial resolution of 
Landsat TM images. 

The main emphasis of this paper is to develop a 
distortion meter with combined blockings and 
blurriness distortions. Only blockings meter is not 
good in estimating quality of lightly compressed 
image (very little blockings) therefore adding a blur 
meter will help to compensate for that weakness. In 
the following parts the combined blackness and 
blurriness quality meter which is designed for full 
reference (FR) mode is explained. It consists of 3 
main parts; 1) blockings estimation; 2) blurriness 
estimation and 3) combining the two distortions. 

Since then, many researchers have begun to 
focus on SR, either in theoretical research or practical 
applications. SR has now been developed for more 
than three decades, and the progress of SR can be 
roughly summarized as follows. 

At the very start, most of the methods 
concentrated on the frequency domain. Frequency 
domain algorithms can make use of the relationship 
between theHR image and the LR observations based 
on a simple theoretical basis, and have high 
computational efficiency. However, the methods have 
apparent limitations, such as sensitivity to model 
errors and difficulty in handling more complicated 
motion models, which have prevented them from 
further development. 

Due to the drawbacks of the frequency domain 
algorithms, spatial domain methods then became the 
main trend. The popular spatial domain methods 
include non-uniform interpolation, iterative back-
projection (IBP), projection onto convex sets (POCS), 
the regularized methods, and a number of hybrid 
algorithms. Early review papers have provided 
specific descriptions and explanations of those 
methods. Among them, the regularized methods are 
the most popular due to their effectiveness and 
flexibility. 

Therefore, most of the recent representative 
articles about SR have focused on regularized 
frameworks. In this part, our emphasis is to review the 
development of the regularized methods, especially 
over the last decade. 

Edge detection is used to determine the sharp 
luminance edges from the reference image. These 
sharp luminance edges are either due to the blockings 

artifact introduced in coding process or due to the 
textual details present in reference image. This spatial 
activity of both, reference and coded images, are 
determined by using sober edge detectors. The edge 
detection is performed horizontally and then vertically 
on both images. 

Furthermore, the related research progress into 
parameter setup and optimization algorithms is also 
summarized. The remainder of this part is structured 
as follows. 

Firstly, we talk about the imaging models. The 
related models are then described, including the data 
fidelity and regularization terms. Some advanced 
techniques and challenges are then discussed, 
including adaptive parameter setup, blind 
reconstruction, and optimization strategies. 
The observation model 

The imaging model, which refers to the 
observation model, is essential to SR when using a 
regularized framework. Before reconstruction, we 
need to clarify the process by which the observed 
images have been obtained. The image acquisition 
process is inevitably confronted with a set of 
degrading factors, such as optical diffraction, under-
sampling, relative motion, and system noise. In 
general, we usually suppose that the degradation 
procedure during image acquisition involves warping, 
blurring, down-sampling, and noise, and the 
observation model is simulated as follows: 

(1)  

(2)  
The model in (1) is still insufficient for 

expressing all possible situations. As a result, other 
models take more complicated factors into 
consideration to better describe real cases, including 
different kinds of noise, dimensional complexity, 
domain transformation for the particular images, etc. 
These models are not discussed in detail in this paper. 
Regularized reconstruction methods 

Based on the observation model described 
above, the target is to reconstruct the HR image from 
a set of warped, blurred, noisy, and under-sampled 
measured images. As the model in (2) is ill-
conditioned, SR turns out to be an ill-posed inverse 
problem. 

Based on maximum a posteriori (MAP) theory, 
the problem we need to solve can be transformed to 
the minimization problem as: 

(3) 

 
The regularization term 
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The regularization plays a significant role in the 
regularized vibrational framework. As SR is a 
classical ill-posed inverse problem, regularization is 
therefore adopted to stabilize the inversion process. 
According to the Bayesian theorem, the regularization 
term represents the image prior modeling, providing 
the prior knowledge about the desired image. Over the 
past 10 years of vigorous development, there have 
been a large amount of studies of regularization for 
image restoration and SR. 
Smoothness prior models 

In the early years, the smoothness of natural 
images was mainly considered, which leads to the 
quadratic property of the regularizations. Tikhonov-
based regularization is the representative smoothing 
constraint, whose energy function is usually defined 
as: 

(4)  
To overcome the shortcomings of the TV prior 

model, some researchers have proposed spatially 
adaptive strategies. A number of methods use spatially 
adaptive regularization parameters to eliminate the 
staircase effects. Some of them classified the image 
into detailed and flat regions using the spatial 
information, and used a larger penalty parameter for 
the flat regions and a smaller one for the edges. 
However, the spatially adaptive indicators such as 
gradients, the difference curvature, and structure 
tensor are usually sensitive to noise. 

To understand the combination strategy of 
blockings and blurriness artifacts we have to study 
their behavior and appearances in the images. As the 
compression ratio is increased, images tend to lose 
their higher frequency contents, due to their smaller 
energy they carry and appear blurry. This means, 
blockings is an ultimate consequence of blurriness. 
Once the blockings starts appearing, it means the 
image has already gone through the blurriness artifact 

and the blurriness is saturated. By further compressing 
the image, blockings artifacts starts appearing and it 
becomes dominant on blurriness artifact and user 
starts observing blockings in image. Finally for the 
combination of two distortions, more weightage 
should be given to blurriness at low compressions and 
at higher compression rates to blockings. The 
following graphs for blurriness and blockings 
weighting functions are estimated based on tests on 
various images of the data base. 
Nonlocal-based priors 

The local derivatives are somewhat sensitive to 
noise in the images’ homogenous regions, which 
negatively affects the reconstruction effect in noisy 
cases. Recently, the concept of nonlocal-based priors 
has been proposed and has developed rapidly in image 
processing. Rather than defining the neighborhood of 
a pixel locally, nonlocal-based priors consider pixels 
in a large search area and weight them according to 
the similarity between rectangular patches. This is 
based on the assumption that every feature in a natural 
image can be found many times in the same scene. 
The nonlocal models have become popular in the 
regularized framework, given the nonlocal TV 
regularization as: 

(5) 

 
Astronomical observation 

The physical resolution of astronomical imaging 
devices limited by system parameters also provides a 
chance for SR techniques to play a role. Astronomical 
systems can typically collect a series of images for 
SR. By improving the resolution of astronomical 
images, SR can help astronomers with the exploration 
of outer space. A specific example is shown in Fig. 3 
showing the SR of multiple star images. 

 

 
Fig. 3. SR example of astronomical images: (a) the original LR image, and (b) the SR result. 

 
Satellites are also now being sent into outer 

space, e.g. the lunar exploration program and the Mars 
Odyssey mission and indicates an SR example of 
Chinese Chang’E-1 lunar images, where the result 
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was reconstructed based on three views. The SR can 
enhance the image resolution, and thus improve the 
discernibility of small objects on the moon’s surface. 
Beyond this, Hughes and Ramsey used Thermal 
Emission Imaging System (THEMIS) thermal infrared 
and visible datasets from different spectral regions to 
generate an enhanced thermal infrared image of the 
surface of Mars. 
Biometric information identification 

SR is also important in biometric recognition, 
including resolution enhancement for faces, 
fingerprints, and iris images. The resolution of 
biometric images is pivotal in the recognition and 

detection process. To deal with the LR observations, a 
common approach is the development of high-quality 
images from multiple LR images. Based on the 
redundancy and similarity in the structured features of 
biometric images, example-based single-frame SR 
with an external database is an effective way of 
resolution enhancement. We give three cases of 
biometric image reconstruction in Fig. 4. Using SR, 
the details of the shapes and structural texture are 
clearly enhanced, while the global structure is 
effectively preserved, which can improve the 
recognition ability in the relevant applications. 

 

 
Fig. 4. The SR results for face, fingerprint, and iris images [189], respectively. 

 
The first row is the LR image, while the second 

row shows the reconstructed result. (a) Face 
hallucination, (b) fingerprint reconstruction, and (c) 
iris reconstruction. 
 
Discussion and conclusions 

In this article, we intended to convey the 
concept, development, and main applications of super-
resolution (SR) over the past three decades. The main 
progress in SR techniques can basically be divided 
into three stages. In the first decade, researchers 
shifted their attention from the study of frequency 
domain methods to spatial domain algorithms. 
Regularized multi-frame SR framework were the main 
focus in the second stage. The Bayesian MAP 
framework became the most popular technique due to 
its good performance and flexible characteristics. In 
recent years, however, the development of multi-
frame SR has slowed down, and researchers have 
mainly focused on SR reconstruction in the various 
application fields. Unfortunately, the extensive 
practical use of SR still remains a problem. There has 
been a bottleneck-style dilemma in the development 
of multi-frame SR, while example-based SR for single 
images has become a hot issue. However, the 
performance of these algorithms depends on the 
reliability of the external database. 

So what should we do in further studies? More 
advanced, adaptive, and faster methods with extensive 
applicability are always desirable. In addition, 
methods should be closely combined with actual 
requirements. The rapid development of hardware 
devices will also bring new challenges to the 
application of the SR framework. For instance, the 
Google Skybox project will provide us with an 
opportunity to obtain real-time HR “earth-observation 
videos” using remotely-sensed image SR. The concept 
of SR has also been extended to related fields such as 
fluorescence microscopy and multi-baseline 
tomographic synthetic aperture radar (SAR) imaging. 
Moreover, researchers have attempted to apply the 
single-frame SR techniques to the processing of 
medical and remote sensing imagery. However, the 
practicability of these methods is still limited by the 
time consumption, and acceleration strategies are 
essential for large-scale applications. In conclusion, 
the future of SR is still in our hands. 
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