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Abstract: Malaria is a serious public health problem in developing countries like Ethiopia. Early prediction of 
malaria cases is very important for its control and intervention. This study aimed for developing stochastic model for 
forecasting malaria cases in Addis Zemen, South Gondar, Ethiopia. Data of monthly malaria cases from January 
2007 to June 2016 were obtained from Addis Zemen health center, south Gondar, Ethiopia. The autoregressive 
integrated moving average (ARIMA) model, is typically applied to forecast the malaria cases; it can take into 
account changing trends, seasonal variation, and random disturbances in time series. Generalized Autoregressive 
conditional heteroscedasticity (GARCH) models are the prevalent tools used to deal with time series 
heteroscedasticity. In this study, based on the data of the malaria cases, the researcher establish the seasonal ARIMA 
(1, 1, 1) (2, 1, 1)12 model and GARCH (1, 1) model, which can be used to forecast the malaria cases successfully in 
Addis-Zemen. Although both two families of models could reasonably forecast the malaria cases, the GARCH 
model demonstrated better goodness-of-fit than the SARIMA model. The seasonal trend of malaria cases is 
predicted to have lower monthly malaria cases in January and higher malaria cases in October. To the best of the 
researcher’s knowledge, this is the first study to establish the ARIMA model and GARCH model for forecasting the 
monthly malaria cases in Addis-Zemen. 
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1. Introduction 

Malaria in humans is caused by five species of 
parasites belonging to the genus Plasmodium. Four of 
these – P. falciparum, P. vivax, P. malariae and P. 
ovale – are human malaria species that are spread 
from one person to another via the bite of female 
mosquitoes of the genus Anopheles. There are about 
400 different species of Anopheles mosquitoes, but 
only 30 of these are vectors of major importance. In 
recent years, human cases of malaria due to P. 
knowlesi have been recorded – this species causes 
malaria among monkeys in certain forested areas of 
South-East Asia. Current information suggests that P. 
knowlesi malaria is not spread from person to person, 
but rather occurs in people when an Anopheles 
mosquito infected by a monkey then bites and infects 
humans (zoonotic transmission). P. falciparum and P. 
vivax malaria pose the greatest public health 
challenge. P. falciparum is most prevalent on the 
African continent, and is responsible for most deaths 
from malaria. P. vivax has a wider geographical 
distribution than P. falciparum because it can develop 
in the Anopheles mosquito vector at lower 
temperatures, and can survive at higher altitudes and 
in cooler climates. It also has a dormant liver stage 
(known as a hypnozoite) that can activate months after 
an initial infection, causing a relapse of symptoms. 
The dormant stage enables P. vivax to survive for long 

periods when Anopheles mosquitoes are not present 
(e.g. during winter months). Although P. vivax can 
occur throughout Africa, the risk of infection with this 
species is quite low there because of the absence in 
many African populations of the Duffy gene, which 
produces a protein necessary for P. vivax to invade 
red blood cells. In many areas outside Africa, 
infections due to P. vivax are more common than 
those due to P. falciparum, and cause substantial 
morbidity. 

Malaria remains a major public health problem 
in many countries of the world. Despite the progress 
in reducing malaria cases and deaths, it is estimated 
that 214 million cases of malaria occurred worldwide 
in 2015, leading to 438 000 malaria deaths (WHO, 
2015). 

Malaria is transmitted by mosquitoes carrying 
malaria parasites. Malaria’s distribution depends on 
the availability and productivity of mosquito breeding 
habitat. The availability of the breeding habitat is 
related to stagnant water that remains after rainfall 
while productivity of the breeding habitat is a function 
of the ambient temperature (Githeko A, 2008). 
Rainfall rises the abundance of the breeding habitat 
while higher temperature increases the malaria risk by 
shortening the malaria parasites development-cycle 
(Hay et al, 2000). The average life span of a mosquito 
carrying malaria parasites is about 21 days. It takes 19 
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days for the malaria parasite to mature inside the 
mosquito at 22 degrees Celsius and 8 days to mature 
at 30 degrees Celsius. Apart from the African 
highlands and the farthest southern and northern 
African regions, the annual mean temperature on the 
African continent is above 25 degrees Celsius 
(Githeko A, 2008). Therefore, the increase in mean 
temperature under climate changes (IPCC. Climate 
Change 2007) may result in a faster parasite 
development and a potentially higher incidence of 
malaria. 

In Ethiopia, malaria is one of the most public 
health problems, with more than three-quarters of the 
landmass (altitude <2000 m) of the country is either 
malarious or potentially. 

malarious, and an estimated 68% (>50 million 
people) of the total population resides in areas at risk 
of malaria infections (Adhanom et al, 2006). 
Annually, half a million microscopically confirmed 
cases of malaria are reported to the Federal Ministry 
of Health (FMOH) from basic health services. 
However, the actual number of malaria cases in the 
country is estimated to be more than 5 million each 
year. According to the 2007/2008 report of the 
FMOH, malaria was the leading cause of outpatient 
visit accounting for 12% of cases and the second 
cause of (10%) admit next only to admit for delivery 
(MOH, 2007/2008). 

P. falciparum and P. vivax are the dominant 
malaria parasites distributed all over Ethiopia and 
account for about 60% and 40% of malaria cases, 
respectively(MOH, 2007/2008). 

Based on the findings or reports from Amhara 
regional health bureau report, 2011/2012 Amhara 
region is one of the malarious regions of Ethiopia. The 
prevalence among sex was male greater than women 
and the dominant species of malaria in the region are 
P.falciparum and P.vivax. Due to these problems the 
researcher motivated to investigate the malaria cases 
in Addis Zemen, South Gondar, Ethiopia using the 
stochastic time series models for forecasting these 
malaria cases, and to give indications for what factors 
should be done more activities to solve the problem. 
1.2. Statement Of The Problem 

In Ethiopia, malaria is one of the most public 
health problems, with more than three-quarters of the 
landmass of the country and an estimated 68% of the 
total population is considered at risk of malaria 
infections (Adhanom et al, 2006). Ethiopia is 
implementing a range of malaria control interventions 
that aim to improving access and equity to preventive 
as well as curative health services, which include 
prompt and effective malaria treatment, selective 
vector control using insecticide treated nets and 
indoor residual spraying. Effective and timely 
prevention and control of malaria epidemics is also 

part of the main strategies. The need for developing 
comprehensive and high impact communication 
strategies for malaria control is imperative (ACIPH, 
2009). 

The occurrence of malaria epidemics has been 
more frequent and wide-spread in recent years. 
Although rainfall-associated breeding of the major 
vector Anopheles arabiensis is the main cause of 
seasonal malaria epidemics in Ethiopia, abnormal 
climatic changes have often given rise to major 
epidemics in the past. These epidemics have usually 
inflicted high incidence of mortality upon the non-
immune population. Most of the epidemic-affected 
areas are highlands or highland fringe areas where the 
population lacked immunity to malaria and thus all 
age groups are frequently affected. The somewhat 
large-scale periodic epidemics have been associated 
with increase in temperature, abnormally high rainfall 
as well as unusually prolonged dry seasons or in other 
words malaria cases are depending on the 
environmental, seasonal, climatic and others different 
socioeconomic factors. Reducing malaria incidence at 
any level will need identifications of seasonal, 
environmental and climatic variation of malaria 
incidence. There is at present a need for a 
strengthened epidemic management at all levels due 
to increasing problem in early detection, prevention 
and control. Therefore, to prevent and control the 
malaria diseases for the future it is better to forecast 
the coming malaria cases, and this study will address 
the future malaria cases by forecasting and identify 
the peaks on and off period using a stochastic model. 
1.3. Objective Of The Study 
1.3.1. General Objective Of The Study 

The main objective of this study is developing 
stochastic model for forecasting malaria cases in 
Addis Zemen, South Gondar, Ethiopia. 
1.3.2. Specific Objective Of The Study 

 Compare the models to find the best fit 
model using time series model selection techniques 
and forecasting future malaria cases. 

 To identify the months in which the malaria 
cases mostly occur. 

 To compare the forecasting power of the 
models from the malaria cases data. 

 To see the influence of past malaria cases to 
the present time. 
1.4. Significance Of The Study 

This study will have the following significances: 
 The study will provide information for the 

Government/concerned bodies about the malaria 
cases. 

 The study will provide background 
information to those who want to conduct further 
detailed studies in development of stochastic time 
series models. 
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 The findings will also help for peoples who 
are living in Adiss Zemen by providing information 
about malaria. 
 
2. Data And Methodology 

A retrospective study was conducted at Addis 
Zemen health center from January 2007 to June 2016 
for malaria cases. Addis Zemen is found in South 
Gondar administration zone in the Amhara region of 
northwestern Ethiopia and is around 637 km far from 
the capital city of Ethiopia. Addis Zemen which has a 
total population of 20,412 is the capital town of Libo 
Kemkem wereda (district), which has average 
populations of 198,374. It has an average altitude of 
less than 2,000 m above sea level Addis Zemen has a 
latitude and longitude of 12°07′N 37°47′E. The health 
center serves not only Libo Kemkem district but also 
the nearby districts like Fogera which has estimated 
populations of 226,595. This district is malarious and 
the majority of the population depends on subsistence 
farming. Malaria is the most prevalent seasonal 
disease in the area, accounted as second of all the 
reported diseases in the health center and October to 
December is the peak malaria transmission season in 
the area. Both P.vivax and P.falciparum exist in the 
area with P.falciparum prevailing all year. 

A time series is a series or sequence of data 
points measured typically at successive times. These 
data points are commonly equally spaced in time 
(Chatfield, 2004). 

The first task in any time series analysis is to 
check the data is a time series data or not, to do this 
task there are many methods to check the data are 
random or not. Among these tests, turning point test, 
phase length test, rank test and difference sign test are 
the most common tests. Here the researcher applies 
only the turning point test and this test is described as 
the test against systematic oscillation. 

After checking the nature of the data i.e. whether 
the data is time series or not the next step is checking 
the stationarity of the series. In the event that the 
series exhibits nonstationarity, appropriate 
transformations, will be applied to make the series 
stationary. Alternatively, other approaches such as 
smoothing, in the form of for example exponential 
smoothing may also be used to transform the data. 
2.1. Time Series Models 

Family of ARIMA and family of ARCH-
GARCH models were used in this paper. 

After describing various time series models, the 
next step is model identification here, once the model 
is tentatively established, the parameters and the 
corresponding standard errors can be estimated using 
statistical techniques, such as Maximum Likelihood 
(ML), least square and Yule-Walker estimation 
method, the other step is model checking which, 

includes the analysis of the residuals as well as model 
comparisons. If the model fits well, the standardized 
residuals should behave as an independent and 
identically distributed sequence with mean zero and 
variance one (Cryer and Chan, 2008). A standardized 
residuals plot or a Q-Q plot can help in identifying the 
normality (Stoffer and Dhumway, 2010) and the 
formal test Box-Pierce-Ljung test were used to check 
the model and finally forecasting were applied using 
different forecasting techniques like exponential 
smoothing(simple exponential, double exponential 
and triple exponential). 
 
3. Results 

This chapter presents results and discussions of 
developing stochastic model for forecasting malaria 
cases using the data which is obtained from Addis-
Zemen health center. Data management and analysis 
was done in R-Gui Software (version 3.3.1) and R-
Studio. 

As explained on section 3.2.2.1., before 
analyzing the data the first task is to check whether 
the data is a time series or not. Thus Table4.1.1 below 
shows that the series is not random which rejects the 
null hypothesis that the series is random; this indicates 
that the data is a time series data, implies that it is 
possible to apply time series analysis for these malaria 
cases data. 

 
Table 4.1.1 Turning point test for randomness of 
malaria cases data 
Turning point test 
Statistic Number of observations p-value 
-3.508 114 0.0004514 

 
3.1. Descriptive Data Analysis 

The monthly reported malaria cases that were 
used for this research are covering the period from 
January 2007 to June 2016, which consists of 114 
monthly malaria cases registered in Addis Zemen 
health center, most of the malaria cases were clinical 
diagnosed and most of the cases occur on males above 
age group 15 and plasmodium falciparem is the most 
dominant as compared to plasmodium vivax and mix. 

There was a relatively upward and downward 
trend (figure 4.1) within the given period and shows 
roughly seasonal fluctuations with the highest peak 
observed in October 2011 and the lowest peak 
observed in February 2016. 

This figure 4.1 shows somewhat upward and 
downward trend even if there is no clear showing and 
clearly there is seasonal variation. In order to observe 
clearly it is better to decompose into three different 
parts i.e. into trend, seasonal and random part as 
shown in figure 4.2. 
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Figure 4.1 original malaria cases data plot. 

 

The plot (figure 4.2) shows the original time 
series (top), the estimated trend component (second 
from top), the estimated seasonal component (third 
from top), and the estimated random component 
(bottom). Here clearly observe that the estimated trend 
component shows an increasing trend from about 
2007 to about 2011, followed by a steady decrease 
from 2012 to 2016. 
3.2. Exploratory Data Analysis 

This section is focused to fitting the ARIMA and 
GARCH family of models to Addis Zemen health 
center malaria cases data. The original data set consist 
of 114 monthly malaria cases and spanning from 
January 2007 to June 2016. 

 
Figure 4.2: decomposition of time series data into trend, seasonal and random. 

 
3.3. ARIMA Models 

ARIMA model needs stationarity; therefore, the 
first step here is conduct stationarity tests to check if 
data is stationary, otherwise, it is difficult to forecast 
or predict the malaria cases. Here the ADF test 
(p>0.05) show the original time series is not 
stationary. In order to obtain a stationary time series, 
the researcher uses three steps to achieve. Firstly, 
first-order non-seasonal difference (d = 1) is 

computed, after that, ACF and PACF graphs indicate 
a high seasonal behavior with a circle of 12 (so s = 
12), secondly, to remove monthly seasonality, first-
order seasonal difference (D = 1) with a circle of 12 is 
computed, finally, to do ADF test, the result (as 
shown in Tbale4.2.1) is statistically significant 
(p<0.01), which confirms that the transformed time 
series is stationary. 
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Table 4.2.1: Augmented Dickey Fuller Test for stationarity 
Variables Augmented Dickey Fuller Test p-value 
Original malaria cases -3.9473 0.1429 
First differenced malaria cases -15.353 0.01 

 
3.3.1. Model Selection 

After the series has been checked it’s 
stationarity, the next step is fitting appropriate model. 
To fit the appropriate model as the researcher 
discussed on (3.5.2.) model selection is the most 
important technique that used to employ 
computationally simple techniques to narrow down 
the range of parsimonious models and this will lead to 
selecting the appropriate model that adequately 
describes the data. 

First, the researcher should construct a time plot 
of the data and inspect the graph for any anomalies 
and to determine how many AR or MA terms are 
needed to correct any autocorrelation that remains in 
the differenced series (as shown figure 4.3.1). Thus, 
the numbers of AR and/or MA terms that are needed 
to fit a model are tentatively identified by looking the 
ACF and PACF plots of the series. 

If the PACF of the series shows a cut off at lag k, 
it means that the series is not enough differenced and 

then by adding enough autoregressive terms can 
remove any autocorrelation left from a stationarized 
series. The lag at which the PACF cut off tells us how 
many AR terms are needed. For the same case for 
PACF, if the ACF cut off at lag k, this indicates that 
exactly k MA terms that are needed to remove the 
remaining autocorrelation from the series. Hence, by 
visual inspection of the Figure 4.3. below, the number 
of significant correlation lags from the ACF plot are 
almost 3 and the number of significant correlation lags 
from the PACF plot looks to be 2. Thus, the first 
tentatively model was ARIMA (2, 1, 3) where p=2 & 
q=3 are the order of autoregressive and moving 
average model respectively, and d=1 is the order of 
integration (non seasonal differencing) and for the 
seasonal effect the first tentative model was seasonal 
ARIMA or SARIMA (2,1,3)(2,1,2)12 where P=2 and 
Q =2 are the order of seasonal autoregressive and 
moving average terms, and D=1 the order of seasonal 
differencing. 

 

 
Figure 4.3. Addis-Zemen malaria cases data ACF and PACF plot 

 
Based on the distribution characteristics, the 

researcher conducted seventeen possible models, 
SARIMA(1,1,1)(1,1,1), SARIMA(1,1,2)(1,1,1), 
SARIMA(1,1,2)(2,1,1), SARIMA(1,1,2)(2,1,2), 
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SARIMA(1, 1, 1)(2,1,2), SARIMA(1,1,1)(2,1,1), 
SARIMA(1,1,1)(1,1,2), SARIMA(2,1,1)(1,1,2), 
SARIMA(2,1,1)(1,1,1), SARIMA(2,1,1)(2,1,1), 
SARIMA(2,1,1)(2,1,2), SARIMA(1,1,3)(1,1,1), 
SARIMA(1,1,3)(2,1,2), SARIMA(2,1,2)(2,1,2), 
SARIMA(2,1,3)(2,1,1), SARIMA(2,1,3)(1,1,2) and 
SARIMA(2,1,3)(2,1,2) as shown in Table 4.3.1. Of all 
the models tested, the chosen model is normally the 
one with the least value of, AIC and satisfying also 
the parsimony principle which favors the least 
parameter possible in the model. Thus, SARIMA (1, 
1, 1)(2,1,1)12 was the one to satisfy the previous 
conditions with least value of AIC. 

 
Table4.3.1. Comparison of tested ARIMA models 

Model AIC 
SARIMA(1, 1,1)(1,1,1) 1114.58 
SARIMA(1,1,2)(1,1,1) 1118.53 
SARIMA(1,1,2)(2,1,1) 1114.08 
SARIMA(1, 1,2)(2,1,2) 1122.20 
SARIMA(1,1,1)(2,1,2) 1113.99 
Sarima(1,1,1)(2,1,1) 1112.03 
SARIMA(1,1,1)(1,1,2) 1112.76 
SARIMA(2,1,1)(1,1,2) 1135.37 
SARIMA(2,1,1)(1,1,1) 1114.65 
SARIMA(2,1,1)(2,1,1) 1112.28 
SARIMA(2,1,1)(2,1,2) 1140.58 
SARIMA(1,1,3)(1,1,1) 1116.25 
SARIMA(1,1,3)(2,1,2) 1120.19 
SARIMA(2,1,2)(2,1,2) 1120.42 
SARIMA(2,1,3)(2,1,1) 1124.42 
SARIMA(2,1,3)(1,1,2) 1118.78 
SARIMA(2,1,3)(2,1,2) 1128.54 

 
From this the general model can be written as: p=1, 

q=1, d=1 and P=2, D=1, Q=1, s=12 
(1-Ф1B) ( 1- Β1B

12 – Β2B
24) (1-B)(1-B)Xt = C + (1- 

Ψ1B) ( 1- �1B
12)	�t    (4.1) 

 

 

3.3.2. Model Estimation 
This is the process of estimating the model 

parameters after selecting an appropriate model. The 
parameter estimates should be significant, with each 
providing a substantial contribution to the model for 
the most accurate forecasts. As the researcher 
discussed on 3.5.3, there are a number of ways to 
estimate autoregressive and moving averages 
parameters in ARMA models such as Maximum 
Likelihood and Least square estimates. 

From the derived models, using the method of 
maximum likelihood the estimated parameters of each 
model is summarized in the following tables: 

 

Table 4.3.2 Maximum Likelihood Estimates for 
parameters 

Coefficients Estimates p-value 
ar1 -0.4941 <0.01 
ma1 -0.9999 <0.01 
sar1 0.9410 <0.01 
sar2 -0.1941 <0.01 
sma1 -0.9780 <0.01 
Intercept 772.32 <0.01 

As described on the above equation 4.1 the 
corresponding parameter values including the 
intercept term are C = 772.32, Ф1= -0.4941, Β1 = 
0.9410, Β2 = -0.1941, Ψ1 =-0.9999, �1 = -0.978, and 
the final fitted model was 

(1+0.49B)(1-0.94B12+0.19B24)(1-B)(1-B)Xt= 
772.32+(1+0.9999B)(1+0.98B12)	�t    (4.2) 
 
3.3.3. Diagnostic Checking Of The Seasonal 
ARIMA (1, 1, 1)(2, 1, 1)12 Model 

Model diagnostics is concerned with testing the 
goodness of fit of a model and suggesting appropriate 
recommendations if found to be poor and the goal of 
any statistical model development is to obtain which 
best describes the best model of the data; which 
means, having identified the final preliminary model 
the next step and most important in statistical analysis 
is to diagnose the fit of the model. The researcher then 
conduct the residual analysis by observing the ACF, 
PACF and conducting the Box-Pierce-Ljung test to 
goodness of fit to check if the residuals conform to the 
normal distribution. 

The residual plot, ACF and PACF do not have 
any significant lag, indicating 
SARIMA(1,1,1)(2,1,1)12 is a good model to represent 
the series. 

In addition, Box-Pierce test also provides a 
different way to double check the model.  

Basically, Box-Pierce is a test of autocorrelation 
in which it verifies whether the autocorrelations of a 
time series are different from 0. In other words, if the 
result do not rejects the hypothesis, this means the 
data is not independent and uncorrelated; which 
indicates, there still remains serial correlation in the 
series and the model needs modification. 

 
Table 4.3.3. Box-Pierce Test for SARIMA (1, 1, 
1)(2,1,1)12 model 
Box-Pierce Test 
X2 statistic Degree of freedom p-value 
19.332 20 0.5003 

Here, the output showed that p-value greater than 
0.05, so the researcher cannot reject the hypothesis 
that the autocorrelation is 0 or the model fits the data 
well. Therefore, the selected model is an appropriate 
one for forecasting of malaria cases. 
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Generally, the time plot of the residuals look 
randomly distributed around zero and exhibits no 
clear pattern. The pattern of residuals together with 
the Box-Pierce statistics give overwhelming evidence 
that the residuals are independent implying the model 
fits the data well. 

After identified and estimated a model that fits 
the data, the next step is to use the model to forecast 
future values of the series, which ideally is the 
principal goal of time series and the objective of this 
paper. 

 
Figure 4.4. plot of residual, ACF and PACF for SARIMA (1,1,1)(2,1,1)12 model 
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3.3.4. Forecasting With SARIMA (1,1,1)(2,1,1)12 
Model 

The main objective of this paper is to develop a 
stochastic model for forecasting future malaria cases 
before they are realized, and this section focuses on it. 
The forecasting techniques discussed in section 
(3.5.5.1) are employed as procedures for obtaining the 
forecast. The triple exponential (Holt-Winters) 
forecasting procedure that was discussed in section 
(3.5.5.1.3) is used since it has the capacity to cope 
with both trend and seasonality. 

SARIMA (1, 1, 1)(2, 1, 1)12 model given above 
was used to generate the forecast for given in the table 
below (4.3.4) for the years 2016(from July to 
December), 2017 and 2018. 

The lower and upper 95% confidence limits are 
used to assess how good the forecasts are. This 
implies that the forecasts are expected to lie within the 
confidence limits with 95% confidence. As expected, 
the further into the future a forecast is the less precise 
it is, hence the wider the confidence limits indicating 

that the model has low forecasting power although it 
fits the data well. 
3.4. Arch-Garch Modeling 

Although PACF and ACF of residuals has no 
significant lags, and the time series plot of residuals 
shows some cluster of volatility. It is important to 
remember that ARIMA is a method to linearly model 
the data and the forecast width remains constant 
because the model does not reflect recent changes or 
incorporate new information. In other words, it 
provides best linear forecast for the series, and thus 
plays little role in forecasting model nonlinearly. In 
order to model volatility, ARCH/GARCH method 
comes into play. Now consider applying the ARCH-
GARCH modeling to malaria cases data. But before 
applying the ARCH-GARCH modeling a formal test 
for heteroscedasticity was carried out in order to 
establish the presence of ARCH effect in the data. The 
lagrange multiplier and the Ljung Box Q-test (given in 
section 3.5) were used to check the validity of the 
ARCH effects in the data. 

 
Table 4.3.4 thirty month’s forecast of malaria cases obtained from the SARIMA (1, 1, 1)(2, 1, 1)12 model. 

Time point Forecast Lower 95% confidence limit Higher 95% confidence limit Interval 
Jul-2016 860 744.12 996.11 251.99 
Aug-2016 824 707.9 963.21 255.31 
Sep-2016 931 811.55 1072.61 261.06 
Oct-2016 1139 1015.66 1282.98 267.32 
Nov-2016 864 738.62 1012.69 274.07 
Dec-2016 258 129.12 410.46 281.34 
Jan-2017 270 126.52 425.63 299.11 
Feb-2017 238 89.64 396.99 307.35 
Mar-2017 281 119.23 445.33 326.1 
Apr-2017 238 71.21 406.52 335.31 
May-2017 400 229.22 574.21 344.99 
Jun-2017 888 710.24 1065.35 355.11 
Jul-2017 804 571.45 1041.02 469.57 
Aug-2017 769 531.49 1009.67 478.18 
Sep-2017 877 633.49 1120.72 487.23 
Oct-2017 1082 835.99 1332.69 496.7 
Nov-2017 809 557.38 1063.96 506.58 
Dec-2017 205 -53.63 463.25 516.88 
Jan-2018 213 -47.69 479.89 527.58 
Feb-2018 183 -86.01 452.68 538.69 
Mar-2018 225 -47.79 502.39 550.18 
Apr-2018 184 -97.15 464.91 562.06 
May-2018 344 59.57 633.9 574.33 
Jun-2018 831 539.34 1126.29 586.95 
Jul-2018 749 411.05 1091.46 680.41 
Aug-2018 716 369.49 1061.7 692.21 
Sep-2018 821 469.94 1174.31 704.37 
Oct-2018 1027 670.91 1387.81 716.9 
Nov-2018 754 390.81 1120.58 729.77 
Dec-2018 149 -221.67 521.32 742.99 
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Table 4.4.1. Lagrange Multiplier test for ARCH effect 
ARCH LM-test 
X2 statistic Degree of freedom p-value 
31.828 12 0.00171 

The null hypothesis of homoscedasticity, the 
opposite of heteroscedasticity was tested and Table 
(4.4.1) gives the results for the Lagrange Multiplier 
(LM) test for heteroscedasticity. The p-value shows 
that an evidence for the presence of heteroscedasticity 
in the data, hence ARCH-GARCH modeling was 
deemed appropriate. According to Engle, (1982) any 

autocorrelations in the series have to be removed 
before an ARCH-GARCH model is constructed. This 
was done by regressing the squares of the series Xt on 
its past squared values��

�, ����
� ,... with the number of 

lags determined by the form of the ACF and the 
PACF. The ACF and PACF suggested an AR (2) and 
MA (1) process respectively (as shown in figure 4.5 
and 4.6 below), thus an AR (2) and MA (1) models 
were used in all autocorrelations being removed. 
Hence consider fitting the ARCH-GARCH models to 
the data. 

 
Figure 4.5. ACF squared plots for Malaria cases data 

 
Figure 4.6. PACF squared plots for Malaria cases data 

 
3.4.1. ARCH-GARCH Model Selection 

Like model selection techniques in ARIMA 
modeling AIC and BIC are used and additionally R2 
and MSE were used to perform to determine the best 
ARCH-GARCH models. 

As the researcher discussed on section (3.6.2.1) 
the GARCH model with AR errors is given by 

Xt = �t	�t     (4.3) 
��
� = 	�� +	∑ ��	����

� + ∑ ��	����
��

���
�
���   (4.4) 

The order of the parameters are determined by 
studying the ACF and the PACF in the same way as 
was done in the ARIMA modeling. Figure (4.5 above) 
shows the order of parameters and Table 4.4.2 gives 
the suggested models with their respective fit 
statistics. 

Therefore in table (4.4.2), the smaller the AIC, 
BIC and the SIC the better the model that is GARCH 
(1,1) was judged to be the most appropriate according 
to the criteria above. 
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Table 4.4.2 comparison of tested GARCH models 
Model AIC BIC SIC 
GARCH(1,0) 1.225 1.234 1.225 
Garch(1,1) 1.125 1.137 1.125 
GARCH(2,0) 1.189 1.200 1.189 
GARCH(2,1) 1.127 1.141 1.127 

 
3.4.2. Estimating Parameters Of The GARCH(1,1) 
From the derived models, using the method of 
maximum likelihood the estimated parameters of 
GARCH (1,1) model is summarized in the Table4.4.3: 

 
Table 4.4.3 maximum likelihood estimates of 

GARCH (1,1) model 
Coefficients Estimates Standard Errors 

�� 0.0108 0.0028 

�� 0.1531 0.0264 

�� 0.8060 0.0334 
 

Table 4.4.3 suggests that the final model can be 
written as: 

Xt = �t	�t     (4.5) 
and 
��
� =	�� +	������

� + ������
�    (4.6) 

��
� = 	0.0108 + 	0.1531����

� + 0.8060����
�  

 (4.7) 
Having estimated our parameters, the next step is 

to check how well the model fits the data and this can 
be explained in section 4.5.3 below. 
3.4.3. Diagnostic Checking Of The GARCH (1,1) 
Model 

One of the assumptions of GARCH models is 
that, for a good model, the residuals must follow a 
white noise process. If the model fits the data well, the 
residuals are expected to be random, independent and 
identically distributed following the normal 
distribution. The time plot of the residuals given in 
figure (4.7) is used to check whether the residuals are 
random. 

 
Figure 4.7 plots of residuals from GARCH (1,1) model 

 
Figure 4.8. Scatter plot of the residuals 

 
The normality check is also done by analyzing the histogram of residuals and normal probability plot. Figure 

(4.8) gives the histogram of the residuals from the GARCH (1,1) model. 
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Figure 4.9. Histogram of the residuals from GARCH (1,1) 

 
The histogram shows almost a symmetric bell shaped distribution which is indicative of the residuals following 

a normal distribution. 
 
3.4.4. Forecasting With GARCH (1,1) Model 

After successfully identifying and checking a 
potential model that describes well the historical data 
of malaria cases and a model that fits the data well is 

bound to give good forecasts. Using this selected 
model GARCH (1,1), forecasting was made for the 
next 30 months (July 2016–December 2018). The 
results are shown in table4.4.4 below. 

 
Table 4.4.4 thirty month’s forecast of malaria cases obtained from the GARCH (1,1) model. 

Time Point Forecast Lower 95% confidence limit Higher 95% confidence limit Interval 
Jul-2016 861 705.07 986.1 281.03 
Aug-2016 825 666.74 952.45 285.71 
Sep-2016 931 770.47 1061.34 290.87 
Oct-2016 1138 974.53 1271.01 296.48 
Nov-2016 864 700.52 1000.09 299.57 
Dec-2016 258 95.22 397.35 302.13 
Jan-2017 270 106.1 412.25 306.15 
Feb-2017 237 73.71 383.33 309.62 
Mar-2017 281 117.88 431.45 313.57 
Apr-2017 238 74.56 392.49 317.93 
May-2017 401 241.01 559.75 318.74 
Jun-2017 887 722.530 1050.5 327.97 
Jul-2017 806 587.76 1022.44 434.68 
Aug-2017 770 547.85 990.38 442.53 
Sep-2017 876 650.03 1100.81 450.78 
Oct-2017 1083 852.58 1312 459.42 
Nov-2017 809 574.09 1042.55 468.46 
Dec-2017 203 -36.64 441.23 477.87 
Jan-2018 214 -30.15 457.52 487.67 
Feb-2018 182 -67.88 429.95 497.83 
Mar-2018 226 -29 479.37 508.37 
Apr-2018 183 -77.59 441.67 519.26 
May-2018 345 79.64 610.15 530.51 
Jun-2018 832 559.98 1102.08 542.1 
Jul-2018 751 434.98 1064.25 629.27 
Aug-2018 715 393.58 1033.68 640.1 
Sep-2018 820 494.31 1145.57 651.26 
Oct-2018 1029 695.42 1358.19 662.77 
Nov-2018 755 415.54 1090.13 674.59 
Dec-2018 149 -196.56 490.19 686.75 
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4. Discussions 
Malaria is one of the most common infectious 

diseases in the world and one of the greatest global 
public health problems. In Ethiopia, it is one of the 
most important public health problems, with more 
than three-quarters of the landmass of the country and 
an estimated 68% of the total population is considered 
at risk of malaria infections (Adhanom et al. 2006). 
Based on the results from figure4.1 the number of 
malaria cases has an upward and downward trend, 
which indicates there is a challenge for malaria 
diseases control and prevention. Therefore, it is highly 
cost effective to detect a malaria epidemic in its early 
stages in order to optimize disease control and 
intervention in Addis-Zemen. However, up to now, 
there are no related articles for forecasting of monthly 
malaria cases in Addis-Zemen, South Gondar, 
Ethiopia. For early detection, prevent and control; 
forecasting the coming malaria cases are very 
important and this study aims to develop an 
appropriate model for forecasting malaria cases in 
Addis-Zemen. 

According to U. Helfenstein, 1991 ARIMA 
models are useful in modeling the temporal 
dependence structure of a time series and a useful tool 
in epidemiological surveillance as they are 
particularly useful for diseases which show a seasonal 
pattern. In this study, the monthly malaria cases data 
from January 2007 to June 2016 was collected in 
Addis-Zemen, South Gondar, Ethiopia. 

Family of ARIMA models are good models for 
modeling time series data, and it needs the data to be 
stationary, whereas family of ARCH-GARCH models 
deal with non-stationary of the time series data. The 
goal of this paper was to develop a stochastic model 
for forecasting malaria cases using the data which was 
obtained from Addis Zemen, South Gondar, Ethiopia. 
For the development of the model different stages 
have been discussed, like model formulation, 
identification, estimation and diagnostic checking for 
both the family of ARIMA and ARCH-GARCH 
models. The plots of autocorrelation function 
(ACF)(for identifying significant MA terms) and 
partial autocorrelation function(PACF) (for 
identifying significant AR terms) were applied for 
identifying the model. By using such techniques 
possible suggested family of ARIMA models, 
SARIMA(1,1,1)(1,1,1)12, SARIMA(1,1,2)(1,1,1)12, 
SARIMA(1,1,2)(2,1,1)12, SARIMA(1,1,2)(2,1,2)12, 
SARIMA(1,1,1)(2,1,2)12, SARIMA(1,1,1)(2,1,1)12, 
SARIMA(1,1,1)(1,1,2)12, SARIMA(2,1,1)(1,1,2)12, 
SARIMA(2,1,1)(1,1,1)12, SARIMA(2,1,1)(2,1,1)12, 
SARIMA(2,1,1)(2,1,2)12, SARIMA(1,1,3)(1,1,1)12, 
SARIMA(1,1,3)(2,1,2)12, SARIMA(2,1,2)(2,1,2)12, 
SARIMA(2,1,3)(2,1,1)12, SARIMA(2,1,3)(1,1,2)12 
and SARIMA(2,1,3)(2,1,2)12 were developed and 

criteria based such as SBC, SIC and AIC were applied 
to find out the best fitting model. 

As explained on section 3.5.3 and 3.6.3.2 the 
parameters were estimated using the least square and 
maximum likelihood methods under the normality 
assumption. Plots of residuals from the estimated 
models and significant test via the p-values are used to 
validate the goodness of fit of the model. After the 
parameters estimated diagnostic checking was done 
for both the family of models and forecasting methods 
was outlined for both families of models. As the 
malaria cases data pattern showed both trend and 
seasonal variation Holt-Winter forecasting methods 
were applied to forecast the future 30 months of 
malaria cases from July 2016 to December 2018. 

Every analysis such as plots and tables of the 
results analyzed using R-software version 3.3.1 and 
R-studio. The analysis showed that malaria cases data 
changing mean and unstable variance with upward 
and downward trend and seasonal variation. This 
prompted us to fit ARIMA models with both trend 
and seasonal terms in order to capture these 
variations, hence the best fitting ARIMA model is 
SARIMA (1, 1, 1)(2,1,1)12. The Ljung–Box Q test 
given in Table (4.4.1) showed that a significant p-
value. This is an indication of ARCH effect in the 
malaria cases series. Clear evidence to reject the null 
hypothesis of no ARCH effect was established from 
the fitted models for the malaria cases series. Hence, it 
indicates that GARCH modeling is necessary from the 
malaria cases series and ARCH-GARCH models were 
established to be plausible as they accommodate the 
time-varying variance nature of the data, Hence the 
best fitting ARCH-GARCH model is GARCH (1, 1). 

Based on the analysis of the ARIMA (Table 
4.3.1) and ARCH-GARCH (Table 4.4.2) family of 
models the criteria (AIC and BIC) has shown that the 
ARCH-GARCH modelling is superior than the 
seasonal ARIMA modeling because of GARCH 
model has smaller AIC and BIC values which 
explains the variation in the data better than the 
seasonal ARIMA model. 

The two families of models were used to 
compute 30 months (from July 2016 to December 
2018) forecasts for the malaria cases series. The 
forecasts from the seasonal ARIMA and GARCH 
models are given in Tables (4.3.4) and (4.4.4) 
respectively together with their respective 95% 
confidence intervals (CI) for each forecast value. The 
narrower the confidence interval the better the 
forecasts, (Granger and Newbold, 1986 and 
Granger,1989). The CI’s from the ARIMA model are 
narrower than the CI’s from the GARCH model in the 
early months of the forecasting period and became 
wider the further into the future a forecast is. This 
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probably indicates that the ARIMA model is better for 
short term forecasting than the GARCH model. 

Several studies have used ARIMA model to fit 
and predict changing trends in infectious disease like 
malaria. IJSTR; 2015 used ARIMA for Times Series 
Analysis Of Malaria Cases In Ejisu- Juaben 
Municipality, Ashanti Region of Ghana. Varun et al, 
2014 used ARIMA models for predicting monthly 
malaria slide positive using climatic factors including; 
mean monthly rainfall, mean maximum temperature 
and relative humidity, as risk factors in Delhi, India. 
Ezekie et al, (2014) used SARIMA models to model 
and forecast malaria mortality rate in Nigeria. Lin et 
al., (2009) have used ARIMA models for time series 
analysis to investigate the relationship between the 
falciparum malaria in the endemic provinces and the 
imported malaria in the non-endemic provinces of 
China. Asamoah et al. (2008) in their work used 
family of ARIMA models for total OPD reported 
cases, for Admission reported cases, for female OPD 
reported cases and for OPD pregnant cases in malaria 
reported cases. Wangdi et al, 2010 carried out an 
ARIMA model to develop prediction and forecasting 
models for malaria incidence in seven of the twenty 
malaria endemic districts in Bhutan. Generally this 
study agrees with all the above studies in cases of 
ARIMA models and differs in ARCH- GARCH 
family of models. 
  
5. Conclusions 

The ability to forecast future malaria cases will 
facilitate timely planning and implementation of 
control, prevention and case management 
interventions through optimal distribution of the 
available resources and this paper aims for developing 
of stochastic time series model for forecasting malaria 
cases in Addis Zemen. The best fitting model was 
selected based on how well the model captures the 
stochastic variation in the data. Based on minimum 
Akaike Information Criteria (AIC) and Bayesian 
Information Criteria (BIC) values, it was observed 
that the best fit ARIMA model was 
SARIMA(1,1,1)(2,1,1)12 and the best fit GARCH 
model was GARCH(1,1). Using both the selected 
models thirty months (from July 2016 to December 
2018) malaria cases of Addis-Zemen were forecasted. 
Based on the forecasted values it is observed that the 
forecasted malaria cases are close to the actual malaria 
cases. From the results SARIMA(1,1,1)(2,1,1)12 and 
GARCH(1,1) the further into the future a forecast is 
the wider the confidence limits indicating that the 
model has low forecasting power although it fits the 
data well but while observing the two models 
GARCH(1,1) has narrower confidence limits as 
compared to SARIMA(1,1,1)(2,1,1)12 and hence 

GARCH(1,1) superior to forecast malaria cases in 
Addis-Zemen. 

Finally, the general recommendation goes 
directly to Addis-Zemen health center and the 
concerned bodies for more control, prevention and 
intervention, because this study really shows that the 
forecasted malaria cases is likely to continue close to 
the actual value over time, which leads obviously to 
the serious number of malaria cases if nothing is done 
accordingly. Also, the researcher suggests that further 
studies can be considered as extensions and 
improvements to the GARCH model. These are the 
integrated GARCH (IGARCH), the exponential 
GARCH (EGARCH) and the stochastic volatility 
models and also a wider coverage of the study area is 
suggested for better results. 
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