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Abstract: Traditional research methods adopt normal distributions as a pattern of the stock market behavior. This paper utilized 
POT model of extreme value theory,  and GPD distribution which can give more accurate description on tail distribution of 
financial returns/losses. EVT and POT techniques are applied to a series of daily losses of the RTS index (RTSI) over a 15-year  
period (1995-2009), RTSI is total index of 50 largest Russian stocks. The focus is on the use of proposed methods to asses tail 
related risk providing a modeling tool for  modern risk management. [New York Science Journal 2010; 3(6):102-107]. 
(ISSN 1554 – 0200). 
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1. Introduction
The  study  of  extreme  events  has  attracted  the 

special attention in connection with the global crisis 
of  2008–2009.  The Russian stock market  has  been 
dramatic volatile over 15-year period (from 38 points 
on 05.10.1998 to around 2487 points on 19.05.2008 
and  back  to  about  498  points  on  23.01.2009).  In 
irregular  financial  market,  it  is  necessary to  set  up 
models and systems  to evaluate and control risks. In 
this  paper  we  focus  on  the  extreme  behavior  of 
financial  series,  unraveling  the  volatilities  in  the 
financial  markets  has  always  been  an  decipherable 
mystery. One of the  purposes  of  this chapter  is  to 
test  the  validity  of  a  popular  risk management 
instrument: Value-at-Risk estimator in Russian equity 
market, which is a widely adopted technique in the 
developed countries for quantifying  market risk. We 
have to deal with extreme events when a risk takes 
values from the tails of its probability distribution. In 
the  field  of  market  risk  management  it  is  a  great 
concern the day by day determination of the Value-
at-Risk  (VaR)  [1].  VaR  is  a  high  quantile  of  the 
distribution  of  losses  (for  example  the  95th 
percentile):  VaRp=F-1(p), where  F  is  the  loss 
cumulative  distribution  function  and  p  the  selected 
probability  level.  Traditional  procedure  calculating 
VaR  based  on  normal  distribution  has  limitations. 
VaR  model  reflects  that  it  is  to  asses  the  possible 
maximum loss  under  regular  market  environments. 
Risk  managers  have  become  more  concerned  with 
events  occurring  under  extreme  market  conditions 
[2,3].  This  paper  argues  that  extreme  value  theory 
(EVT) and  POT (Peaks  Over  Threshold)   model 
provide  tools  for  estimating  measures  of  tail  risk 
under  irregular  volatility  in  market.  We consider  a 
fully  parametric  model,  based  on  the  GPD 

(Generalized  Pareto  Distribution),  which  can  be 
easily  estimated  by  maximum  likelihood  method 
[4,5]. 

2.  Theoretical  framework  of  the  extreme  value 
approach

Extreme  value  theory  is  a  powerful  and  fairly 
robust  framework  to  study  the  tail  behavior  of  a 
distribution.  There  have been  a number  of  extreme 
value studies in the finance literature in recent years: 
quantile  estimation  using  the  extreme  value  theory 
[6];  the  estimation  of  the  tails  of  loss  severity 
distributions and the estimation of the quantile risk 
measures  for  financial  time  series  using  extreme 
value theory [7,8]; overview the extreme value theory 
as  a  risk  management  tool  [9];  potentials  and 
limitations  of  the extreme value  theory [10,11];  an 
extensive overview of  the extreme value theory for 
risk managers [12]; the estimation of tail-related risk 
measures  for  heteroskedastic  financial  time  series 
[13];  comprehensive  source  of  the  extreme  value 
theory to the finance and insurance literature [14,15].

POT model and Generalized Pareto distribution
We use of Extreme Value Theory to model the tail 

returns  and then  show how our EVT estimates  are 
incorporated  into  the  risk  measures.  Two  main 
approaches  are  proposed  in  the  literature  [16]:  the 
Block Maxima (BM) and the Peaks-over-Threshold 
models  (POT).  The  group  of  models  for  threshold 
exceedances are more modern and powerful than the 
BM models [16], we focus on this approach and its 
application to the losses on the RTSI stock index. We 
apply  the  parametric  POT  method  based  on  the 
Generalized Pareto distribution (GPD) to describe tail 
behaviour.  Begin  by  assuming  that  market  losses 
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represent  the realizations  x of a random variable  X 
over an enough high threshold u.  More  particularly, 
if  X  has  the  cumulative distribution  function  F(x), 
we  are interested  in  the  cumulative distribution 
function  Fu(x)  of  exceedances  of  X  over  a  high 
threshold  u, i.e. the  conditional  excess  distribution 
function is defined as:

( ) ( )
1 ( )( ) ( | ) F x u F u

u F uF x P X u x X u + −
−= − ≤ > =    (1)

As to the sufficient large u, EVT provides us with 
a powerful key result, which states for a large class of 
underlying distributions F(x) [2]:

,( ) ( ),  uF x G x uξ β≈ → ∞ ,

where Generalized Pareto Distribution  is defined by:
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GPD subsumes three other distributions under its 
parameterization  [2].  So,  when  tail  index  ξ=0,  we 
obtain  a  Type  1  (exponentially  declining) 
distribution.  If  ξ<0,  we  have  a  Type  2  (power 
declining).  For  ξ>0,  we obtain a  Type  3  (constant 
declining)  distribution.  Given  these  three  types  of 
distribution, one of our tasks in this paper will be to 
uncover  which  type  best  describes  the  extremes  of 
stock returns on the emerging Russian market.

Identification of GPD parameters
Let  (X1,X2,…,Xk(u)) be  a  sequence  of  iid  random 

variables  from  an  unknown  distribution  F,  Xi>u. 
Shape ξ and scale β>0 parameters are then defined on 
the threshold u [16].  These GPD parameters can be 
determined by maximum likelihood (ML) methods. 
The log likelihood function of the GPD for ξ≠0 is:

1

( , ) ( )(log ) (1 1 / ) log (1 / )
n

i
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=
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where  xi satisfies the constraints specified for  xi.  If 
ξ=0, the log likelihood function is:

1
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ML estimates  are  then found by maximizing the 
log-likelihood  function  using  numeral  optimization 

methods. We can get these ξ and β estimates through 
solving simultaneous equations (ξ≠0):
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Tail evaluation formula

Assuming that u is sufficiently high, by combining 
expressions (2) and (3) the distribution function F(x) 
for exceedances can be written as:

1( )
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Fu(x) is a GPD and F(u) is given by [n-k(u)]/n; n is 
the total number of observations,  k(u) the number of 
observations above the threshold  u, ξ and  β  are the 
parameters of the GPD. 

Estimating VaR
For a given probability p>F(u) and threshold u, the 

value-at-risk (VaR) is calculated by inverting the tail 
estimation formula (5):

( ){[ (1 )] 1}n
p k uVaR u pβ ξ

ξ
−= + − −                     (6)

Choosing threshold value
Choice of the threshold u is the important issue to 

deal with:  u too high results in too few exceedances 
and  consequently  high  variance  estimators.  On the 
other  hand,  u  too  small  provides  biased  estimators 
and  the  approximation  to  a  GPD  could  not  be 
feasible.  It  is  possible  to  choose  an  asymptotically 
optimal threshold by a quantification of a bias versus 
variance trade-off. 

Mean excess function
One  suggestion  which  is  of  immediate  use  in 

practice is based on the linearity of the mean excess 
function e(u) for the GPD. From [2] we know that for 
a random value  X  with a GPD distribution function 
Gξ,β the mean excess function is:

1( ) ( | ) ,

0, 1.

ue u E X u X u

u
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It   suggests  a  graphical  approach for choosing u: 
choose u >0 such that e(x) is approximately linear for 
x¸u. Using plots to compare resulting estimates across 
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a  variety  of  u-values,  due to the usual  presence  of 
multiple choice of the threshold, is recommended.

Hill plot
Let X1>X2>…>Xn be the order statistics of positive 

random variables iid.  The Hill estimator of the tail 
index ξ using k+1 order statistics is defined by [17]:

1
, ,1

ˆ (ln )
k

j n k nk j
X Xξ

=
= −∑                                (8)

Hill plot is a good instrument to find the optimal 
threshold [18]. Over a specific range of exceedances, 
the Hill plot may be under the stationary series, and 
the  turning  point  is  a  good  choice  of  optimal 
threshold. We use the following intuitive ideas:
(1)  The  sequence  of  the  turning  point  is  less  than 
~n/10 [19].
(2)  The  Hill  estimator  in  the  turning  point  has  a 
relative  large  deviation  from  the  fitted  stationary 
straight line.
(3) The turning point is the last sequence of point that 
satisfies the two conditions stated above.

3. Empirical results
We consider  a  extreme value  approach,  working 

on the series of daily log losses (negative returns) of 
the Russian RTSI Index over a period of fifteen years 
(1995-2009).
Figure 1: RTSI Index – sample period 01.09.1995 –  

30.06.2009 (closing values): 
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The  Russian  Trading  System  Index  (RTSI) 
comprises of 50 of the largest stocks capturing 85% 
of  the  total  market  capitalization  of  the  Russian 
Trading  System  exchange.   The  data  used  in  this 
paper  are  obtained  from  RTS  web  site  [21].  The 
empiric study uses the series of log daily losses of the 
RTSI Index, containing 3 447 trading days  (closing 
prices).  Fig.1  shows the  plot  of  daily  dynamics  of 
RTSI index values, and  log daily losses.

Table 1 shows the summary statistics for the series 
of log daily changes.  This table shows that kurtosis 
value  is  9.7024  and  skewness  value  is  0.3752. 
Relative  value  of  Normal  distribution  is  3  and  0, 
respectively. So we can see empirical distribution of 
log  daily  losses  and  normal  distribution  is  not 
compatible. 

In addition to this, Jarqua-Bera  statistic shows that 
law of  log daily losses  is  obviously different  from 
normal distribution. The JB test statistics is defined 
as [10]:

22 ( 3)
6 6 24[ ]Kurtosisn STDJB −= + .

The  JB statistic  has  approximately a  chi-squared 
distribution,  with  two  degrees  of  freedom.  The 
Jarqua-Bera  test  depends  on skewness  and kurtosis 
statistics. If the JB test statistic equals zero, it means 
that the distribution has zero skewness and kurtosis is 
about  equal  3,  and so it  can be concluded  that  the 
normality  assumption  holds.  Skewness  values  far 
from zero and kurtosis values far from 3 lead to an 
increase  in  JB  values. The  test  returns  the  logical 
value h = 1 if  it  rejects  the  null  hypothesis  at  the 
p<0.05 significance level, and h =0 if it cannot. We 
have for data of Table 1: JB value=6532.8, p~0, h=1. 
It  means that  we can reject  the hypothesis  that  the 
distribution of daily losses is normal.
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Table 1 Summary statistics for daily losses in RTS 

mean min max
-0.0007 -0.2020 0.2120

std skewness kurtosis
0.0289 0.3752 9.7024

variance JB test n
-0.0008 6532.8

h=1,p<0.001
3447

In Fig.2 we represent the Hill graph, which plots 
the  Hill  estimator  of  ξ,  versus  the  k  upper  order 
statistics  (and  threshold  u,  respectively).  We select 
the  last  area  to  k~0.1*3447~350,  where  the  Hill 
estimator is more stable. 

Figure  3  Hill  estimator  versus  k  upper  order  
statistics (probability level p=0.95):
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The  mean  excess  function  (7)  allows  to 

establish the behavior  of  the distribution tails  [23]: 
we  choose  threshold  u looking  at  the  linear  shape 

(with  positive  slope)  of  the  graph  (Fig.3). 
Considering Hill plot and the mean excess function, 
we  choose  u=0.0334  (the  number  of  observation 
exceeding threshold u is equal k=294).

Figure 3: Mean excess function
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The  results  of  ML  estimation  of  the  GPD 
parameters  (on  chosen  threshold  u=0.0334)  are 
ξ=0.1492 and β = 0.0206:

Maximum Likelihood (ML) estimates of ξ,β:
out = 
         par_ests: [0.1492 0.0206]
           funval: -803.6979
          par_ses: [0.0688 0.0018]
        threshold: 0.0334
             data: [1x294 double]
        p_less_thresh: 0.9675

QQ-plot  graph  makes  us  able  to  evaluate  the 
goodness of fit of the empirical series to a parametric 
GPD  model  (Fig.4)  [24].  Notice  that  a  concave 
departure  from  the  straight  line  in  the  QQ-plot 
(Fig.4a) is an indication of heavy tailed distribution, 
whereas a convex departure is an indication of a thin 
tail.

Figure 4: QQ-plot versus GPD distribution and 
exponential distribution:
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QQ-plot:  empirical  vs  exponential  
distribution
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a) QQ-plot:  empirical  vs  GPD  distribution
b)  ( ξ=0.1492, β=0.0206, u=0.0334) 

After we get estimates ξ,β, use them in (5), get the 
formula for  of tail evaluation:

1

0.1492
( ) 0.0334

( ) 1 (1 0.1492 * )
0.0206

( ) 294,  n=3447, k(u)/n=8.53%

k u x
p F x

n

k u

−−
= = − +

=

Employ the result in (6), get the VaR formula on 
GPD model:

0.14920.0206 3447
0.0334 {[ (1 )] 1}

0.1492 294
pVaR p −= + − −

In  Table  2  we report  95%,  99%,  99.5%,  99,9% 
Value-at-Risk  estimates  of  three  different  VaR 
estimation methods. The performance of the different 
VaR  estimation  methods  can  be  evaluated  by 
comparing  the  estimates  with  the  actual  losses 
observed, in particular by computing (and testing) the 
number of VaR violations. VaR approaches based on 
the assumption of normal distribution are definitely 
to  underestimate  high  percentiles,  while  estimates 
based on historical simulation face with the problem 
of  out  of  sample  performance.  The  extreme  value 
approach on GPD model seems appropriate and easy 
to implement. 

Table 2
VaR estimation for daily RTSI losses:

one day horizon

VaR 
approach

p=0.950 p=0.975 p=0.990 p=0.995 p=0.999

Normal 
model

0.0394 0.0451 0.0520 0.0565 0.0663

Historical
simulation

0.0452 0.0607 0.0849 0.1083 0.1771

GPD model 0.0499 0.0611 0.0856 0.1062 0.1620

4. Conclusions 
Since  last  century,  volatility  of  international 

financial system is getting severe. A stable financial 
system is so desirable.  Therefore,  risk management 
has aroused growing attention. As a measurement of 
market  risk,  VaR  has  been  widely  used  in  risk 
management.  However,  derivation  between  VaR 
estimation  of  normal  hypothesis  and  abnormal 
distribution  of  practical  benefit  rate  of  financial 
always cause the bigger error in estimation. Aiming 
at this problem, through GPD model which fits tail 
distribution  of  financial  products  more  accurately, 
this  paper  recalculates  VaR  by  POT  method. 
Compared with traditional method of risk study, this 
paper has made some progress in research approach 
and  philosophy  and  more  applicable  in  practice, 
which  has  been  demonstrated  by  example  of  the 
Russian market analysis.

We have  used  software  systems:  EVIM [25,26], 
MATLAB  [27]  and  LOGOS-EVT,  developed  by 
authors of this paper [28].
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