The Difference Sequence Space Defined on Musielak-Orlicz Function

N. Faried and A.A. Bakery

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt awad_bakery@yahoo.com

Abstract: The idea of difference sequence spaces was introduced by Kizmaz [4]. Recently, Subramanian [12] studied the difference sequence space $\mathbf{l}_M(\Delta)$ defined on Orlicz function M. In this paper we introduce new sequence spaces that we call Musielak-Orlicz difference sequence space and denote it by $\mathbf{l}_M(\Delta)$, the difference paranormed Musielak-Orlicz sequence space $\mathbf{l}_M(\Delta,p)$, where $M=(M_k)$ is a sequence of Orlicz functions, and study some inclusion relations and completeness of this spaces. [New York Science Journal 2010;3(8):54-]. (ISSN: 1554-0200).

Key words: Musielak-Orlicz function, paranorm, difference sequence.

Introduction

Orlicz [9] used the idea of Orlicz function to construct the space (L^M). Lindentrauss and Tzafriri [5] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space $\mathbf{1}_M$ contains a subspace isomorphic

to
$$\mathbf{l}_p (1 \le p < \infty)$$
.

Subsequently different classes of sequence spaces defined by Parashar and Ghoudhary [10], Murasaleen et al. [6] Bekates and Altin [1], Tripathy et al. [13], Rao and Subramanian [2] and many others. Orlicz sequence spaces are the special cases of Orlicz spaces studied in Ref [3].

Recall ([3], [9]) an Orlicz function is a function $M:[0,\infty) \to [0,\infty)$ which is

continuous, non-decreasing and convex

with
$$M(0) = 0$$
, $M(x) > 0$ for $x > 0$, and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.

If convexity of Orlicz function M is replaced by $M(x+y) \le M(x) + M(y)$ then this

function is called modulus function, introduced by Nakano and further discussed by Ruckle [11] and Maddox [7]. An Orlicz function M is said to

satisfy Δ_2 -condition for all values of u, if there exists a constant K>0, such that

$$M(2u) \le KM(u)(u \ge 0)$$
 . The $\Delta_{2^{-}}$

condition is equivalent to $M(\mathbf{l}u) \le K\mathbf{l}M(u)$,

for all values of u and for I > 1. By ω , we shall denote the space of all real or complex sequences. The sets of natural numbers and real numbers will denote by $\mathbb{N} = \{1, 2, 3, \ldots\}$, \mathbb{R} respectively.

A linear topological space X over $\mathbb R$ is said to be a paranormed space if there is a sub additive

function
$$g: X \to \mathbb{R}$$
 such that $g(\theta) = 0$,

g(-x) = g(x) and for any sequence (x_n) in X such that $g(x_n - x) \xrightarrow{n-\infty} 0$, and any sequence (α_n) in \mathbb{R} such that $|\alpha_n - \alpha| \xrightarrow{n-\infty} 0$, we get $g(\alpha_n x_n - \alpha x) \xrightarrow{n-\infty} 0$.

Lindentrauss and Tzafriri [5] used the idea of Orlicz function to construct Orlicz sequence space

$$\mathbf{1}_{M} = \left\{ x \in \omega : \sum_{k=1}^{\infty} M \left(\frac{|x_{k}|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \right\}$$

. The space \mathbf{l}_{M} with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \le 1 \right\} \text{ becomes a}$$

Banach space which is called an Orlicz sequence space. For $M(t) = t^p$, $1 \le p < \infty$, the

space \mathbf{l}_{M} coincide with the classical sequence space \mathbf{l}_{n} .

The idea of difference sequence was first introduced by Kizmaz [4] write

 $\Delta x_k = x_k - x_{k+1}$, for k=1,2,3,..., $\Delta: \alpha \to \alpha$ be the difference defined by $\Delta x = (\Delta x_k)_{k=1}^{\infty}$, and $M:[0,\infty)\to[0,\infty)$ be an Orlicz function; or a modulus function.

Let **l** be the sequence of absolutely convergent series. Define a sequence space.

$$\mathbf{l}(\Delta) = \{x = (x_k) : \Delta x \in \mathbf{l}\}$$
. The sequence space

$$\mathbf{1}_{M}(\Delta) = \left\{ x \in \omega \sum_{k=1}^{\infty} M \left(\frac{|\Delta x_{k}|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \right\}$$

, with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|\Delta x_k|}{\rho} \right) \le 1 \right\}$$

becomes a Banach space which is called an Orlicz difference sequence space $\mathbf{l}_{_M}(\Delta,M)$, see [12].

A sequence $M = (M_k)$ of Orlicz

functions $M_k \ \forall \ k \in \mathbb{N}$ is called a Musielak-Orlicz function, for a given Musielak-Orlicz function M . The function

$$I_M: \omega \to [0, \infty]; I_M(x) = \sum_{k=1}^{\infty} M_k(x_k); \ \forall x \in \omega$$

is convex modular.

The Musielak-Orlicz function space \mathbf{l}_M generated by $M = (M_k)$ is defined by

$$\mathbf{1}_{M} = \left\{ x \in \boldsymbol{\omega} : \sum_{k=1}^{\infty} M_{k} \left(\frac{|x_{k}|}{\rho} \right) < \infty, \exists \rho > 0 \right\},$$

and \mathbf{l}_{M} with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M_k \left(\frac{|x_k|}{\rho} \right) \le 1 \right\} \text{ is a}$$

Banach space seeing [8].

We define the following new sequence space

Definition: Musielak-Orlicz difference sequence space $\mathbf{l}_{M}(\Delta)$ is

$$\mathbf{1}_{M}(\Delta) = \left\{ x \in \omega : \sum_{k=1}^{\infty} M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) < \infty, \exists \rho > 0 \right\}$$

, where $M = (M_k)$ is a sequence of Orlicz

functions. With the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M_k \left(\frac{|\Delta x_k|}{\rho} \right) \le 1 \right\}.$$

If $M_k = M \ \forall k \in \mathbb{N}$, then $\mathbf{l}_M(\Delta)$ reduces to Orlicz difference sequence Space studied by Subramanian [12].

Theorem(1): The space $\mathbf{l}_{M}(\Delta)$, where

 $M = (M_k)_{k=1}^{\infty}$ is a sequence of Orlicz functions is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M_k \left(\frac{|\Delta x_k|}{\rho} \right) \le 1 \right\}.$$

Proof:

Let $x^{(i)}$ be any Cauchy sequence in $\mathbf{l}_M(\Delta)$, where $x^{(i)}=(x_k^{(i)})=(x_1^{(i)},x_2^{(i)},\ldots)\in \mathbf{l}_M(\Delta)\ \forall\, i\in\mathbb{N}.$ Let $r,x_0>0$ be fixed, then for each $\overbrace{rx_0}{}>0$,

there exist a positive integer N such

that
$$||x^{(i)} - x^{(j)}|| < \frac{\mathcal{E}}{rx_0} \forall i, i \ge N$$
.

Using the definition of norm we get

$$\sum_{k=1}^{\infty} M_{k} \left(\frac{\Delta x_{k}^{(i)} - \Delta x_{k}^{(j)}}{\|x^{(i)} - x^{(j)}\|_{\Delta}} \right) \leq 1 \ \forall i, j \geq N$$

$$\Rightarrow M_{k} \left(\frac{\|\Delta x_{k}^{(i)} - \Delta x_{k}^{(j)}\|_{\Delta}}{\|x^{(i)} - x^{(i)}\|_{\Delta}} \right) \leq 1 \ \forall k \in \mathbb{N}$$

, and $\forall i,j \geq N$. Hence we can find r>0 with $M_k\bigg(\frac{rx_0}{k}\bigg)>1 \ \forall k \in \mathbb{N},$

such that

$$M_{k}\left(\frac{\left|\Delta x_{k}^{(i)} - \Delta x_{k}^{(j)}\right|}{\left\|x^{(i)} - x^{(j)}\right\|_{\Delta}}\right) \leq M_{k}\left(\frac{rx_{0}}{k}\right). \text{Since } M_{k} \text{ is}$$

non-decreasing $\forall k \in \mathbb{N}$. This implies that

$$\frac{|\Delta x_k^{(i)} - \Delta x_k^{(j)}|}{\|x^{(i)} - x^{(j)}\|_{\Lambda}} \le \frac{rx_0}{k} \Rightarrow$$

$$|\Delta x_k^{(i)} - \Delta x_k^{(j)}| \le \frac{rx_0}{k} ||x^{(i)} - x^{(j)}||_{\Delta} < \frac{rx_0}{k} \frac{\varepsilon}{rx_0} = \frac{\varepsilon}{k}$$

.Therefore $\forall \ \mathcal{E}(0 < \mathcal{E} < 1)$ then \exists a positive integer N such that

$$|(\Delta x_1^{(i)} - \Delta x_1^{(j)}) + \dots + (\Delta x_1^{(i)} - \Delta x_1^{(j)})| \le$$

$$|\Delta x_1^{(i)} - \Delta x_1^{(j)}| + \dots + |\Delta x_k^{(i)} - \Delta x_k^{(j)}| \le k \frac{\mathcal{E}}{k}$$

$$\Rightarrow \mid (\Delta x_1^{(i)} - \Delta x_1^{(j)}) \mid + \dots + \mid (\Delta x_k^{(i)} - \Delta x_k^{(j)}) \mid \leq \varepsilon$$

Since

$$|\Delta x_{k}^{(i)} - \Delta x_{k}^{(j)}| \le \left\{ |\Delta x_{1}^{(i)} - \Delta x_{1}^{(j)}| + \dots + |x_{k}^{(i)} - \Delta x_{k}^{(j)}| \right\}, \text{ we get } |\Delta x_{k}^{(i)} - \Delta x_{k}^{(j)}| \le \mathcal{E} \ \forall i, j \ge N.$$

Therefore $(\Delta x_k^{(j)})_{j=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} , for each fixed k. Using the continuity of $M_k \, \forall \, k \in \mathbb{N}$, we can find

that
$$\sum_{k=1}^{N} M_k \left(\frac{|\Delta x_k^{(i)} - Lim_{j \to \infty} \Delta x_k^{(j)}|}{\rho} \right) \le 1$$
. Thus

$$\sum_{k=1}^{N} M_{k} \left(\frac{|\Delta x_{k}^{(i)} - \Delta x_{k}|}{\rho} \right) \leq 1 \ \forall i \geq N.$$

Taking infimum of such ρ 's we get

$$\inf \left\{ \rho > 0 : \sum_{n=1}^{N} M_{k} \left(\frac{|\Delta x_{k}^{(i)} - \Delta x|}{\rho} \right) \le 1 \right\} < \varepsilon$$

 $\forall\, i \geq N$, since $\Delta x^{(i)} \in \mathbf{1}_{\scriptscriptstyle{M}}(\Delta)$ and $\boldsymbol{M}_{\scriptscriptstyle{k}}$ is

continuous \forall $k \in \mathbb{N}$ then $\Delta x \in \mathbf{l}_{M}(\Delta)$. This completes the proof.

Theorem(2): Let $M = (M_k)$ be a Musielak-modulus function which satisfies

 Δ_2 condition, then $\mathbf{l}(\Delta) \subset \mathbf{l}_{\scriptscriptstyle M}(\Delta)$.

Proof: Let $x \in \mathbf{l}(\Delta) \Rightarrow \sum_{k=1}^{\infty} \Delta x_k \le N$, since M_k is

non-decreasing $\forall k \in \mathbb{N}$

$$\Rightarrow \left(M_k \left(\sum_{k=1}^{\infty} \frac{\Delta x_k}{\rho} \right) \right) \leq \left(M_k \left(\frac{N}{\rho} \right) \right) \leq K l M_k(N)$$

.By Δ_2 condition, therefore $x \in \mathbf{l}_M(\Delta)$.

Paranormed sequence spaces:

Let $p = (p_k)$ be any sequence of positive real numbers, then in the same way we can also define the following sequence spaces for a Musielak–Orlicz function M as \mathbf{l} extended to $\mathbf{l}(p)$

$$\mathbf{1}_{M}(\Delta, p) = \left\{ x \in \omega : \sum_{k=1}^{\infty} \left(M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) \right)^{p_{k}} < \infty, \exists \rho > 0 \right\}$$

Note: If $p_k = p \forall k \in \mathbb{N}$,

then $\mathbf{l}_{M}(\Delta, p) = \mathbf{l}_{M}(\Delta)$.

Theorem (3): $\mathbf{l}_{M}(\Delta, p)$ is a complete paranormed space with

$$g^{*}(x) = \inf \left\{ \rho^{\frac{P_{k}}{H}} : \left[\sum_{k=1}^{\infty} \left(M_{k} \left(\frac{\Delta x_{k}}{\rho} \right) \right)^{P_{k}} \right]^{\frac{1}{H}} \le 1 \right\}$$

. For $1 \le p_{\iota} < \infty \ \forall \ k \in \mathbb{N}$,

$$H = \max\{1, \sup_{n} P_n\}.$$

Proof: Let $x^{(i)}$ be any Cauchy sequence in $\mathbf{l}_M(\Delta,p)$, where

$$x^{(i)} = (x_1^{(i)}, x_2^{(i)}, x_3^{(i)}..) \in \mathbf{1}_M(\Delta, p) \ \forall i \in \mathbb{N}.$$
 Let

$$r, x_0 > 0$$
 is fixed. Then $\forall \frac{\mathcal{E}}{rx} > 0 \exists a$ positive

integer N such that

$$g^*(x^{(i)}-x^{(j)}) < \underbrace{\mathcal{E}}_{rx_o} \forall i, j \ge N$$
 . Using the

definition of paranorm we get

$$\left[\sum_{k=1}^{\infty} \left(M_k \left(\frac{|\Delta x_k^{(i)} - \Delta x_k^{(j)}|}{g^* (x^{(i)} - x^{(j)})} \right)^{p_k} \right]^{\frac{1}{H}} \le 1,$$

Since $1 \le p_k \le \infty$, $\forall k \in \mathbb{N}$. It follows that

$$M_k \left(\frac{|\Delta x_k^{(i)} - \Delta x_k^{(j)}|}{g^*(x^{(i)} - x^{(j)})} \right) \le 1, \forall k \ge 1 \text{ and } \forall i, j \ge N.$$

Hence we can find r>0 $\forall k \in \mathbb{N}$ with $M_k \left(\frac{rx_0}{k}\right) > 1$

such that
$$M_k \left(\frac{|\Delta x_k^{(i)} - \Delta x_k^{(j)}|}{g^*(x^{(i)} - x^{(j)})} \right) \le M_k \left(\frac{rx_0}{k} \right)$$
.

Since M_k is non-decreasing $\forall k \in \mathbb{N}$ We get

$$\frac{|\Delta x_k^{(i)} - \Delta x_k^{(j)}|}{g^*(x^{(i)} - x^{(j)})} \le \frac{rx_0}{k}$$

$$\Rightarrow |\Delta x_k^{(i)} - \Delta x_k^{(j)}| \le \frac{rx_0}{k} g^*(x^{(i)} - x^{(j)}) \le \frac{rx_0}{k} \frac{\varepsilon}{rx_0} = \frac{\varepsilon}{k}$$

. Therefore for each $0 < \mathcal{E} < 1$ then there exist a positive integer N such that

$$\left| (\Delta_{\mathbf{1}}^{(i)} - \Delta_{\mathbf{1}}^{(j)}) + \dots + (\Delta_{\mathbf{k}}^{(i)} - \Delta_{\mathbf{k}}^{(j)}) \right| \le$$

$$|(\Delta_{\mathbf{i}}^{(j)} - \Delta_{\mathbf{i}}^{(j)})| + \dots + |(\Delta_{\mathbf{k}}^{(j)} - \Delta_{\mathbf{k}}^{(j)})| \leq k \frac{\mathcal{E}}{k}$$

.Since

$$|(\Delta x_x^{(i)} - \Delta x_x^{(j)})| \le \Delta x_1^{(i)} - \Delta x_1^{(j)} + \dots + \Delta x_k^{(i)} - \Delta x_k^{(j)}$$
 we get

$$|\Delta x_k^{(i)} - \Delta x_k^{(j)}| \le \varepsilon, \ \forall k \in \mathbb{N}$$

Therefore $(\Delta x_k^{(j)})_{j=1}^{\infty}$ be a Cauchy sequence in \mathbb{R} , for fixed k. Using the continuity of $M_k \ \forall k \in \mathbb{N}$, we can find that

$$\left[\sum_{k=1}^{N} \left(M_{k} \left(\frac{|\Delta x_{k}^{(i)} - \lim_{j \to \infty} \Delta x_{k}^{(j)}}{\rho}\right)\right)^{P_{k}}\right]^{\frac{1}{H}} \leq 1$$

$$\Rightarrow \left[\sum_{k=1}^{N} \left(M_{k} \left(\frac{|\Delta x_{k}^{(i)} - \Delta x|}{\rho}\right)\right)^{P_{k}}\right]^{\frac{1}{H}} \leq 1.$$

Taking infimum of such ρ 's we get

$$\inf \left\{ \rho^{\frac{P_k}{H}} : \left[\sum_{k=1}^{N} \left[M_k \left(\frac{|\Delta x_k^{(i)} - \Delta x|}{\rho} \right) \right]^{P_k} \right]^{\frac{1}{H}} \le 1 \right\} < \varepsilon$$

 $\forall i \geq N$, and $j \rightarrow \infty$.

Since $(x^{(i)}) \in \mathbf{1}_M(\Delta, p)$ and M_k is continuous

 $\forall k \in \mathbb{N}$ it follows that $x \in \mathbf{l}_M(\Delta, p)$.

Theorem (4): Let $0 < p_k < q_k < \infty \ \forall \ k \in \mathbb{N}$,

then $\mathbf{l}_{M}(\Delta, p) \subseteq \mathbf{l}_{M}(\Delta, q)$.

Proof: Let $x \in \mathbf{l}_{M}(\Delta, p)$

$$\Rightarrow \sum_{k=1}^{\infty} M_k \left[\left(\frac{|\Delta x_k|}{\rho} \right) \right]^{P_k} < \infty, \text{ then }$$

$$M_k\left(\frac{|\Delta x_k|}{\rho}\right) \le 1 \ \forall k \in \mathbb{N}$$
. For sufficiently large k,

since M_k is non-decreasing. Hence we get

$$\begin{split} &\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} \leq \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{P_k} < \infty \\ &\Rightarrow \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} < \infty . \\ &\Rightarrow x \in \mathbf{1}_M(\Delta, q) . \end{split}$$

Theorem(5):

(a) Let $0 < \inf_{k} p_{k} \le p_{k} \le 1 \forall k \in \mathbb{N}$.

Then $\mathbf{l}_{M}(\Delta, p) \subseteq \mathbf{l}_{M}(\Delta)$

(b) Let $1 \le p_k \le \sup_k p_k < \infty \ \forall k \in \mathbb{N}$. Then

$$\mathbf{l}_{M}(\Delta) \subseteq \mathbf{l}_{M}(\Delta, p)$$
.

Proof:

(a) For $x \in \mathbf{l}_{M}(\Delta, p)$, then

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{p_k} < \infty \Rightarrow M_k \left(\frac{|\Delta x_k|}{\rho} \right) \le 1$$

For sufficiently large k, since

 $0 < \inf p_k \le p_k \le 1 \, \forall \, k \in \mathbb{N}$

$$\Rightarrow \sum_{k=1}^{\infty} M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) \leq \sum_{k=1}^{\infty} \left(M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right)^{P_{k}} \right)$$
$$\Rightarrow \sum_{k=1}^{\infty} M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) < \infty \Rightarrow x \in \mathbf{1}_{M}(\Delta)$$

(b) For $P_k \ge 1 \ \ \forall \ k \in \mathbb{N}$ and $\sup p_k < \infty$ and

$$x \in \mathbf{1}_{M}(\Delta) \text{ we get } \sum_{k=1}^{\infty} M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) < \infty \Rightarrow$$

$$M_k \left(\frac{|\Delta x_k|}{\rho} \right) \le 1$$
. For sufficiently large k,

since $1 \le p_k \le \sup p_k < \infty \ \forall \ k \in \mathbb{N}$, we get

$$\sum_{k=1}^{\infty} \left(M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) \right)^{P_{k}} \leq \sum_{k=1}^{\infty} M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) < \infty$$

$$\Rightarrow \sum_{k=1}^{\infty} \left(M_{k} \left(\frac{|\Delta x_{k}|}{\rho} \right) \right)^{P_{k}} < \infty . \Rightarrow x \in \mathbf{1}_{M}(\Delta, p) .$$

Theorem(6): Let $0 \le p_k \le q_k \ \forall \ k \in \mathbb{N}$ and $\left(\frac{q_k}{p_k}\right)$ be

bounded, then $\mathbf{l}_{\scriptscriptstyle{M}}(\Delta,q)\subset\mathbf{l}_{\scriptscriptstyle{M}}(\Delta,p)$.

Proof: Let $x \in \mathbf{l}_{M}(\Delta, q)$

(i.e.)

$$\sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} < \infty \text{ and}$$

$$t_k = \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} \text{ and } \lambda_k = \frac{q_k}{p_k}. \text{Since}$$

$$p_k \leq q_k \ \forall \ k \in \mathbb{N}$$
 therefore $0 \leq \lambda_k \leq 1 \ \forall \ k \in \mathbb{N}$. Take $0 < \lambda < \lambda_k$

 $\forall k \in \mathbb{N}$. Define $u_k = t_k (t_k \ge 1)$;

$$\begin{split} u_k &= 0(t_k < 1) \text{ and } v_k = 0(t_k \ge 1) \,, \\ u_k &= t_k (t_k < 1) \,. \, t_k = u_k + v_k \,. \\ t_k^{\lambda_k} &= u_k^{\lambda_k} + v_k^{\lambda_k} \,. \text{Now it follows that} \end{split} \tag{i.e.}$$

$$u_k^{\lambda_k} \le u_k \le t_k \text{ and } v_k^{\lambda_k} \le v_k^{\lambda}$$
 (1).

(i.e.)
$$\sum_{k=1}^{\infty} t_k^{\lambda_k} = \sum_{k=1}^{\infty} (u_k + v_k)^{\lambda_k}$$

$$\begin{split} &\Rightarrow \sum_{k=1}^{\infty} \ t_k^{\ \lambda_k} \leq \sum_{k=1}^{\infty} \ u_k^{\ \lambda_k} + \sum_{k=1}^{\infty} v_k^{\lambda_k} \ . \\ &\Rightarrow \sum_{k=1}^{\infty} \ t_k^{\ \lambda_k} \leq \sum_{k=1}^{\infty} \ t_k + \sum_{k=1}^{\infty} v_k^{\lambda} \ . \end{split}$$

By using equation (1), we

$$\begin{split} & \det \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k \lambda_k} \leq \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} \\ & \Rightarrow \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{p_k} \leq \sum_{k=1}^{\infty} \left[M_k \left(\frac{|\Delta x_k|}{\rho} \right) \right]^{q_k} , \\ & \operatorname{then} \mathbf{1}_M(\Delta, q) \subset \mathbf{1}_M(\Delta, p) . \end{split}$$

Theorem(7): Let $1 \le p_k \le \sup_k p_k < \infty \ \forall \ k \in \mathbb{N}$,

then $\mathbf{1}_{M}(\Delta, p)$ where $M = (M_{k})$ be a Musielak-modulus function is a linear set over the set of complex numbers.

Proof: is easy so omitted.

Corresponding author:

N. Faried

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt E. Mail: n_faried@hotmail.com

References

C. Bektas and Y. Altin, The sequence space

 I_M (p,q,s) on seminormed spaces, Indian

 J. Pure Appl. Math., 34(4) (2003), 529-534.

- 2. K. Chandrasekhara Rao and N. Subramanian, The Orlicz space of entire sequences, Int. J. Math. Math. Sci., 68(2004), 3755-3764.
- 3. M.A. Krasnoselskii and Y.B. Rutickii, Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
- 4. H. Kizmaz, on certain sequence spaces, Canad Math. Bull., 24(2) (1981), 169-176.
- 5. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- 6. M. Mursaleen, M.A. Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math., Vol. XXXII (1999), 145-150.
- 7. I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1) (1986), 161-166.
- 8. J. Musielak, Orlicz spaces and modular spaces, Lecture notes in Math, 1034 (1987), 1-222.
- 9. W. Orlicz, Über Raume (L^M) Bull, Int. Acad Polon. Sci. A, (1936), 93-107.

- 10. S.D. Parashar and B. Choudhary, sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(4) (1994), 419-428.
- 11. W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978.
- 12. N. Subramanian, the difference sequence space defined on Orlicz function, Int. Journal of Math. Analysis, Vol. 2, 2008, no. 15, 721-729.
- 13. B.C. Tripathy, M. Et and Y. Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Analysis and Applications, 1(3)(2003), 175-192.

5/5/2010