
New York Science Journal, 2011;4(7)                                      http://www.sciencepub.net/newyork 

 40 

Advanced computing in industrial Automation 
 

Saurabh Saxena1 and Rajeev Kumar2 

 

1Assistant Professor &Head of Department 
Department of Computer Science, Indraprastha Institute of technology 

Gajraula (J.P Nagar) India 
2Computer Science Department, College of Engineering 

 Teerthanker Mahaveer University, Moradabad (U.P.) India 
 

ABSTRACT: The fundamental problem of every industry that they need more human power for their work such that 
to handling machine, carry item from one machine to another machine. the Grid research and development 
community is seeking to solve is how to coordinate distributed resources amongst a dynamic set of individuals and 
organizations in order to solve a common collaborative goal. The problem of service discovery in a Grid environment 
arises through the heterogeneity, distribution and sharing of the resources in different virtual organizations. This paper 
proposes a service discovery framework which is based on Automation. It gives an example of the industrial 
automation to reduce the man power.  
[Saurabh Saxena, Rajeev Kumar. Advanced Computing in Industrial Automation. New York Science Journal 
2011;4(7):40-44]. (ISSN: 1554-0200). http://www.sciencepub.net/newyork. 
 
KEY WORDS: Advanced computing in industrial automation 
 
 
Introduction 

The recent trend of merging control systems 
associated with both factory and process automation 
demands knowledge of diverse fields. Automation 
applications span plant automation, discrete and batch 
process control, embedded machine control and 
manufacturing production line automation. Industrial 
automation applications include automation of time 
critical systems that demand precise real-time reading 
and control.  

A PC printer port is an inexpensive but highly 
useful device to run several computer controlled 
hardware projects. The port provides eight TTL outputs, 
five inputs and four bi-directional leads. Some 
applications of the port include running driver circuits, 
DC and stepping motors (as we intend to in this 
project), infrared and radio remote controlling 
 
2. Related Work 

Parallel port is a simple and inexpensive tool for 
building computer controlled devices and projects. The 
simplicity and ease of programming makes parallel 
port popular in electronics hobbyist world. The parallel 
port is often used in Computer controlled robots, 
Atmel/PIC programmers, home automation, etc. Here a 
simple tutorial on parallel port interfacing and 
programming with some examples. 

Everybody knows what is parallel port, where it 
can be found, and for what it is being used. the primary 
use of parallel port is to connect printers to computer 
and is specifically designed for this purpose. Thus it is 
often called as printer Port or Centronics port (this 
name came from a popular printer manufacturing 

company 'Centronics' who devised some standards for 
parallel port). You can see the parallel port connector 
in the rear panel of your PC. It is a 25 pin female 
(DB25) connector (to which printer is connected). On 
almost all the PCs only one parallel port is present, but 
you can add more by buying and inserting ISA/PCI 
parallel port cards. 
 
3. Printer Port Prograaming 
Parallel port modes 

The IEEE 1284 Standard which has been 
published in 1994 defines five modes of data transfer 
for parallel port. They are, 
      1) Compatibility Mode  
      2) Nibble Mode 
      3) Byte Mode 
      4) EPP 
      5) ECP 
 
           The programs, circuits and other information 
found in this tutorial are compatible to almost all types 
of parallel ports and can be used without any problems 
(Not tested, just because of confidence!). More 
information on parallel port operating modes can be 
found here. 
 
Hardware 

The pin outs of DB25 connector is shown in 
the picture below:- 



New York Science Journal, 2011;4(7)                                      http://www.sciencepub.net/newyork 

 41 

 
 
(a) Port Addresses :  

Each printer port consists of three port addresses; 
data, status and control port. These addresses are 
always in sequential order. For e.g. in our project we 
use the LPT2 port.  

The Data Port address is 0x0378, the Status Port 
address is 0x0379 and the Control  

Port address is 0x037a. LPT1 is the other printer 
port. It’s Data Port address is 0x03bc, the Status Port 
address is 0x03bd and the Control Port address is 
0x03be. The addresses are always in sequential order.  

The lines in DB25 connector are divided in to 
three groups, they are: 
      1) Data lines (data bus) 
      2) Control lines 
      3) Status lines 
 
           As the name refers , data is transferred over data 
lines , Control lines are used to control the peripheral 
and of course , the peripheral returns status signals 

back computer through Status lines. These lines are 
connected to Data, Control And Status registers 
internally. The details of parallel port signal lines are 
given below: 

Pin No 
(DB25) 

Signal name Direction 
Register – 
bit 

Inverted 

1 nStrobe Out Control-0 Yes 

2 Data0 In/Out Data-0 No 

3 Data1 In/Out Data-1 No 

4 Data2 In/Out Data-2 No 

5 Data3 In/Out Data-3 No 

6 Data4 In/Out Data-4 No 

7 Data5 In/Out Data-5 No 

8 Data6 In/Out Data-6 No 

9 Data7 In/Out Data-7 No 

10 nAck In Status-6 No 

11 Busy In Status-7 Yes 

12 Paper-Out In Status-5 No 

13 Select In Status-4 No 

14 Linefeed Out Control-1 Yes 

15 nError In Status-3 No 

16 nInitialize Out Control-2 No 

17 
nSelect-
Printer 

Out Control-3 Yes 

18-25 Ground - - - 

 
 
 
5. TheDLLinput32  
The functions in the DLL are implemented in two source files, "inpout32drv.cpp" and "osversion.cpp". 
osversion.cpp checks the version of operating system. "inpout32drv.cpp" does installing the kernel mode driver, 
loading it , writing/ reading parallel port etc... The two functions exported from inpout32.dll are 
 
1) Inp32(), reads data from a specified parallel port register. 
 
2) Out32(), writes data to specified parallel port register. 
 
the other functions implemented in Inpout32.dll are  
 
1) DllMain(), called when dll is loaded or unloaded. When the dll is loaded , it checks the OS version and loads 
hwinterface.sys if needed. 
 
2) Closedriver(), close the opened driver handle. called before unloading the driver. 
 
3) Opendriver(), open a handle to hwinterface driver. 
 
4) inst() , Extract 'hwinterface.sys' from binary resource to 'systemroot\drivers' directory and creates a service. This 
function is called when 'Opendriver' function fails to open a valid handle to 'hwinterface' service. 
 
5) start() , starts the hwinterface service using Service Control Manager APIs. 
 
6) SystemVersion() Checks the OS version and returns appropriatecode. 
 
 



New York Science Journal, 2011;4(7)                                      http://www.sciencepub.net/newyork 

 42 

4. Parallel port registers 
           As you know, the Data, Control and status lines are connected to there corresponding registers inside the 
computer. So by manipulating these registers in program , one can easily read or write to parallel port with 
programming languages like 'C' and BASIC. 
The registers found in standard parallel port are, 
      1) data register 
      2) Status register 
      3) Control register 
 

Register LPT1 LPT2 

data registar(baseaddress + 0) 0x378 0x278 

status register (baseaddress + 1) 0x379 0x279 

control register (baseaddress + 2) 0x37a 0x27a 

 
6. Programming Part 
#include <pic.h> 
__CONFIG (INTIO & WDTDIS & PWRTEN & MCLRDIS & UNPROTECT & UNPROTECT & BORDIS & 
IESODIS & FCMDIS); 
int i; 
int j; 
unsigned char OutputVal = 1 << 5; 
int i, j, k, n, Flag; 
const int ones = 225; 
const int fiftyms = 2790; 
const int twentyms = 1000; 
const int fourms   = 118; 
main () 
{ 
PORTA = 0x3F; 
PORTC = 0x3F; 
CMCON0 = 7; 
ANSEL = 0; 
TRISA = 0b001100; 
TRISC0 = 0; 
while (1==1) 
{ 
INTCON = 0;     
Flag = 0;         //  Flag Pressed Button 
for (i = 0; i < twentyms; )  //  Debounce Button Press 
for (i = 0; (i < twentyms) && (0 == RA2); i++) 
if (0 == RA3) 
Flag = 1; 
PORTA = 0x00;        //  Turn off LEDs 
PORTC = 0x00; 
for (i = 0; i < twentyms; )                      
//  Debounce Button Release 
for (i = 0; (i < twentyms) && (1 == RA2); i++) 
if (0 == RA3) 
Flag = 1; 
for (i = 0; (i < ones) && (0 == Flag); i++) //  1s Dlay 
for (j = 0; j < ones; j++) 
if (0 == RA3) 
Flag = 1; 
k = TMR0;    //  Get Start Random Value 



New York Science Journal, 2011;4(7)                                      http://www.sciencepub.net/newyork 

 43 

for (i = 0; (i < k) && (0 == Flag); i++) //  Random Dlay 
for (j = 0; j < fourms; j++) 
if (0 == RA3) 
Flag = 1; 
for (i = 0; i < 255; i++) 
for (j = 0; j < 129; j++); 
OutputVal = (OutputVal & 0x3c) >> 1; 
if ((1 << 1) == OutputVal) 
OutputVal = 1 << 5; 
PORTC = OutputVal; 
INTCON = 0;        //  Disable/Reset ALL 
Interrupts 
  Flag = 0;         //  Flag Pressed Button 
  for (i = 0; i < twentyms; )     //  Debounce Button Press 
for (i = 0; (i < twentyms) && (0 == RA3); i++) 
if (0 == RA2) 
Flag = 1; 
 PORTA = 0x00;        //  Turn off LEDs 
 PORTC = 0x00; 
for (i = 0; i < twentyms; )  //  Debounce Button Release 
for (i = 0; (i < twentyms) && (1 == RA3); i++) 
if (0 == RA2) 
Flag = 1; 
 
for (i = 0; (i < ones) && (0 == Flag); i++)  
  //  1s Dlay  
for (j = 0; j < ones; j++) 
if (0 == RA2) 
Flag = 1; 
k = TMR0;         //  Get Start Random Value 
for (i = 0; (i < k) && (0 == Flag); i++) 
  //  Random Dlay 
for (j = 0; j < fourms; j++) 
if (0 == RA2) 
Flag = 1; 
for (i = 0; i < 255; i++) 
for (j = 0; j < 129; j++); 
OutputVal = (OutputVal & 0x3c) << 1; 
if ((1 << 6) == OutputVal) 
OutputVal = 1 << 2; 
PORTC = OutputVal; 
}  
}  
 
 
7. Conclusion 

The recent trend of merging control systems 
associated with both factory and process automation 
demands knowledge of diverse fields. Automation 
applications span plant automation, discrete and batch 
process control, embedded machine control and 
manufacturing production line automation. Industrial 
automation applications include automation of time 
critical systems that demand precise real-time reading 
and control.  

Computer-controlled stepper motors are one of the 
most versatile forms of positioning systems. They are 
typically digitally controlled as part of an open 
loop system, and are simpler and more rugged 
than closed loop servo systems. 

Industrial applications are in high speed pick and 
place equipment and multi-axis machine CNC 
machines often directly driving lead screws or 
ballscrews. In the field of lasers and optics they are 
frequently used in precision positioning equipment 
such as linear actuators, linear stages, rotation stages, 



New York Science Journal, 2011;4(7)                                      http://www.sciencepub.net/newyork 

 44 

goniometers, and  mirror mounts. Other uses are in 
packaging machinery, and positioning of valve pilot 
stages for fluid control systems. 
 
References 

1.  "New Computer Alliance Forms". The New 
York Times. 1991-04-08. Retrieved 2007-
05-03. 

2.  "New breed of computers based on new 
standard UNIX/RISC software debuts: 
Compaq's Rod Canion says 'ACE' destined 
to be environment of choice for the 1990s.". 

Software Industry Report. 1991-04-15. 
Retrieved 2010-02-20. 

3.  "Apache Group of True Blue UNIX System 
V.4 ACE Renegades Ready to Show Their 
Hand". Computer Business Review. 1991-
10-23. Retrieved 2007-05-03. 

4.  Jonathan Cassell; Gerry Khermouch, Craig 
Stedman, Stuart Zipper (1992-05-04). "Is 
ACE consortium in the hole as Compaq, 
SCO throw in cards?". Electronic News. 
Retrieved 2007-05-03. 

5. Search engine www.google.com 
 

 
6/5/2011 

 


