Assessing Different methods in distance education

¹Mojtaba Sadighi and ²Mehran Bozorgmanesh

1, 2Damavand Branch, Islamic Azad University, Damavand, Iran *Corresponding author: sharif11070@yahoo.com

Abstract: High front-end costs prevented an early widespread adoption of electronically mediated learning. Distance learning has been aggressively adopted in many areas because it can meet specific educational needs. As the concept of accountability became accepted and laws required certain courses in high school in order for students to be admitted to state colleges, telecommunications was examined as a way to provide student access to the required courses. Many rural school districts could not afford the special teachers to conduct required courses. Distance education met this need by providing courses in schools where teachers were not available or were too costly to provide for a few students. It also fulfilled a need for teacher training and staff development in locations where experts and resources were difficult to obtain. These systems link learner communities with each other and bring a wide array of experts and information to the classroom. Enjoying and giving publicity to any of technological tools with the aim to facilitate and accelerate the training process, as well as increase the quality and quantity of knowledge quality and knowledge of a serious intelligence community needs to integrate and standardize the educational system society. Hence, considering the position and role of education in the third millennium on the basis of ICT is also a serious approach to the topic with the knowledge community centered on learning and general trends of technological tools to enjoy much of the information and Find the appropriate place in the information society Third Millennium That actually can be a global community and is without limit is undeniable-and-run. Guidance and therefore move in the direction of society should be education and technology for comprehensive pandemic done. Considering the above definitions and with the knowledge and attitudes towards the third millennium and the desirability and some weaknesses in the achievement of certain standards and dynamic structures in order to achieve a knowledge based society, there is. In the present circumstances to provide our information infrastructure development and integration inevitably link the elements and tools that they are as indicators of technology education and technology education will be remembered. In the new context of combining these two indicators comes to training facilities and a variety of tools that will provide guidance and development in information will be very effective.

[Mojtaba Sadighi and Mehran Bozorgmanesh. **Assessing Different methods in distance education.** New York Science Journal 2011;4(7):51-55]. (ISSN: 1554-0200). http://www.sciencepub.net/newyork.

Keywords: distance education, educational methods

Introduction:

Technologies training web-based technology as one of the most effective learning tools in educational issues have been identified and a total of E-learning as it is referred. But if the scientific and cultural infrastructure with this technology's Day is not coordinated development of information will be obtained. This weakness caused by lack of growth and development of training required for pandemic knowledge of existing technology is. In many systems of scientific tools and capabilities needed to provide hardware and commissioning are still technological problems resulting from lack of knowledge of poverty and poor education in these centers to be seen.

In other words, the country still in the feasibility assessment and appropriate to make public the necessary training for operation and application of scientific principles and technological tools is has been done and why certain movements and

sometimes non-normative point will not be able node an unlock.

The conditions and according to the capacity of developing countries and training facilities required a knowledge-based society feels is felt. If all processes in technology education and technology optimization and standardization of the Hungarian education should go, and appropriate channels that the best option in this area could benefit from state universities is capabilities.

According to the information in the development of any society should take half of the world to progress until the necessary coordination and synchronization global developments so as to accept the design structure of a knowledge-based society have a special place for the University and respect the role of education and technology was In designing a model with global standards of dynamism and flexibility at first be necessary to select a sample that the facilities and communications needed for this purpose provide action and then

determine optimal cognitive deficiencies than Hammett and weaknesses push.

No doubt the experiences of implementing these standards and to develop troubleshooting information using technological tools would be much more economical. That if we develop a range of information from a city university level and conduct more successful we'll be more acceptable was. Because the utilization and application tools and step up the information they've been successful. Therefore the most important first step needed to coordinate and synchronize technology education and educational technology standards and capability in the high user acceptability of the world is also enjoyed.

Educational methods in distance learning:

Today, under the new system replaced the traditional systems of learning and learning week (ie tutoring methods, lectures) are:

- Multimedia courses:

These courses and widely used elements of image, communication, graphics and simulated components, animation and communication elements for guidance and tips, and talk back on course and curriculum issues are held.

- Enhanced communication mechanisms:

The mechanism of any texts simultaneously, and asynchronous audio-visual communications to protect you. This case allows students to practice on topics learned will give.

- Written test:

thus, question and test via a distributed communication network, are corrected and returned. These exams through video conferencing support and runs.

-Virtual Seminar:

thereby different groups of students in different geographical environments linked together makes.

- Collaborative virtual laboratories:

the laboratory of the Group's activities are supported. Workshops such as software engineering.

-Smart academic factors:

academic factors that inform intelligent, support and guidance students pay.

Key factors in the process of distance education:

The process of remote training, the following factors contribute:

- Students:

Regardless of educational content, role and main element in the learning process students are responsible.

Coaches and Teachers:

Success depends on a lot of educational activities the ability, skills and knowledge are the coaches and professors.

- Facilitators of communication:

Facilitator bases, as the bridge between students and mentors are. Must base expectations of teachers and educational needs of students and service coordination and communication to create.

- Support staff:

One of the important pillars of any development of distance education programs, by development group finds. Operational support staff such as student registration, copy and distribute their resources, order textbooks, security and copyright, and are responsible for the report.

- Management:

The group decision makers, builders and judges are considered to be educational and should be considered among the factors above, establish the correct relationship formation.

Distance education is education designed for learners who live at a distance from the teaching institution or education provider. It is the enrollment and study with an educational institution that provides organized, formal learning opportunities for students. Presented in a sequential and logical order, the instruction is offered wholly or primarily by distance study, through virtually any media. Historically, its predominant medium of instruction has been printed materials, although non-print media is becoming more and more popular. It may also incorporate or make use of videotapes, CD or DVD ROM's, audio recordings, facsimiles, telephone communications, and the Internet through e-mail and Web-based delivery systems. When each lesson or segment is completed, the student makes available to the school the assigned work for correction, grading, comment, and subject matter guidance by qualified instructors. Corrected assignments are returned to the student. This exchange fosters a personalized student-instructor relationship, which is the hallmark of distance education instruction.

Historically, most distance education courses were vocational in nature, but today courses are offered for academic, professional, and avocational purposes for students of all ages. There are numerous specialized programs, such as those for blind persons and for parents of small children with hearing impairments. Distance education is available in practically any field, from accounting to zoology. Courses are offered in gemology, high school diploma, journalism, locksmithing, child day care management, vacht design, and many fascinating subjects. Distance education courses also vary greatly in scope, level, and length. Some have a few assignments and require only a few months to complete, while others have a hundred or more lesson assignments requiring three or four years of conscientious study. Since 1890, more than 130

million Americans have studied at DETC member institutions, including Franklin D. Roosevelt, Walter P. Chrysler, Walter Cronkite, Barry Goldwater, Charles Schulz, and many other distinguished alumni of DETC members. Unlike most distance education courses offered by traditional colleges and universities that are semester and classroom oriented, with courses offered by most of the DETCaccredited institutions you can study any time and anywhere. Distance education is especially suited for busy people who wish to increase their knowledge and skills without giving up their jobs, leaving home, or losing income. You learn while you earn. Many courses provide complete vocational training; others prepare you for upgrading in your present job, without losing wages, experience or seniority. You receive individual attention, and you work at your own pace.

In recent years, technology has played a significant role in transforming the traditional distance education school into a dynamic, interactive distance learning method using toll-free telephone lines, as well as a diverse array of personal computers, video devices, CD and DVD ROMs, online courses over the Internet, interactive devices, and other modern technological innovations. The future for distance study promises to be exciting.

FORMS OF DISTANCE EDUCATION

In its original form, teachers using distance education traveled to remote sites and taught a class, or corresponded with students through mail, telephone, or fax machine. Individualized study has been a method of reaching the remote student for some time. Detailed course instructions are sent to the learner who performs the assigned tasks and returns the completed work to the teacher for evaluation and reassignment if necessary.

Technology has raised the quality of individualized distance instruction. The use of various forms of electronic media increases time effectiveness and improves the delivery of information. Video, audio, and computer-based applications may enhance the product received by the independent learner. Electronic delivery can occur using synchronous communication, in which class members participate at the same time, or asynchronous communication where participants are separated by time (Romiszowski, 1993).

Video/audio models of distance education include broadcast television, cable television, satellite, microwave, fiber optics, and audio graphics. The most widely used format is broadcast and cable television (Parrott, 1995). However, developments in satellite and fiber optic systems have produced other successful programs. The interactive capability of

many of these networks has produced a distance classroom that is nearly identical to a regular classroom. Teachers and students can interact through both two-way video and one-way video with two-way audio systems. The recent development of Desktop Video Conferencing (DVC) which brings interactive video capability to the desktop computer, further enhances learning opportunities.

The linking of computer technology through the use of the Internet or CD-ROM with television transmission provides a potentially new dimension to distance education. This technique can link university professors to high school teachers, or to physically disabled students, in a distance setting (McLean, 1996).

Another form of interaction is the use of computer conferencing. This method utilizes asynchronous communication in such forms as an email list group, an Internet discussion group, or other types of conferencing software. Asynchronous methods of communication are especially appealing to the learner who has difficulty scheduling specific time- and place-bound course work.

Conclusion:

Distance learning is expanding and examples of it are increasing dramatically. Fewer than 10 states were using distance learning in 1987; today, virtually all states have an interest or effort in distance education. Distance learning systems connect the teacher with the students when physical face-to-face interaction is not possible. Telecommunications systems carry instruction, moving information instead of people. The technology at distant locations are important and affect how interaction takes place, what information resources are used, and how effective the system is likely to be.

Technology transports information, not people. Distances between teachers and students are bridged with an array of familiar technology as well as new information age equipment. What sets today's distance education efforts apart from previous efforts is the possibility of an interactive capacity that provides learner and teacher with needed feedback, including the opportunity to dialogue, clarify, or assess. Advances in digital compression technology may greatly expand the number of channels that can be sent over any transmission medium, doubling or even tripling channel capacity. Technologies for learning at a distance are also enlarging our definition of how students learn, where they learn, and who teaches them. No one technology is best for all situations and applications. Different technologies have different capabilities and limitations, and effective implementation will depend on matching technological capabilities to education needs.

Distance education places students and their instructors in separate locations using some form of technology to communicate and interact. The student may be located in the classroom, home, office or learning center. The instructor may be located in a media classroom, studio, office or home.

The student may receive information via satellite, microwave, or fiber optic cable, television (broadcast, cable or Instructional Television Fixed Services (ITFS), video cassette or disk, telephone audio conferencing bridge or direct phone line, audio cassette, printed materials - text, study guide, or handout, computer - modem or floppy disk, and compressed video. Recent rapid development of technology has resulted in systems that are powerful, flexible, and increasingly affordable. The base of available information technology resources is increasing with dramatic speed. Much has been learned about connecting various forms of technology into systems, so that the ability to link systems is growing. Most distance learning systems are hybrids, combining several technologies, such as satellite, ITFS, microwave, cable, fiber optic, and computer connections.

Interactivity is accomplished via telephone (one-way video and two-way audio), two-way video or graphics interactivity, two-way computer hookups, two-way audio. Interactivity may be delayed but interaction provided by teacher telephone office hours when students can call or through time with onsite facilitators. Classes with large numbers of students have a limited amount of interactivity. Much of the activity on computer networks is on a delayed basis as well. Possibilities for audio and visual interaction are increasingly wide.

In the earlier days of distance learning, it was most common to see distance learning used for rural students who were at a distance from an educational institution. The student might watch a telecourse on a television stations, read texts, mail in assignments and then travel to the local college to take an exam. This model is still in use, but as the technology has become more sophisticated and the cost of distance learning dropped as equipment prices dropped, the use of distance education has increased.

High front-end costs prevented an early widespread adoption of electronically mediated learning. Distance learning has been aggressively adopted in many areas because it can meet specific educational needs. As the concept of accountability became accepted and laws required certain courses in high school in order for students to be admitted to state colleges, telecommunications was examined as a way to provide student access to the required courses. Many rural school districts could not afford the special teachers to conduct required courses.

Distance education met this need by providing courses in schools where teachers were not available or were too costly to provide for a few students. It also fulfilled a need for teacher training and staff development in locations where experts and resources were difficult to obtain. These systems link learner communities with each other and bring a wide array of experts and information to the classroom.

*Corresponding Author:

Mojtaba Sadighi

Damavand Branch, Islamic Azad University, Damavand, Iran

*Corresponding author: sharif11070@yahoo.com

References:

- 1. Barron, D (1996). Distance education in north American library and information science education: Application technology and commitment. journal of the American society for information science. Vol.47, No.11.
- 2. Bates, T (1995) .Technology, open learning and distance education London:Routledge.
- 3. Beetham. H., & Sharpe, R. (eds.) (2007). Rethinking pedagogy for a digital age: Designing and delivering e-learning. London: Routledge.
- 4. Boltone, sharon Bauer (2002). Developing an instrument to Analze the application of adult learning principles to world wide web distance education courses using the Delphi technique. EdD.university of lousville.
- 5. Bonk, C., & Graham, C. (eds.). (2006). Handbook of blended learning: Global perspectives, local designs (pp. xvii - xxiii). San Francisco: Pfeiffer.
- 6. Carter, A (2001). Interactive distance education: implication for adult learner, Interactional Media, 28(3), PP: 249-261.
- 7. Chizari, M, Mohammad, H and linder, J.R (2002). Distance education competencies of Faculty members in Iran
- 8. Crossfield, N. L. (2001, May/June). Digital reference: the next new frontier. Latitudes, 10(3). Retrieved July 16, 2005, from http://nnlm.gov/psr/lat/v10n3/digitalref.html
- 9. Dodds, T., Perraton, H., & Young, M. (1972). One year's work: The International Extension College 1971-1971. Cambridge, UK: International Extension College.
- 10. Faulhaber, C. B. (1996). Distance learning and digital libraries: Two side of a single coin. Journal of the American Society for Information Science 47(11), 854-856.
- 11. Gandhi, S. (2003). Academic librarians and distance education challenges and opportunities.

- Reference & User Services Quarterly, 43(2), 138-154.
- 12. Garrels, M. (1997). Dynamic relationships: Five critical elements for teaching at a distance. Faculty Development Papers. Available online at: Indiana Higher Education Telecommunication System (http://www.ihets.org/distance_ed/fdpapers/1997/garrels.htm l).
- 13. Garrison, D. R.; H. Kanuka (2004). Blended learning: Uncovering its transformative potential in higher education. The Internet and Higher Education 7 (2), 95-105.
- 14. Garrison, R., & Vaughan, N. (2008). Blended learning in higher education: Framework, principles, and guidelines. San Francisco: Jossey-Bass.
- 15. Garrison, J. A., Schardt, C., & Kochi, J. K. (2000). web based distance countinuing education: a new way of thinking for students and instructors. Bulletin of the Medical Library Association, 88(3), 211-217.
- Grimes, G. (1992). Happy 100th anniversary to distance education. Retrieved August 25, 2005, from http://www.macul.org/newsletter/1992/nov,dec 92/going.html
- 17. Husler, R. P. (1996). Digital library: content preservation in digital world. DESIDOC-Bulletin of Information Technology, 16(1), 31-39.
- 18. Jeffres, M. Research in distance education. Retrieved August 20, 2005, from http://www.ihets.org/distance-/ipse/fdhandbook/research.html
- 19. Katsirikou, A., & Sefertzi, E. (2000). Inovation in the every day life of library. Technovation, 20(12), 705-709.
- 20. Lebowitz, G. (1997). Library service equity issue. The Journal of Academic Librarianship, 23(4), 303-308.
- 21. Lipow, A. G. (1999, January 20). Serving the remote user: reference service in the digital environment. In Proceedings of the ninth Australasian information online & on disc conference and exhibition.
- 22. Littlejohn, A., & Pegler, C. (2007). Preparing for blended e-learning. London: Routledge.
- 23. McLean, D. D. (1996). Use of computer-based technology in health, physical education, recreation, and dance. ERIC Digest 94-7. Washington, DC: ERIC Clearinghouse on Teaching and Teacher Education. ED 390 874.
- 24. Moore, M. (ed.). (2007). Handbook of distance education. New Jersey: Lawrence Erlbaum Associates.

- 25. Oliver, M., & Trigwell, K. (2005). Can blended learning be redeemed? Elearning, 2 (1), 17-26.
- 26. Parrott, S. (1995). Future learning: Distance education in community colleges. ERIC Digest 95-2. Los Angeles, CA: ERIC Clearinghouse on Community Colleges. ED 385 311
- Rintala, J. (1998). Computer technology in higher education: An experiment, not a solution. Quest, 50(4), 366-378. EJ 576 392 Romiszowski, A. (1993). Telecommunications and distance education. ERIC Digest 93-2. Syracuse, NY: ERIC Clearinghouse on Information Resources. ED 358 841
- 28. St. Pierre, P. (1998). Distance learning in physical education teacher education. Quest, 50(4), 344-356. EJ 576 391
- 29. Strain, J. (1987). The role of the faculty member in distance education. American Journal of Distance Education, 1 (2).
- 30. Summers, M. (1997). From a distance: Or, how I learned to love my "tv" class. Faculty Development Papers. Available online at: Indiana Higher Education Telecommunication System (http://www.ihets.org/distance_ed/fdpapers/1997/summers.html).

7/5/2011