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Abstract: Bacillus is a Gram-positive aerobic endospore forming genera which has great diverse nature including 
antibiotic production, nitrogen fixation, degradation of cellulose, starch, pectin and protein and good plant growth 
promoting activities along with biological control of various fungal diseases involving various mechanisms such as 
antibiosis and lysis. Hence on the basis of functions of various microorganism soil may be classified as disease-
inducing, disease-suppressive, zymogenic and synthetic soils. Bacilli isolated from disease-suppressive soil have 
many unique properties such as the production of various types of phytopathogenic compounds. Liquid, powder and 
granular formulations of spore-forming strains of bacilli have an advantage over the non-spore forming strains such 
as Pseudomonas (formulated as vegetative cells). Spores are more robust and resistant to the elevated temperature 
and high concentrations of chemicals. Moreover, the shelf-life of biological products based on bacterial spores can 
be up to 1-3 years. A disadvantage of the use of spores is that after application they need time to return to the 
metabolic active stage of a vegetative cell. 
[Pankaj Kumar, Satyajeet Khare and R. C. Dubey. Diversity of Bacilli from Disease Suppressive Soil and their Role 
in Plant Growth Promotion and Yield Enhancement. New York Science Journal 2012;5(1):90-111]. (ISSN: 1554-
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1. Introduction  

 The genus Bacillus belongs to the family 
Bacillaceae which is distinguished by the production of 
highly refractile resting structures formed within the 
bacterial cells called endospores. This genus is Gram-
positive, chemoheterotrophic rods that are usually 
motile and peritrichously flagellated. They are aerobic 
or sometimes facultative bacteria and catalase positive. 
Endospore formation, universally found in this group, 
is thought to be a strategy for survival in the soil, 
wherein these bacteria predominate and the endospores 
make them resistant to unfavorable environment 
condition. These features adopt the formulation and 
used to apply for enhanced production of valuable 
crops. Therefore, production of antibiotics and Bacillus 
spores suggests that these species may be attractive 
biological control agents and good Plant Growth 
Promoting Bacteria (PGPB) for growth enhancement 
and plant disease control (Landa et al. 1997). Bacillus 
has been one of the first successful biocontrol agents 
used against insects and pathogens. Bacillus spp. 
rapidly and aggressively colonize the root system, 
enhance the plant growth and yield by direct and 
indirect Plant Growth Promoting (PGP) activities and 
control a wide range of  plant pathogens including 
Erwinia corotovora, Fusarium species, Fusarium 

oxysporum, Macrophomina phaseolina, Phytophthora, 
Pythium species, and Rhizoctonia solani, etc. The 
broad-spectrum antagonistic activities of Bacillus are 
executed by secretion of a number of metabolites 

including antibiotics, volatile compound HCN, 
siderophores, enzymes chitinase and β-1, 3-glucanase 
(Ongena and Jacques 2007; Singh et al. 2008; Chung et 
al. 2008; Chen et al. 2009; Arrebola et al. 2010). 
 These plant beneficial microorganisms are known 
to antagonize phytopathogens through competition for 
niches (e.g. iron through siderophores synthesis); 
parasitism, that may involve production of hydrolytic 
enzymes such as chitinase, β-1,3 glucanase, protease 
and cellulose, that lyse pathogen cell walls, inhibit the 
pathogens by secreting anti-microbial compounds and 
induce systemic resistance in host plants (Compant et 
al. 2005). Hence, suppressive soils can be considered as 
healthy soils. Baker and Cook (1974) described the 
suppressive soils as ‘soils in which disease severity or 
incidence remains low, in spite of the presence of a 
pathogen and a susceptible host plant, and climatic 
conditions favorable for disease development’. At the 
dawn of biotechnology age, biological researchers 
turned to the study the natural disease suppressive soil 
where pathogens do not survive or fail to produce 
disease in host plant (Rovira and Wildermuth 1981). 
Suppressive soils have been the subject of considerable 
research both in past and present (Akhtar and Siddiqui 
2009).  There are several species of Bacillus known as 
plant growth and health supporting in nature because of 
beneficial characteristic features which act directly and 
indirectly (Tilak and Ready 2006; Singh et al. 2008). 
The principal mechanisms of plant growth promotion 
include: production of phytohormones such as indole 
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acetic acid (IAA), solubilization of phosphate, 
siderophore production, antibiosis, inhibition of plant 
ethylene synthesis, production of volatile compounds 
such as HCN and induction of plant systemic resistance 
to pathogens (Ongena and Jacques 2007; Idris et al., 
2007; Richardson et al. 2009). One or more of these 
mechanisms may contribute to the increases obtained in 
plant growth and development that are higher than 
normal for plants grown under standard cultivation 
conditions.  
 
2. Diversity of Bacilli 

      In 1872, Ferdinand Cohn, a contemporary of Robert 
Koch, recognized and named the bacterium as B. 

subtilis, capable of growth in the presence of oxygen 
and forms a unique type of resting cell called 
endospore. The trivial name assigned to them is aerobic 
spore-formers. The organism represented what was to 
become a large and diverse genus of bacteria named 
Bacillus in the Family Bacillaceae. It is very interesting 
to note that 95% of the Gram-positive soil bacilli 
belong to the genus Bacillus. The remaining 5 % are 
confirmed to be Arthrobacter and Frankia (Garbeva et 
al 2003). In view of the existing diversity within the 
genus Bacillus and related genera numerous valid 
descriptions of new genera and species as well as many 
classifications have emerged (Garrity 2001).The genus 
Bacillus remained intact until 2004, when it was split 
into several families and genera of endospore-forming 
bacteria. On the basis of extensive studies of the small-
subunit ribosomal RNA sequence, the genus Bacillus 

comprises of 88 species and 2 subspecies (Fritze 2004). 
 There is a great diversity of physiology among the 
aerobic spore formers, not surprisingly considering 
their recently discovered phylogenetic diversity. Their 
collective features include degradation of all substrates 
derived from plant and animal sources including: 
cellulose, starch, pectin, proteins, agar, hydrocarbons 
and others, antibiotic production, nitrification, 
denitrification, nitrogen fixation, facultative 
lithotrophy, autotrophy, acidophily, alakliphily, 
psychrophily, thermophily and parasitism. Endospore 
formation, universally found in this group, is thought to 
be a strategy for survival even under adverse soil 
environment wherein these bacteria predominate. 
Aerial distribution of the dormant spores probably 
explains the occurrence of aerobic spore formers in 
most habitats. PGPR competitively colonizes plant 
root, stimulates plant growth and reduces plant disease 
(Kloepper and Scorth 1978). Some members of the 
Bacillus genus are B. amyloliquefaciens, B. anthracis, 

B. cereus and B. subtilis. B. subtilis established model 
organism for research on Gram-positive bacteria. 
Several Bacillus strains can protect plants from 
deleterious pathogens such as B. subtilis, B. cereus and 
B. amyloliquefaciens. B. amyloliquefaciens was first 

isolated in 1943 and named after its ability to produce 
amylase. It is known to produce several antibiotics and 
is often found in soil and associated with plants (Yu et 
al. 2002). 
 Analysis of the extracted DNA directly from soil 
samples, especially that use the sequencing of the 16S 
ribosomal RNA genes (16S rRNA), have confirmed the 
occurrence of easily cultivable bacteria as well as a 
wide variety of non-cultivable strains of species that 
belong to the genera Bacillus (Garbeva et al. 2003). 
Nevertheless, evidence of the relative number of 
cultivable and non-cultivable representatives of bacilli 
in different soils is surrounded by controversy. Report 
of some workers suggested that most 16S rRNA 
sequences of bacilli isolated directly from soil samples 
are very similar to the sequences of cultivable and 
named species (Garbeva et al. 2003), while other 
reported that the predominant sequences found in 
different soils are not the same as those presented by 
bacilli isolated and easily cultivable (Felske et al. 
1999).  Soil is the main reservoir of the genus Bacillus 

(Watanabe and Hayano 1993). Members of this genus 
are used for the synthesis of a very wide range of 
important medical, agricultural, pharmaceutical and 
other industrial products. These include a variety of 
antibiotics, enzymes, amino acids and sugars (Joung 
and Cote 2002). Sequencing of the 16S rDNA 
hypervariant region is a rapid and reliable way for 
Bacillus classification and basically informative at 
species level (Goto et al. 2000). Nevertheless, full 
sequencing of the16S rDNA gene is sometimes useful 
for more detailed classification within some Bacillus 

groups. On the other hand, closely related taxa are often 
extremely similar in their 16S rDNA sequences (La-
Duc et al. 2004). For instance, some members of the B. 

cereus group (B. anthracis, B. cereus and B. 

thuringiensis) have high levels of 16S rDNA sequence 
similarity (>99 %) (Sacchi et al. 2002).  
 The 16S rRNA gene has been usually used as a 
trustworthy molecular marker for phylogentic 
identification of organisms. It contains conserved 
region, a unique array of sequences that are relative 
among species or different species (Moyer et al. 1994). 
It is the basis of molecular tools such as ribotyping, in-

situ hybridization, DNA sequence analysis and 
restriction fragment length polymorphism (RFLP), 
which are now proposed to provide accurate genetic 
diversity information of microbes. Based on the use of 
the 16S rRNA, the DNA sequence analysis is used in 
phylogenic studies (Lagace et al. 2004). RFLP is used 
to identify the difference of DNA fragment length 
(polymorphism) by digesting with restriction enzymes. 
RFLP analysis on 16S rRNA gene or amplified rDNA 
restriction analysis (ARDRA) is a useful technique for 
genotype identification, to infer genetic variability and 
similarity of microorganisms (Yang et al. 2007). 
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 Ash et al. (1991) separated 51 Bacillus species into 
five phylogenetically distinct clusters. Further 
characterizations at the genotypic and phenotypic levels 
of selected Bacillus species have led to the creation of 
several new genera: Amphibacillus (Niimura et al. 
1990), Alicyclobacillus (Wisotzkey et al. 1992), 
Paenibacillus (Ash et al. 1993), Aneurinibacillus and 
Brevibacillus (Shida et al. 1996a), Virgibacillus 
(Heyndrickx et al. 1998), Gracilibacillus and 
Salibacillus (Wainø et al. 1999), Filobacillus 
(Schlesner et al. 2001), Geobacillus (Nazina et al. 
2001), Ureibacillus (Fortina et al. 2001), and 
Jeotgalibacillus and Marinibacillus (Yoon et al. 2001). 
Recently, partial 16S rDNA sequence (Goto et al. 
2000) and rRNA gene restriction patterns (Joung & 

Cote 2002) have been used for the rapid identification 
or classification of Bacillus species and related genera, 
respectively. 
 In the second edition of Bergey’s Manual of 
systematic Bacteriology (Bergey and Boone, 2009), 
phylogenetic classification schemes landed the two 
most prominent types of endospore-forming bacteria, 
clostridia and bacilli, in two different Classes of 
Firmicutes. Clostridia include the Order Clostridiales 
and Family Clostridiaceae with 11 genera including, 
Clostridium. Bacilli belong to the Order Bacillales and 
the Family Bacillaceae. In this family there are 37 new 
genera with Bacillus. Table 1 represent the important 
taxonomic relocation in the Genus Bacillus from Ist 
edition to 2nd edition. 

 
Table 1. Important Taxonomic Relocations in The Genus Bacillus from 1986 to 2009 

Ist Edition (1986) 2
nd

 Edition (2009) References 

Bacillus acidocaldarius Alicyclobacillus acidocaldarius Wisotzjsey et al. (1992) 
Bacillus agri Brevibacillus agri Shida et al. (1996) 
Bacillus alginolyticus Paenibacillus alginolyticus Shida et al. (1997a) 
Bacillus amylolyticus Paenibacillus amylolyticus Shida et al. (1997b) 
Bacillus alvei Paenibacillus alvei Ash et al. (1993) 
Bacillus azotofixans Paenibacillus azotofixans Logan et al. (1998) 
Bacillus brevis Brevibacillus brevis Shida et al. (1996) 
Bacillus globisporus Sporosarcina globisporus Yoon et al. (2001) 
Bacillus larvae Paenibacillus larvae Heyndrickx et al. (1996) 
Bacillus laterosporus Brevibacillus laterosporus Shida et al. (1996) 
Bacillus lentimorbus Paenibacillus lentimorbus Pettersson et al. (1999) 
Bacillus macerans Paenibacillus macerans Ash et al. (1993) 
Bacillus pasteurii Sporosarcina pasteurii Yoon et al. (2001) 
Bacillus polymyxa Paenibacillus polymyxa Ash et al. (1993) 
Bacillus popilliae Paenibacillus popilliae Pettersson et al. (1999) 
Bacillus psychrophilus  Sporosarcina psychrophila Yoon et al. (2001) 
Bacillus stearothermophilus Geobacillus stearothermophilus Nazina et al. (2001) 
Bacillus thermodenitrificans Geobacillus thermodenitrificans Nazina et al. (2001) 

 
 
          B. polymyxa now known as Paenibacillus 

polymyxa and studied under new genera 
(Paenibacillus) on the basis of 16S rRNA (2nd edition 
of Bergey’s manual). Members of the genus 
Paenibacillus are facultatively anaerobic organisms 
that produce spores in definitely swollen sporangia and 
have G+C contents ranging from 45 to 54 mol%. Some 
of these organisms excrete diverse assortments of 
extracellular polysaccharide-hydrolyzing enzymes to 
hydrolyze complex carbohydrates including alginate, 
chondroitin, chitin, curdlan, and other polysaccharides 
(Shida et al. 1997). A number of species under these 
genera are known to produce polysaccharides (Yoon et 
al. 2002), antifungal, and antimicrobial agents, such as 
polymyxin, octopityn, and baciphelacin (Chung et al. 
2000). This review reveals the PGPR activities of 
Bacillus spp. only, and hence there is limitation about 
Paenibacillus. 

3. Disease-Suppressive Soil 

          Healthy soils are essential for the integrity of 
terrestrial ecosystems to remain intact or to recover 
from disturbances such as drought, climate change, pest 
infestation, pollution, and human exploitation including 
agriculture (Ellert et al. 1997). Based on function of 
microorganisms soil can be classified in four types such 
as: (i) disease-inducing soils, (ii) disease-suppressive 
soils, (iii) zymogenic soils and (iv) synthetic soils (Higa 
and Parr 1994). In some soils, microorganisms are able 
to suppress the growth of certain phytopathogens/ 
parasites without the use of chemical pesticides, and 
these soils are referred to as disease suppressive soils 
(Timmusk 2003). Thus, suppressive soils are regarded 
as the store-house of benficial microorganisms. 
 Such exceptional places are known as natural 
suppressive soils (Hornby 1983; Weller et al. 2002). 
Soil quality has been defined as the capacity of a soil to 
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function within ecosystem boundaries to sustain 
biological productivity, maintain environmental 
quality, and promote plant and animal health (Doran 
and Parkin 1994), while a soil is considered suppressive 
when in spite of favorable conditions for disease a 
pathogen either cannot become established even if it es-
tablishes but produces no disease or establishes and 
produces disease for a short time and then declines. 
Suppressiveness is linked to the types and numbers of 
soil organisms, fertility level, and nature of the soil 
itself (drainage and texture). The mechanisms by which 
disease organisms are suppressed in these soils include: 
induced resistance, direct parasitism (one organism 
consuming another), nutrient competition, and direct 
inhibition by beneficial organisms (Sullivan 2004). 
 Soil suppressiveness to diseases caused by the 
most important soil-borne pathogens includes fungal 
and bacterial pathogens and also nematodes (Baker and 
Cook 1974). The response of plants growing in the soil 
contributes to suppressiveness. This is known as 
induced resistance and occurs when the rhizosphere is 
inoculated with a weakly virulent pathogen. After being 
challenged the weak pathogen, the plant develops a 
capacity for future effective response to a more virulent 
pathogen. In most of the cases, adding mature compost 
to a soil induces disease resistance (Sullivan 2004). The 
level of disease suppressiveness is typically related to 
the level of total microbiological activity in a soil. The 
larger the active microbial biomass, the greater the soil 
capacity to use carbon, nutrients, and energy, thus 
lowering their availability to pathogens. In other words, 

competition for mineral nutrients is high, as most soil 
nutrients are tied up in microbial bodies. Nutrient 
release is a consequence of grazing by protozoa and 
other microbial predators; once bacteria are digested by 
the predators, nutrients are released in their waste.  
 Timmusk (2003) depicted disease suppression due 
to high biodiversity of bacterial populations that crate 
conditions unfavorable for plant disease development. 
Moreover, PGPR offer a solution to the biocontrol of 
deleterious phytopathogens. The PGPR of the Bacillus 

group is a biological solution to the disease suppression 
of phytopathogenic fungi due to their ability to form 
heat- and desiccation-resistant spores (Emmert and 
Handelsman 1999). Number of traits such as 
production of siderophore (Wilson et al. 2006), and 
HCN (Fiddaman and Rossall 1993) have been reported 
to control the fungal pathogens and enhanced the 
growth and yield of plants through production of IAA 
(Idris et al. 2007) and solubilization of phosphate 
(Kumar and Chandra 2008). 
 In our laboratory, quantitative microbial 
parameters and physicochemical properties of soil 
sample were evaluated for detection of disease 
suppressive soils of different major Indian crop fields. 
Quantitative microbial parameters of soil sample from 
Haridwar and Varanasi showed higher bacterial 
population than fungal population which confirmed 
disease suppressive nature of both the samples. Higher 
bacterial population might be due to the production of 
antifungal compound that out number the fungal 
population (Table 2).  

 

 

Table 2. Microbial Population of Disease Suppressive Soil in Different Soil Samples of Indian Towns [Values 

are Means of ±±±± SD of three Replications]. 
 
 

                                                 

(Adopted from PhD Thesis, Khare, 2009) 
 

 

 

 

 

 

     Sampling 

     Sites 

(Name of Town) 

       Bacterial population                                            Fungal population 

10
4 

 

10
5
 10

4
 10

5
 

1. Aligarh 6.12±0.17 5.47±0.16 5.21±0.17 5.10±0.16 
2. Bhopal 5.42±0.12 5.11±0.20 5.24±0.20 5.07±0.15 
3. Chandigarh 5.28±0.12 5.05±0.20 5.18±0.12 5.0±0.20 
4. Dehradun 6.0 ±0.17 5.68±0.16 5.14±0.17 4.75±0.16 
5. Haridwar 6.04±0.10 5.77±0.12 5.08±0.11 4.68±0.14 
6. Jhansi 5.88±0.12 5.44±0.20 5.85±0.20 5.35±0.15 
7. Kanpur 5.48±0.12 5.14±0.20 5.37±0.12 5.11±0.20 
8. Varanasi 6.24 ±0.1 6.18± 1.4 4.46±0.13 4.22±0.14 
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3.1  Characteristic of Suppressive Soil 

        The ability of suppressive soils to the growth or 
activity of soil-borne phytopathogens has been 
categorized as general suppression, general or 
nonspecific antagonism or biological buffering (Weller 
et al. 2002). General suppression is defined as the total 
microbial biomass in soil which competes with the 
pathogen for resources or causes inhibition due to 
antagonistic activity which is enhanced by good 
fertility of soil by the addition of organic matter and 
other agronomic matter (Rovira and Wildermuth 1981). 
All of which can increase soil microbial activity and the 
suppressiveness is not transferable between soils 
(Rovira and Wildermuth 1981). When inoculum of a 
pathogen is added to raw and sterilized soil samples, 
greater severity of disease on a host was found in the 
sterilized soil over raw soil. Specific suppression is 
superimposed over the background of general 
suppression and is partly due to the effects of individual 
or selected groups of microorganisms during some 
stage in the life cycle of a pathogen. Transferability is 
the key characteristic of specific suppression and the 
term transferable suppression has been used 
synonymously with specific suppression (Weller et al. 
2002). Suppressive soils undoubtedly owe their activity 
to a combination of general and specific suppression. 
Both function as a continuum in the soil, although they 
may be affected differently by edaphic, climatic, and 
agronomic conditions (Rovira and Wildermuth 1981). 
Suppressive soils also have been differentiated 
according to their longevity.  
 Hornby (1983) again divided suppressive soils into 
long-standing suppression and induced suppression.  
Former, suppression is a biological condition naturally 
associated with the soil, its origin is not known and 
appears to survive in the absence of plants. While, 
induced suppressiveness is initiated and sustained by 
crop monoculture or by the addition of inoculum of the 
target pathogen. Most suppressive soils maintain their 
activity when brought into greenhouse or laboratory, 
which facilitates assessment of their properties and 
mechanisms of suppression under more controlled and 
reproducible conditions. 
 The first step is to determine whether 
suppressiveness can be destroyed by pasteurization 
(moist heat, 60oC for 30 min) (Shipton et al. 1973), by 
using selective biocides (e.g. novobiocin or 
chloropicrin), or by harsher treatments (e.g. steam, 
methyl bromide, autoclaving, or gamma radiation) 
(Wiseman et al. 1996; Weller et al. 2002). Both general 
and specific suppression are eliminated by autoclaving 
and gamma radiation. General suppression is reduced 
but not eliminated by soil fumigation, and usually 
survives at 70°C moist heat (Cook and Rovira 1976). 

 A second step which allows confirmation of the 
biological basis of suppression involves transfer of 
suppressiveness to a raw conducive, fumigated or 
sterilized soil by addition of 0.1-10% (w/w) or less of 
the suppressive soil. The impact of soil edaphic factors 
on disease development in soil transfer studies is 
minimized when suppressive and conducive soils are 
diluted into a common background soil allowing a 
direct comparison of the introduced microbiological 
components. Composts have been used for centuries to 
maintain soil fertility and plant health. Hoitink (2004) 
reported the control of phytopathogens with composts 
which indicates its disease suppressive nature. Bent et 
al. (2008) reported 5 to 16-fold reduction in population 
of root-knot nematode as compared to identical but 
pasteurized soil two months after infestation. 
 In suppressive soils the roots of crop plants are 
protected from diseases that would ordinarily be caused 
by soil-borne pathogenic microorganisms. Most of 
these pathogens are fungi, but some bacterial pathogens 
and plant-deleterious nematodes are also suppressed in 
certain soils. But the question is that how disease 
suppressive soil works and whether it is directed at 
specific pathogens or at pathogen in general. 
 
3.2 Role of Disease Suppressive Soil to Protect 

Plants Health  
          The complexity of the disease-suppression 
phenomenon can be highlighted by four key 
interpretations. First, certain suppressive soils when 
pasteurized (by wet heat at 60ºC for 30 min) lose their 
suppressiveness, and other harsher antimicrobial 
treatments (gamma radiation or autoclaving) have the 
same effect (Stutz et al. 1986). Second, suppressiveness 
can be transferable: an inoculum of 0.1–10% of a 
suppressive soil introduced into a conducive soil can 
establish disease suppression (Weller et al. 2002). 
Sensitivity to antimicrobial treatments and 
transferability indicate that disease suppression results 
from the activities of soil microorganisms that act as 
antagonist against pathogen. The suppressiveness of 
some soils is not transferable (Hornby 1983; Weller et 
al. 2002). Third, when the pH of a Fusarium wilt-
suppressive soil was lowered from 8 to 6 by the 
addition of H2SO4, carnations were much less protected 
from wilting (Scher and Baker 1980). This loss of 
suppressiveness caused by a simple pH change 
illustrates the importance of the soil environment. Clay 
types and the mineral-ion content of soils, humidity, 
temperature and fertilizer input can all affect the 
success of disease suppression (Lucy et al. 2004). 
Fourth, several years of monoculture can induce 
disease suppression in some soils. The best-studied 
example is take-all decline which has been observed in 
soils in the northwestern United States, the Netherlands 



New York Science Journal, 2012; 5(1)                          http://www.sciencepub.net/newyork 

95 

 

and Australia (Weller et al. 2002). After 2 or more 
years of consecutive cultivation of wheat, the 
symptoms of take-all disease is caused by the fungus 
Gaeumannomyces graminis var. tritici, usually 
increase, but it declined in subsequent years of wheat 
monoculture (Hornby 1983; Weller et al. 2002). The 
phenomenon of induced disease suppression shows that 
a host plant grown in monoculture can have a profound 
influence on the interaction with a pathogen. Soil-borne 
pathogens are notoriously difficult to control. Crop 
rotation, breeding for resistant plant varieties and the 
application of pesticides are insufficient to control root 
diseases of important crop plants. Since the earliest 
observations of antagonistic disease suppressing soil 
microorganisms more than 70 years ago, plant 
pathologists have been fascinated by the idea that such 
microorganisms could be used as environmental 
friendly biocontrol agents, both in the field and in 
greenhouses.  
 
4. Plant Growth Promoting Activities of Bacilli 
        The mechanisms of plant growth-promotion by 
non-pathogenic plant-associated bacteria have not been 
completely elucidated but the important mechanisms 
are categorized into the direct and indirect plant 
growth-promoting mechanisms (Glick et al. 1995). 
PGPB stimulate plant growth either directly or 
indirectly or both. The essential direct plant growth-
promoting (PGP) mechanisms include nitrogen 
fixation, solubilization of minerals such as phosphorus, 
production of siderophore that solubilize and sequester 
iron, production of plant growth regulators (hormones) 

that enhance plant growth at various stages of 
development, whereas indirect plant growth-promotion 
occurs when PGPR promote plant growth by improving 
growth-restricting conditions (Glick et al. 1999; 
Herridge 2008). The production of antifungal volatiles 
by B. subtilis suggests that more than one modes of 
action of antifungal activity is available to this 
bacterium and suggested that volatiles from B. subtilis 
may also contribute to the antagonistic nature of the 
species (Fiddaman and Rossall 1993). 
 In the concept of PGPR two simple terms have 
been adopted: intracellular PGPR (iPGPR), i.e. bacteria 
that live inside plant cells and being localized in the 
nodules, and extracellular PGPR (ePGPR), i.e. bacteria 
that live outside plant cells and being able to enhance 
plant growth through the production of signal 
compounds that directly stimulate plant growth to the 
improvement of plant disease resistance or to the 
mobilization of soil nutrients to the plant. The ePGPR 
can be subdivided into three types based on the degree 
of association with plant roots: bacteria living near but 
not in contact with the roots, bacteria colonizing the 
root surface, and those living in the spaces between 
cells of the root cortex (Gray and Smith 2005). 
Researches on ePGPRs were initially focused on 
Bacillus and Anthrobacter spp. (Brown 1974). Among 
the most widely studied ePGPRs bacilli are B. cereus 

(Handelsman et al. 1990; Ryder et al. 1999), and B. 

thuringiensis (Bai et al. 2002 a, b). Several workers 
have reported the effect of different Bacillus spp. on 
enhancement of growth of different crops (Table 3). 

 

Table 3.  Effect of Different Bacillus spp. on Enhancement of Growth Parameters of Different Crops 
Bacillus spp. Benefited 

Plants 

Effect on growth parameters References 

Bacillus strains Conifer Increased seedling emergency and biomass Chanway et al. (1991) 
B. licheniformis* Chickpea  Control M. phaseolina Siddiqui and Mahmood (1992) 
B. subtilis Chickpea  Control M. phaseolina Siddiqui and Mahmood (1993) 
B. subtilis Chickpea  Control M. phaseolina Siddiqui and Mahmood  (1995b) 
B. subtilis Pigeon pea Control Heterodera cajani and F. udum Siddiqui and Mahmood (1995c) 
B. pumilus* Cucumber  Control Colletotrichum orbiculare Wei et al. (1996) 
Bacillus sp. L324-92 Wheat Contorl Gaeumannomyces graminis var tritici, 

Rhizoctonia root rot, R. solani AG8, Pythium root 
rot, Pythium irregular,P. ultimum. 

Kim et al. (1997) 

B. subtilis Pigeon pea Control F. udum Podile and Laxmi (1998) 
B. pumilus 

B. subtilis* 
Cucumber  Control Colletotrichum orbiculare Raupach and  Kloepper (1998) 

B. subtilis and  
B. cereus 

Wheat Control Take all (G. graminis var tritici), 
Rhizoctonia root rot (R. solani AG8) 

Ryder et al. (1999) 

B. subtilis, B. cereus, 

P. putida* 
Cucumber Control Pythium sp. Uthede et al. (1999) 

B. polymyxa and  
P. fluorescens PRS9, 

Tomato Control F. oxysporum f. sp. 
Lycopersici 

Khan and Akram 
(2000) 

B. megaterium B 153-2-2 Soybean  Control R. solani Zheng and Sinclair (2000) 
B. pumilus SE34* Loblolly pine Control Cronartium 

quercuum f. sp. fusiforme 
Enebak and Carey (2000) 

B. subtilis, 

P. putida 
Lettuce and 
Cucumber 

Control Pythium  aphanidermatum Amer and Utkhede (2000) 
 

B. brevis Pigeon pea Control Fusarial wilt Bapat and Shah (2000) 
B. subtilis AF1 Ground nut and Control F. udum and Manjula and Podile (2001) 
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Pigeon pea A. niger 

Bacillus spp* Wheat Control G. graminis, R. solani,  

R. oryzae, P. ultimum, 
Cook et al. (2002) 

Bacilus sp. BC121 Not specified Control Curvularia lunata Basha and Ulaganathan  (2002) 
B. pumilus SE34* Tomato  Control Phytophthora infestans Yan et al. (2002) 
B. pumilus Pearl millet Control S. graminicola Niranjan Raj et al.(2003) 
B. subtilis* Tomato  Control R. solani Szczech and Shoda (2004) 
B. subtilis GB03 
B. amyloliquefaciens IN937a 
B. pumilus SE-34 
B. pumilus T4, 
B. pasteurii C9 
Paenibacillus polymyxa E681 * 

Arabidopsis Increased foliar fresh weight Ryu et al. (2005) 

B. pumilus * Indian mustard 
and Rape  
 

Increased root elongation in cadmium 
supplemented 
soil  

Belimov et al. (2005) 

B. and fluorescent 
pseudomonads  

Not specified Control F. udum Siddiqui et al. (2005) 

B. subtilis CE1 Maize F. verticilloides Cavaglieri et al. (2005) 
B. cereus and  B.circulans  Maize Increased grain yield Tilak & Reddy (2006) 
Bacillus spp CIMAP-B1 Pyrethrum Control Root rot and wilt R.solani (PyRh1)  Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Geranium Control Wilt R. solani (GRh1)  Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Geranium Control Anthracnose Colletotrichum acutatum Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Indian basil Control Leaf blight Colletotrichum capsici Abdul et al. (2007)  
Bacillus spp CIMAPF-B1 Aloe Control Leaf spot Colletotrichum gloeosporiodes Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Opium poppy Control Collar rot R. solani (OPRh1) Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Java citronella Control Yellowing Pythium aphanidermatum Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Java citronella Control Leaf blight Curvularia andropogonis Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Menthol mint Control Leaf spot Alternaria alternata Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Menthol mint Control Leaf blight Corynespora cassiicola Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Menthol mint Control Wilt F. oxysporum Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Menthol mint Control Wilt Fusarium semitectum Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Menthol mint Control Leaf blight Helminthosporium carbonum Abdul et al. (2007)  
Bacillus spp CIMAP-B1 Menthol mint Control Stolon & root rot Thielavia basicola Abdul et al. (2007)  
Bacillus sp.* Wheat  Control A. triticina Siddiqui (2007) 
Bacillus sp. * Tea  Control Exobasidium vexans Saravanakumar et al.  (2007) 
B. subtilis BN1 Pinus Control root rot M. phaseolina 

and growth enhancement 
Singh et al. (2008) 

B. cereus * Wheat Improved plant growth and nutrition under salt 
stress  

Egamberdieva et al. (2008) 

Bacillus OSU-142,  
Bacillus M-3 * 

Strawberry  
 

Increased total soluble solids, total sugar and 
reduced Sugar 

Pirlak and Kose (2009) 

B. cepacia strain OSU-7 Stored potatoes  Control Fusarium dry rot Recep et al. (2009) 
B. subtilis strain BA 142, 
B. megaterium strain M 3 
* 

Radish  
 

Improved the percentage of seed germination 
under 
saline conditions 

Kaymak et al. (2009) 

B. subtilis EU07 Tomato Control F. oxysporum f. sp. radicislycopersici Baysal et al. (2009) 
B. subtilis, B. lecheniformis, 
B. cereus* 

Sorghum Control  F. oxysporum Jedabi  (2009) 

* Other group of PGPR also included. 
 

 

4.1  IAA Production 
        Auxins (Greek auxein, to increase) are plant 
hormones originated from the amino acid tryptophan. 
The natural auxin is called indol acetic-acid (IAA). 
Tryptophan is the precursor of IAA. Although there are 
four different pathways for IAA biosynthesis, all of 
them are originated from tryptophan (Raven et al. 
1996). Production of IAA (auxin) is widespread among 
plant associated bacteria. The first studies were 
conducted in the 1970’s. Beneficial bacteria synthesize 
IAA predominantly by an alternate tryptophan 
dependant pathway, while IAA production in plant 
growth promotion remains undetermined. Promotion of 

root growth is one of the major markers by which the 
beneficial effect of PGPB is measured (Glick et al. 
1995).  
 Idris et al. (2007) reported that the Gram-positive 
B. amyloliquefaciens and B. subtilis secreted significant 
amounts of IAA. Increased IAA production after 
addition of tryptophan and drastic reduction of IAA 
production in engineered trp mutants suggested that the 
main route of IAA biosynthesis in this bacterium is 
dependent on tryptophan. 
 Several routes of tryptophan-dependent IAA 
biosynthesis in microorganisms have been reported. 
IAA biosynthesis generally occurs either by 
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involvement of the indole acetamide (IA) pathway 
which is constitutive in nature or by inducible indole 
pyruvic acid (IPA) pathway (Patten and Glick 1996). 
Srinivasan et al. (1996) reported 45% Bacillus isolates 
are IAA producers such as B. megaterium, B. brevis, B. 

pumilus, B. polymyxa and B. mycoides. Enhancement of 
plant growth by root-colonizing Bacillus and 
Paenibacillus strains is well documented (Kloepper et 
al. 2004). PGP B. pumilus SE34 secreted the high 
levels of indole-3-acetic acid (IAA) in tryptophan-
amended medium in stationary phase as determined by 
chromogenic analysis and high-performance liquid 
chromatography (Kang et al. 2006). 
 It has been suggested that 80% of bacteria isolated 
from the rhizosphere can produce IAA (Antoun et al. 
1998). Spaepen et al. (2007) reviewed different 
pathways involved in the biosynthesis of IAA based on 
the chemical nature of intermediate molecules 
produced using tryptophan as precursor. The plant 
beneficial Gram-negative bacteria synthesize IAA 
following different pathways that involves indole-3-
pyruvic acid (IPA), indole-3-acetamide (IAM), or 
indole-3-acetonitrile (IAN) as important intermediates 
(Patten and Glick 1996). However, in Gram-positive 
bacteria the main route for biosynthesis of IAA 
involves IPA (Vandeputte et al. 2005) IAA production 
by PGPR can vary among different species and strains 
and influenced by culture growth stage and substrate 
availability (Idris et al. 2007). 
 Idris et al. (2004) demonstrated that growth 
elongation of maize seedlings was significantly 
enhanced in the presence of diluted culture filtrate of B. 

amyloliquefaciens FZB42. Moreover, strong curvature 
obtained after application of bacterial culture filtrates 
on maize coleoptiles indicated the presence of an auxin 
(IAA)-like compound in the supernatant of FZB42. The 
presence of IAA-like compounds in the culture filtrates 
of several members of this group, including FZB42 was 
detected by enzyme-linked immunosorbent assay 
(ELISA) tests with IAA-specific antibodies, when those 
strains were grown at low temperature and low 
aeration. Singh et al. (2008) reported that B. subtilis 
BN1stimulated chir-pine seedling growth possibly due 
to PGP attributes. Significant growth enhancement of 
lodgepole pine seedlings has been reported due to IAA 
production by Bacillus isolates (Chanway et al. 1991). 
 Bacillus group offers a biological solution to the 
formulation problem due to their ability to form heat 
and desiccation resistant spores (Emmert and 
Handelsman 1999). It is also likely that PGP effects 
exerted by some plant-beneficial bacteria are due to the 
production of plant hormones such as indole-3-acetic 
acid (IAA), cytokinins, and gibberellins. 
 Besides IAA, GC-MS analysis verified gibberellin 
production in B. pumilus and B. licheniformis 

(Gutierrez-Mareño et al. 2001), while Ortíz-Castro et 

al. (2008) reported plant growth promotion by B. 

megaterium due to cytokinin signaling. 
 
4.2   Phosphate Solubilization 
        Phosphorus plays a key role in many essential 
processes including cell division, photosynthesis, break 
down of sugar, energy and nutrient transfer in crop 
plant. Phosphorus is second only to nitrogen in mineral 
nutrients most commonly limiting the growth of crops. 
It is an essential element for plant development and 
growth making up about 0.2 % of plant dry weight. 
Plants acquire P from soil solution as phosphate anions. 
However, phosphate anions are extremely reactive and 
may be immobilized through precipitation with cations 
such as Ca2+, Mg2+, Fe3+ and Al3+, depending on the 
particular properties of a soil. In these forms, P is 
highly insoluble and unavailable to plants. As a results 
of which amount available P to plants is usually a small 
proportion. The phosphorus content in soil is about 
0.05% (w/w) on an average; in fact phosphorus is one 
of the least soluble elements in the natural environment 
with less than 5% of the total soil phosphate content 
being available to the plants (Dobbelaere et al. 2003). 
Availability of phosphorus depends largely on 
microbial activity (IFA 1992). Maintenance of 
available phosphorus remains a major challenge. 
Organic compounds containing phosphorus are 
decomposed and mineralized by bacteria. The 
biogeochemical cycle of phosphorus is influenced by 
various microorganisms which affect phosphorus 
metabolization in soil. The precipitated inorganic 
phosphate is solubilized by the action of minerals and 
organic acids produced by soil bacteria (Deshwal et al. 
2003). Several reports have examined the ability of 
different bacterial species to solubilize insoluble 
inorganic phosphate compounds such as tricalcium 
phosphate, dicalcium phosphate, hydroxyapatite, zink 
phosphate and rock phosphate. There are so many 
bacterial genera including Bacillus that are able to 
solubilize these phosphorus sources in soil. There are 
considerable populations of phosphate-solubilizing 
bacteria in soil and in plant rhizospheres. These include 
both aerobic and anaerobic strains, with a prevalence of 
aerobic strains in submerged soils. A considerably 
higher concentration of phosphate solubilizing bacteria 
is commonly found in the rhizosphere in comparison 
with non-rhizosphere soil (Rodríguez and Fraga 1999). 
 Many bacteria isolated from the rhizosphere 
(rhizobacteria) are capable of increasing the availability 
of phosphorus to plants either by mineralization of 
organic phosphate (solubilization by action of 
phosphatase) or by solubilization of insoluble inorganic 
phosphates by production of acids. Such bacteria, often 
termed as phosphobacteria, have attracted considerable 
attention for their potential use as inoculants. 
Microorganisms frequently stimulate plant growth by 
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increasing phosphorus uptake (Nautiyal 1999; Deshwal 
et al. 2003). The sink of fixed phosphorus can be 
harnessed biologically using the mineral phosphate 
solubilizing microorganism that convert the fixed 
phosphorus into HPO4

2- and H2PO4 (Gaur et al. 1980). 
A number of factors are responsible for the 
enhancement of phosphate solubilizing process. 
Phosphate solubilization is highly dependent on pH. 
Phosphate dissolving bacteria are known to reduce the 
pH by secretion of a number of organic acids such as 
formic acid, acetic acid, succinic acid, etc. Some of 
these acids may form chelators with the cations such as 
Ca and Fe, and such chelation results in effective 
solubilization of phosphates (Taalab and Badr 2007). 
 The principal mechanism for phosphate 
solubilization is the production of organic acids, and 
phosphatases. Soil microorganisms are able to 
solubilize insoluble mineral phosphate by producing 
various organic acids. This results in acidification of 
the surrounding soil releasing soluble orthophosphate 
ions that can be readily taken up by plants. 
Furthermore, they are able to solubilize organic P 
compounds through the action of phosphatase, 
phytases, phosphonatases and C-P lyases enzymes 
(Lugtenberg and Kamilova 2009). Gluconic acid seems 
to be the most frequent agent of mineral phosphate 
solubilization. 2-ketogluconic acid is another organic 
acid identified in strains with phosphate solubilizing 
ability. Strains of Bacillus were found to produce 
mixtures of lactic, isovaleric, isobutyric and acetic 
acids. Other organic acids such as glycolic, oxalic, 
malonic, and succinic acid have also been identified 
among phosphate solubilizers. Strains from the genera 
Pseudomonas, Bacillus and Rhizobium are among the 
most powerful phosphate solubilizers (Rodriguez and 
Fraga 1999). 
 Chelating substances and inorganic acids such as 
sulphideric, nitric, and carbonic acid are considered as 
the other mechanisms for phosphate solubilization. 
However, the effectiveness and their contribution to P 
release in soils seems to be less than organic acid 
production. Production of halo zones on solid agar and 
efficient release of phosphate in solution have been 
attributed due to release of different type of organic 
acids viz. citric, glyoxalic, malic, succinic, and fumaric 
acid (Khan et al. 2007). Patel and Dave (2000) reported 
an increase in effectiveness of organic acid production 
in increased phosphate solubilization. Trivedi et al. 
(2007) reported that B. subtilis exhibited strong 
phosphate solubilizing activity in vitro resulting in an 
increase in grain yield of rice in pot and field trials. 
They suggested that B. subtilis cultures can be 
developed as an efficient bioinoculant for rice fields 
due to its nature for phosphate solubilization. 
 Rdresh et al. (2004) demonstrated the variability in 
phosphate solubilization value due to the production of 

different organic acids in varying amounts resulting in 
the acidification of the microbial cell and its 
surroundings. Production of organic acids by phosphate 
solubilizing bacteria has been well documented (Sheng 
et al. 2002; Deshwal et al. 2003; Bhatia et al. 2005). 
Nautiyal (1999) and Trivedi et al. (2007) suggested 
Bacillus as the most powerful phosphate-solubilizer 
available in majority of the soils. A number of workers 
have reported phosphate solubilization by Bacillus as 
dominant inorganic phosphorus compound solubilizing 
microbes (Gupta et al. 2002; Jana 2007). 
Hariprasad and Niranjana (2009) reported that 
solubilization of P in the rhizosphere is the most 
common mode of action implicated in PGPR that 
increase nutrient availability to host plants.  
 
4.3  Siderophore Production 

       Iron is an essential nutrient for all living 
organisms. In the soil it is unavailable for direct 
assimilation by microorganisms because ferric iron (Fe 
III) which predominate in nature is only sparingly 
soluble and too low in concentration to support 
microbial growth. Some bacteria have developed iron 
uptake systems (Neilands and Nakamura 1997). These 
systems involved siderophore- an iron-binding legend 
and an uptake protein needed to transport iron into the 
cell. Siderophores (sid = iron, phores = bearer) are low 
molecular weight (400-10,000 D) virtually ferric-
specific ligands produced by microorganisms as 
scavenging agents in order to combat low iron stress. 
 Siderophores are common products of aerobic and 
facultative anaerobic bacteria and of fungi. Greater 
attention has been paid to bacterial siderophores 
especially those produced by rhizobacteria and some 
human pathogens than fungal siderophores due to high 
chelating affinity for Fe3+ and a low affinity for Fe2+ 
ions produced under iron limiting conditions. The 
chelated form of iron (III) is transported into bacterial 
cells (Neiland 1995). Kloepper et al. (1980) were the 
first to demonstrate the importance of siderophores in 
plants. Inside the cell, the siderophore becomes free 
from the transporter protein and again released outside 
as free ligand (desferriform) to repeat the cycle. Iron is 
a component of cell and its deficiency can cause growth 
inhibition, decrease in RNA and DNA synthesis and 
inhibits sporulation, it can also change cell 
morphology. Siderophores solubilise iron which is then 
transported into the bacterial cells using specific 
receptors. This gives possibility to bacteria to deplete 
the available iron source from other potentially harmful 
bacterial strains (Wilson et al. 2006). 
 Pathogens are thought to be sensitive to 
suppression by siderophores for several reasons: (i) 
they produce no siderophores of their own, (ii) they are 
unable to use siderophores produced by the antagonists 
or by other microorganisms in their immediate 
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environment, (iii) they produce too few siderophores or 
biocontrol PGPR produce siderophores that have a 
higher affinity for iron than those produced by fungal 
pathogens, allowing the former microbes to scavenge 
most of the available iron, and thereby prevent 
proliferation of fungal pathogens, or (iv) they produce 
siderophores that can be used by the antagonist, but 
they are unable to use the antagonist’s siderophores 
(Bashan and de-Bashan 2005). 
 The extent of disease suppression as a consequence 
of bacterial siderophore production is affected by 
several factors (Bashan and de-Bashan 2005) including 
the specific pathogen, the species of biocontrol PGPR, 
the soil type, the crop and the affinity of the 
siderophore for iron. Bashan and de-Bashan (2005) 
reported that depletion of iron from the rhizosphere 
normally does not affect plant growth as plants can 
thrive on less iron than can microorganisms. However, 
some plants can bind and release iron from bacterial 
iron-siderophore complexes and use the iron for 
growth. Thus, these plants benefit in two ways: from 
the suppression of pathogens and from enhanced iron 
nutrition resulting in increased plant growth. 
 Park et al. (2005) reported that the growth of B. 

cereus was stimulated in proportion to the iron-
saturation level of the transferrin, and catechol-
siderophores were produced in inverse proportion to 
this level. B. megaterium ATCC 19213 provides an 
excellent system to study the effects of such 
siderophore formation and transport on heavy metal 
toxicity. This bacterium produces two hydroxamate 
siderophores under iron-deficient conditions (Hu and 
Boyer 1996). 
 The amount and type of siderophore produced by 
bacteria depend on organic and inorganic nutrients 
(Berraho et al. 1997). Hu and Boyer (1996) achieved 
hydroxamate siderophore in B. megaterium. A direct 
mechanism of action of bacterial siderophores is that 
they may be available to the plant as a source of iron 
which directly helps in the growth of the plant. 
Siderophore production by Bacillus strains has been 
well documented (Park et al. 2005; Wilson et al. 2006). 
However, other type of siderophore like mono 
catecholate siderophore has been reported in B. cereus 
by Park et al. (2005). Temirovet et al. (2003) also 
reported catecholic siderophore in B. licheniformis.  
 
4.4  HCN Production  
        Hydrocyanic acid production plays a major role in 
suppressing the growth of phytopathogen. HCN is a 
volatile compound which on interaction with fungi can 
easily degrade its cell wall (Fiddaman and Rossall 
1993). Defago et al. (1990) presented the evidence that 
HCN is beneficial to biological control of diseases; 
hence indirectly it plays a role in plant growth 
promotion. 

 PGPR produce HCN which depend on soil and 
plant characteristics. A number of environmental 
factors influence the rate of HCN production by B. 

subtilis (Fiddaman and Rossall 1993). Its production 
depends highly on the amino acid composition of the 
substrate. Glycine was shown to be the direct precursor 
of microbial cyanide production and exerts the 
strongest effect of the amino acids (Bakker and 

Schipper 1987). Proline stimulates microbial cyanide 
production but to a lesser extent.  
 On the other hand, production of volatile 
compounds in liquid culture proved inhibitory to spore 
germination and mycelial growth and were reported by 
numerous workers (Defago and Hass 1990). Cyanide 
also seems to play a role in the suppression of take all 
disease of wheat, charcoal rot disease of sunflower and 
peanut disease caused by M. phaseolina (Gupta et al. 
2001; Bhatia et al. 2005). Production of HCN by 
certain Bacillus is believed to be involved in 
suppression of root pathogens. 
 The production of antifungal volatiles by B. 

subtilis suggests that more than one modes of action of 
antifungal activity is available to this bacterium and 
this new study suggested that volatiles from B. subtilis 
may also contribute to the antagonistic nature of the 
species (Fiddaman and Rossall 1993). 
 In general, cyanide is formed during the early 
stationary growth phase (Knowles and Bunch 1986). 
Cyanide occurs in solution as free cyanide which 
includes the cyanide anion (CN-) and the non-
dissociated HCN. It does not take part in growth, 
energy storage or primary metabolism, but is generally 
considered to be a secondary metabolite that has an 
ecological role and confers a selective advantage on the 
producer strains (Vining 1990). Nevertheless, at present 
its applications in areas of biocontrol methods are 
increasing (Voisard et al. 1989; Devi et al. 2007). 
Cyanogenesis in bacteria accounts in part for the 
biocontrol capacity of the strains that suppress fungal 
diseases of some economically important plants 
(Voisard et al. 1989). Hydrogen cyanide effectively 
blocks the cytochrome oxidase pathway and is highly 
toxic to all aerobic microorganisms at picomolar 
concentrations. However, producer microbes, mainly 
pseudomonads, are reported to be resistant (Bashan and 
de-Bashan 2005). 
 
4.5  N2 Fixation by Bacillus spp. 
 Nitrogen fixing bacteria have been used for 
centuries to improve the fertility of soils. In recent 
years, the interest in soil microorganisms has increased 
as they play an important role in the maintenance of 
soil fertility. The potential and pitfalls of exploiting 
nitrogen fixing bacteria in agricultural soils as 
substitute for inorganic fertilizer have been reviewed by 
Cummings et al. (2008). The ability to fix nitrogen is 



New York Science Journal, 2012; 5(1)                          http://www.sciencepub.net/newyork 

100 

 

widely distributed among phylogenetically diverse 
bacteria. Evolutionarily conserved amino acid 
sequences within the nifH gene have been exploited to 
design PCR primers to detect the genetic potential for 
nitrogen fixation in any environment (Auman et al. 
2001; Rosch et al. 2002; Mehta et al. 2003). Table 4 
represents the nitrogen fixing Bacillus spp. A major 
challenge for the development of sustainable 
agriculture lies in the use of nitrogen-fixing bacteria 
which are able to assimilate gaseous N2 from the 
atmosphere (Seldin et al. 1998).  
 
Table 4.  Bacillus Species and Nitrogen Fixation. 
Bacillus spp. Nitrogenase 

activity 

nifH 

gene 

References 

B. megaterium +  Xie et al. (1998) 
B. cereus +  Xie et al. (1998) 
B. pumilus +  Xie et al. (1998) 
B. circulans +  Xie et al. (1998) 
B.licheniformis +  Xie et al. (1998) 
B. subtilis +  Xie et al. (1998) 
B. brevis +  Xie et al. (1998) 
B. firmus +  Xie et al. (1998) 
B. sphaericus 

UPMB10 
+  Amir (2001) 

B.  fusiformis (strain 
PM-5 and PM-24) 

+  Park et al. (2005) 

B.  marisflavi +  Ding et al. (2005) 
B.  megaterium  + Ding et al. (2005) 
B.  cereus  + Sorokin et al. 

(2008) 
B. 

alkalidiazotrophicus 

(Anaerobacillus 

alkalidiazotrophicus) 

 + Sorokin et al. 
(2008) 

Bacillus sp. +  Ahmad et al. 
(2008) 

Bacillus sp. RFNB6 +  Islam et al. (2009) 
+ = Present    
Note: Now Bacillus sphaericus is named as 
Lysinibacillus sphaericus comb. nov. and B. fusiformis  is 
Lysinibacillus fusiformis  comb. nov (Ahmed et al. 2007). 

 

 

4.6  Biocontrol Potential 
        Species of Bacillus and related forms are common 
inhabitants of soil, and they have been identified as 
potential biological control agents against various 
pathogenic microbes (McSpadden Gardener and Fravel 
2002; Romeis et al. 2006; Choudhary and Johri 2009). 
Furthermore, their spore forming ability makes them an 
ideal candidate for developing efficient biopesticide 
products from technological point of view; spores 
possess a high level of resistance to dryness necessary 
for formulation into stable products. 
 Bacilli have great potential uses in agriculture. Its 
members are able to produce antimicrobial metabolites 
to control plant pathogens, to fix nitrogen and to form 
endospores to resist desiccation, heat, and UV 
irradiation, and to survive in adverse conditions. Root 
colonization by Bacillus shows various colonization 

patterns on plants like tomato roots, stems, and leaves 
at 6 weeks after inoculation. Root colonization studies 
of Bacillus strains were proved by re-isolating it via 
marking with rifampicin (Rif) resistance gene (Liu et 
al. 2006). B. subtilis as the model component of Gram-
positive organisms is able to produce over two dozens 
of antibiotics with amazing variety of structures (Stein 
2005). Hundreds of wild type strains of B. subtilis have 
been studied globally for the production of a variety of 
molecules with antibiotic properties. However, until 
today the genetic basis of biocontrol ability of B. 

subtilis strains is not clearly understood and much has 
been emphasized on the antibiotic production (Joshi 
and McSpadden Gardener 2006). 
 Fiddaman and Rossall (1993) reported a strain of 
B. subtilis which produced an antibiotic metabolite. It 
was also found to produce a volatile compound(s) 
which is antifungal to Rhizoctonia solani and Pythium 

ultimum. 
 Although biological control is subject of academic 
research for more than 50 years, the next successful 
attempt to apply endospore-forming bacilli in large 
scale was performed nearly hundred years after Alinit 
was commercialized. In the 1990s, several PGPR-based 
products became commercially available in the US. 
Earlier attempts to commercialize products containing 
fluorescent pseudomonades failed due to the lack of 
long term viability (Kloepper et al. 2004). Intensive 
screening and field testing led to commercial 
development of diverse Bacillus strains as biological 
control agents (McSpadden Gardener and Fravel 2002). 
 Bacillus spp. are reported to inhibit several soil-
borne phytopathogenic fungi including Macrophomina 
phaseolina, Fusarium species, Rhizoctonia solani, 
Pythium species, Phytophthora species and Erwinia 

corotovora (Siddiqui et al. 2005). Bacillus strains were 
studied for their antifungal activity, effect on seedling 
emergence and plant growth promotion in Cicer 

arietinum (Sivaramaiah et al., 2007). The antagonistic 
activities of Bacillus are mainly due to the production 
of antibiotics, antimicrobial and antifungal metabolites, 
lytic enzymes and secondary metabolites (Chan et al. 
2003). 
 Chitin is one of the most abundant natural 
renewable polysaccharides and is present in fungi, 
algae, insects and marine invertebrates. Chitin is 
hydrolysed by two main enzymes chitinase 
(E.C.3.2.1.14) and β-N-acetyl hexosaminidase 
(E.C.3.2.1.52) (Patil et al. 2000). Numerous cell wall-
degrading enzymes especially chitinase have been 
isolated from Bacillus species. Many strains of Bacillus 
can produce a high level of chitinolytic enzymes (Xiao 
et al. 2009; Huang et al. 2005). Moreover, many 
researches have shown that chitinase is involved in 
antifungal activity and can enhance the insecticidal 
activity of Bacillius sp. Diverse nature of hydrolytic 
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enzymes plays a role in disease controlling practices. 
The enzymatic digestion or deformation of cell wall 
components of phytopathogenic fungi occurred by the 
enzymes chitinase and β-1, 3-glucanase, protease and 
lipase that can degrade fungal cell wall and lyse the 
fungal cells (Lim and Kim 1995).  
 Production of hydrolytic enzymes by PGPB in 
general and bacilli in particular is an important 
phenomenon for plant growth. Chitinases have a broad 
range of biotechnological applications such as 
production of fungal protoplasts, crustacean chitin 
waste management, production of single cell protein 
and chitooligosaccharides for various applications and 
biocontrol of fungal plant pathogens (Vyas and 
Deshpande, 1991). Many PR-proteins induced in plants 
treated with inducing agents have been shown to be 
chitinases and β-1, 3-glucanases. Production of induced 
chitinases in plants has been suggested to be a part of 
their defense mechanism against fungal pathogens 
(Gupta et al. 2006). Huang et al. (2005) isolated B. 

cereus 28-9, a chitinolytic bacterium, from lily plant in 
Taiwan. This bacterium exhibited biocontrol potential 
on Botrytis leaf blight of lily as demonstrated by a 
detached leaf assay and dual culture assay. 
 In recent years the biocontrol agent Bacillus 
belonging to plant growth promoting rhizobacteria 
(PGPR) has been shown to induce systemic resistance 
against several pathogens in plants (M’ Piga et al. 
1997). The role of chitinases in the competitive 
interactions of well-known chitinolytic bacteria 
Bacillus has been well documented (Patil et al. 2000; 
Rangel-Castro et al. 2002; Gupta et al. 2006; Singh et 
al. 2008). Enhanced accumulation of chitinase was 
observed in chickpea leaves in response to Bacillus sp. 
(Joseph et al. 2007). The chitinases of Bacillus play a 
crucial role in hydrolyzing fungal cell walls. B. 

circulans and B. licheniformis produce the enzyme 
chitinase that degrade chitin. This is why chitinolytic 
enzymes are considered important in the biological 
control of soil-borne pathogens (Singh et al. 1999). 
Extensive research on biocontrol potential of Bacillus 
and its effect on agriculture crop productivity have 
been carried out by several workers (Idris et al. 2006, 
2007; Singh et al. 2008). 
 Boer et al. (1998) have reported 47% chitin and 
14% laminarin composition in cell wall of F. 

oxysporum. Hence, chitinase has been found as an 
enzyme involved in fungal antagonism (Rangel-Castro 
et al. 2002). Therefore, it is supposed that cell wall lysis 
occurred by action of chitinase and β-1, 3-glucanase. 
Shanmugaiah et al. (2008) reported the role of chitinase 
isolated from B. laterosporous, while its importance in 
biological control as well as in plant defense 
mechanisms has been demonstrated by the other 
workers (Huang et al. 2005; Singh et al. 2008). 

 The enzyme β-1, 3-glucanase has bean less 
attention in biocontrol of plant pathogenic fungi, even 
though in some cases both chitinase and β-1, 3-
glucanase produced by bacterial strains have biocontrol 
activity (Lim and Kim 1995). Yuli et al. (2004) 
reported thermostable chitinase enzyme purified from 
the Indonesian Bacillus sp. that control the growth of 
various pathogenic fungi. In vitro assay showed that the 
purified chitinases ChiCW from B. cereus had 
inhibitory activity on conidia germination of Botrytis 

elliptica, a major fungal pathogen of lily leaf blight 
(Huang et al. 2005). Furthermore, the presence of 
rhizobacteria near root tips and at sites of secondary 
root emergence places them in a good position to 
prevent nematode penetration, to produce their own 
antagonistic metabolites. The rhizosphere is considered 
the first line of defense for the plant against nematode 
attack and, therefore, rhizosphere bacteria are well 
located to become effective biocontrol agents 
(Compant et al. 2005). 
 For any disease suppressive mechanism to be 
effective, it is important that the antagonist first 
becomes able to efficiently establish itself in the 
rhizosphere of that crop (Kloepper et al. 1980). Many 
workers documented that inadequate colonization leads 
to decreased PGP activities (Schippers et al. 1987). 
Root colonization is an initial step in the interaction of 
antagonistic bacteria with host plant. The inhibition of 
soil-borne pathogens by biocontrol agents depends on 
growth, competence, and ability of these agents to 
colonize the pathogens in soil. It is also essential to 
understand the recognition of pathogens by potential 
antagonists in order to formulate effective biocontrol 
disease management strategies (Barak and Chet 1990). 
 Srivastava et al. (1996) revealed that diversity of 
potential microbial parasites colonizing sclerotia of 
Macrophomina phaseolina in soil was inhibited by 
introducing Bacillus sp. Barriuso et al. (2008) revealed 
that bacterization of chick pea seeds with a 
siderophore-producing fluorescent Pseudomonas strain 
RBT13 and an antibiotic-producing B. subtilis strain 
AF1, isolated from tomato rhizoplane and pigeon pea 
rhizosphere, respectively increased the shoot height, 
root length, fresh weight, dry weight and grain yield in 
soils infested with Fusarium oxysporum f. sp. ciceris. 
Seed bacterization also resulted in a significant 
reduction in chick pea wilt caused by the same 
pathogen.  
 

5. Antimicrobial Compound Secreted by Bacillus 

spp. 
       Antibiotics encompass a heterogeneous group of 
organic, low-molecular-weight compounds deleterious 
to the growth or metabolic activities of other 
microorganisms. Numerous antibiotics have been 
isolated from bacterial and fungal biocontrol strains. 
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Biocontrol agents not only exhibit diversity in the type 
but also in the number of antibiotics produced by an 
individual strain. It means several antibiotics may be 
responsible for the suppression of specific or multiple 
plant diseases. Furthermore, many of the antibiotics 
produced by biocontrol agents have a broad-spectrum 
activity.  
 The antifungal activity of B. coagulans against 
three pathogenic species of Fusariurn was examined by 
Czaczyk et al. (2002). Singh et al. (2008) have reported 
that B. subtilis BN1 strongly colonized the root of 
Pinus roxburghii and exhibited strong antagonistic 
activity against M. phaseolina. Vacuolation, hyphal 
squeezing, swelling, abnormal branching and lysis of 
mycelia was visualized and confirmed by root 
colonization study through antibiotic resistant marker. 
About 167 biological compounds produced by Bacillus 
species are reported to be active against bacteria, fungi, 
protozoa, and viruses (Bottone and Peluso 2003). 
 There are numerous studies on antibiotics 
produced by antagonistic microorganisms and their role 
in biocontrol of plant pathogenic fungi and bacteria 
(Whipps 2001; Raaijmakers et al. 2002). The activity 
and chemical structure of many of these antibiotics 
have been determined but the mode of action of 
relatively a few is known. Several studies have 
addressed the variation in sensitivity of pathogenic 
fungi and bacteria to antibiotics produced by 
antagonists Bacillus species are appealing candidates as 
biocontrol agents. They have the capability to produce 
effective and broad-spectrum antibiotics like peptides, 
lipopeptides, aminoglycosides, and aminopolyols (Silo-
Suh et al. 1994). B. cereus strain UW85 synthesizes 
both zwittermicin A (He et al. 1994) and kanosamine 
(Milner et al. 1996a). Bacteria were insensitive to 
kanosamine but the growth of 26 fungal species was 
inhibited by kanosamine, ranging from less than 30% 
for most species to more than 50% for Ustilago maydis 

(Milner et al. 1996a). For the four oomycete species 
tested, significant variation in sensitivity was observed 
with Pythium aphanidermatum and Pythium torulosum 

being less sensitive to kanosamine than Aphanomyces 

euteiches and Phytophthora medicaginis. The zmaR 

gene in B. cereus encoding ZmaR protein inactivates 
zwittermycin A by acetylation (Milner et al. 1996b; 
Stohl et al. 1999). Understanding the self-resistance in 
antibiotic-producing biocontrol strains may provide 
valuable insight into potential self-defense mechanisms 
that could develop in pathogen populations. Leifert et 
al. (1995) characterized the antibiotics produced by B. 

subtilis strain CL27 and B. pumilus strain CL45. The 

strain CL27 produced three compounds of which two 
were identified as peptides. One had activity against 
Alternaria brassicicola and the other against both A. 

brassicicola and B. cinerea. The third antibiotic was 
not peptide-based and also showed the activity against 
B. cinerea. Based on TLC analysis, a similar compound 
was present in CL45. Although CL27 produces 
different compounds with antibiotic activity against B. 

cinerea, results obtained by Li and Leifert (1994) 
suggested that the pathogen could develop resistance 
against the biocontrol agent after repetitive treatment of 
Astilbe hybrida plants. In glasshouse experiments, B. 

cinerea was effectively controlled in the first seven 
growth cycles of Astilbe plants, but in cycles eight and 
nine the biocontrol efficacy dropped dramatically. In 
the tenth cycle, strain CL27 was completely ineffective 
in controlling B. cinerea infection, and in vitro assays 
showed that culture filtrates of strain CL27 were no 
longer able to inhibit mycelial growth of the recovered 
B. cinerea. 
 Antibiotics produced by Bacillus have been found 
to play an important role in disease control. Some 
populations suppress plant pathogens and pests by 
producing antibiotic metabolites prior to infection 
(Gardener 2004). Peptide antibiotics and other 
compounds toxic to plant pathogens have been isolated 
from several Bacillus strains (Pinchuk et al. 2002). 
Antibiotic resistance markers have also been used to 
monitor and re-isolate the introduced beneficial 
rhizobacteria from soil and rhizosphere; hence, this is 
the first choice of scientists due to simplicity, non-
expensive and time saving measures. A number of 
workers have successfully used such markers (Obaton 
et al. 2002). Kishore et al. (2005) reported that the 
rifampicin-resistant mutants of B. firmis GRS 123 and 
Pseudomonas aeruginosa GPS 21 colonized the ecto- 
and endorhizospheres of groundnut, respectively up to 
100 days after sowing (DAS). The strain-specific 
genomic marker for monitoring a B. subtilis biocontrol 
strain in the rhizosphere of tomato was developed by 
Felici et al. (2008). B. subtilis strains strongly inhibited 
the growth of F. oxysporum in vitro in liquid medium 
as well as in solid medium in comparison to the 
corresponding growth of fungi without bacterial 
inoculation mediated by chitinase production that was 
grown in the presence of colloidal chitin as the sole 
carbon source in a liquid medium (Swain et al. 2008). 
Various antimicrobial compounds produced by Bacillus 
spp. and their effect on different crops have been given 
in Table 5. 
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Table 5. Various Antimicrobial Compounds Produced by Bacillus spp. and their effect on Different Crops. 
Antimicrobial 

compounds 

Bacillus spp. Against Phytopathogens Benefitted 

Crops 

References 

Zwittermicin-A B. cereus Phytophthora megasperma f. sp. 
medicaginis 

Alfalfa Handelsman et al. (1990)  

Iturin D 
 

B. subtilis Colletotrichum trifolii, Alfalfa Douville and  Boland 
(1992) 

Zwittermicin A,  and 
Antibiotic B 

B. cereus UW85 Phytophthora medicaginis Alfalfa Silo-Suh et al. (1994) 

Zwittermicyne A, B. cereus Phytophthora medicaginis  Alfalfa Stabb et al. (1994) 
Peptide B. subtilis CL27 and CL45 Alternaria brassicicola NS 

 
Leifert et al. (1995) 

Iturin A and Surfactin B. sublitis Rhizoctonia solani Tomato Asaka and Shoda (1996) 
Zwittermicine and  
Kanosamine 

B. cereus UW85 Oomycetes NS 
 

Milner et al. (1996a,b) 

 Antibiotic  B. subtilis BS 107 
 

Erwinia carotovora subsp. 
atroseptica and Erwinia 

carotovora subsp. carotovora 

Potato Sharga & Lyon (1998) 

TasA-(protein with 
broad spectrum 
antibacterial activity) 

B. subtilis PY 79 
 

Agrobacterium tumefaciens 

GV3101, Pseudomonas sp., 
Klebsiella sp., Erwinia sp.; 

 Stover & Driks (1999) 

Broad spectrum of 
antimicrobial 
agents/several 
compounds with 
different activities 

B. subtilis IFS -01 
 

Aspergillus wentii, Penicillium 

chrysogenum) yeasts (Yarrowia 

lipolytica, Rhodotorula 

mucilaginosa) and Gram-
positive bacteria (Listeria 

monocytogenes, 
Staphylococcus aureus) 

 Foldes et al. (2000) 

NS B. subtilis B2g Pythium ultimum, R. Solani  Marten et al. (2000) 
Reduction of 
mycotoxin 
accumulation 

B. subtilis RRC101 Fusarium moniliforme  Maize Bacon et al. (2001) 

X16sI fraction 
(Partially purified) 

B. cereus X16 Fusarium roseum var. 
sambucinum 

Potato Sadfi et al., (2002) 

Antibiotic L-forms B. subtilis 

 
Botrytis cinerea  
 

Chinese 
cabbage 

Walker et al. (2002) 

Iturins A-2–A-8 B. amyloliquefaciens RC-2 Colletotrichum dematium  Mulberry Hiradate et al. (2002) 
Iturin A B. amyloliquefaciens  B94 R. solani Soybean Yu et al. (2002) 
Inhibition of 
fumonisin B1  

B. subtilis RC 8; RC 9; RC 
11 

Fusarium verticillioides NS Cavaglieri et al. (2004) 

Induction of host 
defense response  

B. subtilis AF 1 
 

A. niger (crown rot of 
groundnut, soft rot in lemons); 

Groundnut, 
Lemons 

Manjula et al. (2004) 

Reduction of 
pathogen inoculums 
and displacement 
of pathogen 

B. subtilis BS 21; BS 22; BS 
23 
 

Colletotrichum lindemuthianum  
 

Cowpea Adebanjo & Bankole 
(2004) 

Antimicrobial 
biofilms, lipopeptide 
(surfactin) 

B. subtilis 6051 
 

P.syringae pv. tomato DC3000 Arabidopsis Bais et al. (2004) 

Iturins, engycins type 
A; B, Surfactin 
families 

B. subtilis GA1 Botrytis cinerea  Apples Toure et al. (2004) 

Surfactin and Iturin B. amyloliquefaciens BNM 
122 
 

F.oxysporum f. sp lycopersici, 

F.solani, R.solani, 

S.sclerotiorum 

NS Souto et al. (2004) 
 

Biosurfactant – 
lipopeptide N1  

B. subtilis C1 
 

Mycobacterium smegmatis, 
Staphylococcus aureus 

NS Singh & Cameotra, 
(2004) 

Subtilosin A B. subtilis Natural isolate 
 

diverse range of Gram-positive 
and Gram-negative bacteria 

NS Thennarasu et al. (2005) 

Lipopetide Bacillus spp Xanthomonas campestris pv. 
Campestris Leila 

Crucifers  Monteiro et al. (2005) 

Mycosubtilin and 
Surfactin 

B. subtilis BBG100  
 
 

Botrytis cinerea, F.oxysporum 

Pythium aphanidermatum, 
Pichia pastoris and S. cerevisiae 

NS Leclere et al. (2005) 

Mycotoxin B. subtilis CE1 Fusarium verticillioides Maize  Cavaglieri et al. (2005) 
 B. subtilis B1 

 
Penicillium oxalicum, A. niger, 
F. solani  

Storage barns Okigbo (2005) 

Secondary 
metabolites 

B. subtilis ZJY-116 
 

Fusarium graminearum 

(Fusarium head blight) 
wheat and 
Barley 

Zhang et al. (2005) 
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Iturin group B. subtilis PRBS-1 R.solani, Colletotrichum 

truncatum, S.sclerotiorum, M. 

phaseolina and Phomopsis sp. 

Soybean Araujo et al. (2005) 

Fengycins B.subtilis S499 Botrytis cinerea Apple Ongena et al. (2005)  
Fengycin B. subtilis JA; JA026 Gibberella zeae (anamorph of 

Fusarium graminearum) 
Wheat, Barle 
and Corn 

Liu et al. (2005) 

Production of active 
factors 
(heat stability, 
resistance to extreme 
pH values — putative 
antibiotic character) 

B. subtilis B2; B5; B7; B8 
 

R.solani SX-6, Pythium 

aphanidermatum 

ZJP-1, F. oxysporum f.sp. 
cucumerinum ZJE-2 (root-knot 
nematode and soil-borne fungi); 
larvae Meloidogyne javanica 

 Li et al. (2005) 

Fengycins A and B B. subtilis LEV -006 
 

R. solani,  S. sclerotiorum, 

Alternaria brassicae, 

Leptosphaeria maculans 

 Hou et al. (2006) 
 

Iturin A B. subtilis PY-1 F. oxysporum Cotton  Gong et al (2006) 
Iturin A B. subtilis RB 14–CS R. solani Tomato Mizumoto et al. (2007) 
Surfactin, Fengycin, 
IturinA, Bacillomycin 

B. subtilis UM AF6614; UM 
AF6619; UM AF6639; UM 
AF8561 

Podosphaera fusca Cucurbit Romero et al. (2007) 

Bacillomycin D B. subtilis ME488 NS NS Chung et al. (2008) 
Bacilysin 
bacD 

B. subtilis ME488 F. oxysporum f.sp. cucumerinum Cucumber Chung et al. (2008) 

Ericin B. subtilis ME488 NS NS Chung et al. (2008) 
Fengycin B. subtilis ME488 NS NS Chung et al. (2008) 
Iturin B. subtilis ME488 Phytophthora capsici Pepper Chung et al. (2008) 
Mersacidin B. subtilis ME488 NS NS Chung et al. (2008) 
Mycosubtilin B. subtilis ME488 NS NS Chung et al. (2008) 
Sublancin B. subtilis ME488 NS NS Chung et al. (2008) 
Subtilin B. subtilis ME488 NS NS Chung et al. (2008) 
Subtilosin B. subtilis ME488 NS NS Chung et al. (2008) 
Surfactin B. subtilis ME488 NS NS Chung et al. (2008) 
Polypeptide B. subtilis Microsporum fulvum and 

Trycophyton spp. 
NS Kumar et al. (2009) 

Jiean-peptide (JAA) B. subtilis ZK8 Fusarium wilt Cotton Zhang et al. (2010) 
Jiean-peptide (JAA) B. subtilis ZK8 Rhizoctonia rot  Tomato  Zhang et al. (2010) 
Jiean-peptide (JAA) B. subtilis ZK8 Powdery mildew Wheat  Zhang et al. (2010) 

*NS – Not Specified. 
 

 

6.  Future Prospect and Conclusion 

        The natural disease-suppressive characteristic of 
soils is consistent over years and seems to be pathogen-
specific. The application of Bacillus species as PGPR 
from disease suppressive soil offers an environment 
friendly sustainable approach to enhance crop 
productivity and plant health. At present, there are 
many scientific challenges for research in the field of 
Bacillus. If other approach like molecular techniques is 
used for in situ study of genome expression of plant-
beneficial and pathogenic microorganisms, it will be 
very important aspect to obtain a full picture of 
rhizosphere biodiversity. From the above study it is 
concluded that the endospore forming bacilli from 
disease suppressive soil is very useful and have many 
PGP attributes in general and in particular enhance the 
growth, protect plants by producing various types of 
antifungal compound, besides it an interesting fact 
about nitrogen fixation by these bacilli has also been 
mentioned.  
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