
New York Science Journal, 2012; 5(2); http://www.sciencepub.net/newyork

20

DYNAMIC SATELLITE BASED DISTRIBUTED WEB CACHING

Namit Gupta and Rajeev Kumar

Computer Sc. & Engg. Department, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
namit.k.gupta.coe@tmu.ac.in, rajeev2009mca@gmail.com

Abstract: The World Wide Web is growing exponentially and already accounts for a big percentage of the traffic in
the Internet. The Distributed Web Caching System suffers from scalability and less robustness problem due to
overloaded and congested proxy servers. Load Balancing and Clustering of proxy servers helps in fast retrieval of
pages, but cannot ensure robustness of system. In this paper we have given solution for scalability and robustness of
Distributed web caching System and for load balancing Clustering and metadata manageability. We have also
refined our technique using extensively analyze the log entries of the Eurecom and other Squid caches [8] in order
to show what hit rates might be achieved with dynamic allocation of requests. We devised an algorithm for
Distributed Web Cache concepts with satellite based clusters of proxy server based on geographical regions. It
increases the scalability by maintaining metadata of neighbors. Based on which hit ration will be high. It increases
the scalability by maintaining metadata of neighbors collectively and balances load of proxy servers dynamically to
other less congested proxy servers, so system doesn’t get down unless all proxy servers are fully loaded so higher
robustness of system is achieved. This algorithm also guarantees data consistency between the original server object
and the proxy cache objects using semaphore.
[Namit Gupta and Rajeev Kumar. Dynamic Satellite based Distributed web caching. New York Science Journal
2012;5(2):20-26]. (ISSN: 1554-0200). http://www.sciencepub.net/newyork. 4

Keywords: Distributed Web caching; satellite based Clustering; Latency; Hit Ratio; Metadata; Robustness.

1. INTRODUCTION

As the World Wide Web (WWW) is gaining
more and more popularity, servers have to handle
more requests accordingly. The more people (or
simply clients) request resources (in this case files)
from web servers, the faster servers have to accept
and process the requests. To cope with these
requirements programmers as well as system
administrators must take countermeasures. From the
very beginning of the WWW the requirements for
servers have not only changed from the view of
traffic, but also from the type of content they deliver
to the client. Initially static pages had to be served,
today in 2005 content is usually taken from a
database, and dynamically generated pages are to be
transferred. This development takes the main source
of load away from the operating system responsible
for reading the files from the hard disk or another
type of memory and shifts it to the program that
dynamically generates the page. Also computer
hardware has evolved. This makes it possible to have
web pages generated the way they are today.
Generally speaking, servers are capable of serving
most pages in quite a reasonable amount of time.
This is true as long as only a small number of visitors
request pages to be generated. The larger the numbers
of clients, the more pages have to be generated
simultaneously. Multi-tasking enables servers to do
so, but CPU capacity is limited. If it was only for
system administrators, they would add more
hardware power (for instance clustering servers, load

balancing). Often this can be done only to a certain
extent, mainly due to financial but also for logistical
reasons. From a programmer’s view, however,
algorithms can be optimized (consider an algorithm
in O(n2) on a fast computer which can easily be
overtaken by a slower one running an O(n)) but also
by caching techniques. The basis for this diploma
thesis will be the analysis of caching strategies for
this scenario. They will be used to speed up an
existing application. The combination of various
methods will be tested and benchmarked to reach a
stage at which the application runs at reasonable
speed even under high load.

Most popular web sites are suffering from
server congestion, since they are getting thousands of
requests every second in coincidence or not with
special events. Moreover, the heterogeneity and
complexity of services and applications provided by
web server systems is continuously increasing.
Traditional web publishing sites with most static
contents have being integrated with recent web
commerce and transactional sites combining dynamic
and secure services. The most obvious way to cope
with growing service demand and application
complexity is adding hardware resources because
replacing an existing machine with a faster model
provides only temporary relief from server overload.
Furthermore, the number of requests per second that
a single server machine can handle is limited and
cannot scale up with the demand. Two common
approaches to implement a large scale cache

New York Science Journal, 2012; 5(2); http://www.sciencepub.net/newyork

21

cooperation scheme are hierarchical and distributed
[1], [2] caching. The need to optimize the
performance of Web services is producing a variety
of novel architectures. Geographically distributed
web servers [3] and proxy server systems aim to
decrease user latency time through network access
redistribution and reduction of amount of data
transferred, respectively. In this it consider different
web systems, namely web clusters that use a tightly
coupled distributed architecture. Cluster technology
is a cost effective solution because it is cheaper than
a single faster machine. From the user's point of
view, any request to a Web cluster is presented to a
logical server that acts as a representative for the
Web site. This component called Web switch retains
transparency of the parallel architecture for the user,
guarantees backward compatibility with Internet
protocols and standards, and distributes all client
requests to the Web and back-end servers. Cluster
architectures with Web switch dispatcher have been
adopted with different solutions in various academic
and commercial Web clusters. A valuable recent
survey is in [4].One of main operational aspects of
any distributed system is the availability of a
mechanism that shares the load over the server nodes.
Numerous global scheduling algorithms were
proposed for multi-node architectures executing
parallel or distributed applications. Unlike traditional
distributed systems, a Web cluster is subject to quite
different workload. The hit rate of a Web cache can
be increased significantly by sharing the interests of a
larger community [5]; the more people are accessing
the same cache, the higher the probability that a
given document is present in the cache. To increase
the effective client population using a cache, several
caches can cooperate.

2. Problems in Distributed web caching [6]
2.1 Extra Overhead
 Extra Overload increases when all the proxy
servers keep the records of all the other proxy servers
which results congestion on all proxy servers. They
all have to keep check on the validity of their data
which results in extra overhead on proxy servers.

2.2 Size of Cache
 If Cache Size is large then Meta data
become unmanageable because in traditional
architectures each proxy server keeps records for data
of all other proxy servers. In this way if Cache size
becomes large then maintenance of Meta data is a
problem.

2.3 Cache Coherence Problem
 When client send requests for data to proxy
server that data should be up-to-date. This results into
Cache Coherence problem.

2.4 Scalability
 Finally, By Clustering we can also solve the
problem of scalability, add more number of clients,
and data of these clients will be managed on the basis
of geographical region based Cluster. A particular
cluster will only have to manage the id’s and update
the Meta data of all the proxy servers or of the
neighbour clusters.

2.5 Robustness
 In distributed web caching there is no any
concept of clustering so the mostly user is not
satisfied because they request to same proxy server
so the system is no more robust.

2.6 Hit Ratio
 When the congestion will occur in the
network then the hit ratio will be decreased because
all the clients will wait for requested pages.

2.7 Load balancing
 When there is no any limit to connect the
client to proxy server then most of the clients will
connect to same proxy server. Means one proxy
server will busy and other proxy server will free.

3. Proposed Solution for Distributed Web Caching
 Extra overhead on proxy server, problem of
unmanageable data, Cache coherence, less robustness
and Scalability. Extra Overhead increases when all
the proxy servers keep the records of all the other
proxy servers which results congestion on all proxy
servers. They all have to keep check on the validity
of their data which results in extra overhead on proxy
servers. Clustering reduces this extra overhead. By
making clusters on the basis of Geographical region
we can solve this problem. From now one proxy will
manage the Meta data regarding the proxy servers
which fall under the same cluster region and its
neighbour clusters. By using the concept of
Knowledge based clustering more clients request will
be satisfied then the system will be more robust. If
Cache Size is large then Meta data become
unmanageable because in traditional architectures
each proxy server keeps records for data of all other
proxy servers. In this way if Cache size becomes
large then maintenance of Meta data is a problem.
When client send requests for data to proxy server
that data should be up-to-date. This results into Cache
Coherence problem. This can be solved by having a
timer with origin server, after a particular time period

New York Science Journal, 2012; 5(2); http://www.sciencepub.net/newyork

22

if there is any fresh page then origin server will check
for it and send the fresh pages to any of proxy server
which in turn forward this information to all other
proxies and one cluster region have to maintain the
record for cache updation for that cluster only. This
gives proper updation of data and also less workload.
With all the data pages there will be a time stamp
field, now if there is any fresh page then origin server
will check for it and send the fresh pages to any of
proxy server which in turn forward this information
to all other proxies and one cluster region have to
maintain the record for cache updation for that cluster
only. This gives proper updation of data and also less
workload. Finally, By Clustering we can also solve
the problem of scalability by this, add more number
of clients, and data of these clients will be managed
on the basis of geographical region Cluster. A
particular cluster will only have to manage the id¡¦s
and update the metadata of all the proxy servers fall
under the, particular geographical region cluster and
its neighbour clusters.

4. The Proposed Caching System
 In this section, we first define the structure
for which our proposed caching model is intended.
This is followed by a detailed description of the
caching model. We then discuss some interesting
properties of the proposed system.

4.1. Structure of Network
 At the highest level origin server are
scattered around the world. These origin servers are
connected to proxy server via various form of
communication medium. These proxy servers are in
turn connected to client computer whose purpose are
just to send the request and get response. Proxy
servers are arranged at middle level which acts as
both client and servers. For origin server they act as
client and for client computers they act as servers. All
the proxy servers are arranged in the geographical
region based. After adding the concept of clusters
now it is easy to maintain the data in the cache of
proxy servers. To maintain the data consistency we
associate a timer with the origin server so that if there
is any fresh page then origin server keep check for
that and forward fresh pages to the proxy servers on
designated port which in turn forward data to other
proxy servers to maintain metadata. Each Proxy
server is having metadata in its cache which keeps
the record about data in other proxy servers. Each
proxy server in one cluster is having metadata about
proxy servers which fall in corresponding cluster and
proxy servers of neighbor clusters.

4.2. Proposed Architecture
 According to the architecture described in
[7] browsers are at the lower level, proxy servers at
the middle level and origin servers at the highest
level.

Fig.1 Proposed Architecture of satellite based web caching

Dynamic
distributed web
caching

Origin server International

Satellite

New York Science Journal, 2012; 5(2); http://www.sciencepub.net/newyork

23

4.2.1. Working
 These problems like extra overhead problem
of unmanageable data, cache coherence, less
robustness and scalability are major problem for data
retrieval from proxy servers. In some earlier paper
solutions for these problems are given by making
clusters on geographical region based. We get a high
benefit by clustering but in the term of hit ration, if
we want to increase hit ration we can add the concept
of knowledge based clustering. In this technique,
knowledge based clusters are formed based on
similar knowledge for example, if cluster become on
similar knowledge in the same region, like is in same
city requirement is for computer defined data then all

the cluster fall in that region will be rich in data
regarding computer.
 Whenever a query found from a client to
proxy server for a particular data, firstly queuelength
check as earlier defined in [3] after that pattern match
in this proxy server if pattern match in then same
knowledge based pattern cluster are picked and page
is reached in that clusters metadata, if data found then
ok otherwise data is requested to origin server.

4.3. Proposed Algorithms
 We have given the Algorithm for Proxy
servers.

4.3.1. ProxyServers:

/* queuelength: It is associated with every proxy server, which tells how many client’s requests can be made to a
proxy server.*/

 PS: Proxy Servers.
 Noofservices: tells how many connections are active with proxy server.
 CIP: Client’s Internet Address.
 Reply: has either requested page or message “NO”.
 Rpage: Requested page or file.
 Ps_ip []: is a stack of Internet Addresses of all the proxy servers in same Cluster.
 OS []: is a stack of Internet Addresses of all the Origin Servers.
 Cluster []: is a stack of Internet Addresses of all Clusters.
 MB: Match Bit
 KBC: Match Bit for Knowledge based clustering
 KBC[]: is a stack of Internet Addresses of all the proxy servers in same Knowledge based clustering
 KBC_CSE[]: is a array of computer science Engineering
 KBC_ECE[]: is a array of Electronic & communication Engineering
 KBC_ME[]: is a array of Mechanical Engineering
 KBC_CVE[]: is a array of Civil Engineering

Step 1: queuelegnth(ql)=0;
Step 2: If Request from OS [] for connection then
2.1 Establish connection with the origin server.
2.2 Connection Established.
(1) A new thread is established.
(2) Receive data from origin server.
(3) Update its metadata and broadcast information to all clusters.
Step 3: Proxy Server will wait for connection with clients or from other proxy servers.
Step 4: If request is to update data by any other proxy server then update metadata.
Step 5: if (q11+q12+q13) <=240
Step6: if (q1<80)
Step7: A Connection is established by creating a new thread to deal with it & client’s locative address in CIP.
Step8: Get client’s locative on in IP address in CIP.
Step9: if Incoming request from Client CIP /*request is from client*/

(a) If Pattern match is on same KBC [] /*KBC_CSE[], KBC_ECE[], KBC_ME[], KBC_CVE[] */
9.1 wait();
9.2 ql=ql+1;
9.3 Signal();
9.4 Search metadata();

New York Science Journal, 2012; 5(2); http://www.sciencepub.net/newyork

24

9.5 If matchfound then
 (1) If matchfound is on current cluster

1. If (same proxy server)
i. wait();
ii. ql=ql+1;
iii. signal();
iv. Search for Rpage in cache.
v. Return Rpage to CIP.
vi. ql=ql-1;

 (2) else/*else of 1.*/
1. Send request to another proxy server.
2. looking for reply.
3. Return Rpage to CIP.

9.6 else /*else of (1) */
(1) if(MB==1)/* Data on Neighbour cluster*/

1. wait();
2. ql=ql+1;
3. signal();
4. Return Rpage to CIP.
5. ql=ql-1;

(2) else If (MB==0)/*else of (1) */ /*Increment cluster to search*/
1. (Owncluster+2)% n
2. If (r page=NO)

 No Such page Exist in This Cluster & Goto step A
3. else /* Else of (2).2*/

i. Wait();
ii. Ql=ql+1;
iii. Signal();
iv. Return Rpage to CIP.
v. Ql=ql-1;

 else /*else of (a) */
 (1) if(KBC==1)/* Data on Neighbor knowledge based cluster*/

1. wait();
2. ql=ql+1;
3. signal();
4. Repeat step 9
5. Return Rpage to CIP.
6. ql=ql-1;

(2) else If (KBC==0)/*else of (1) */ /*Increment knowledge based cluster to search*/
1. (Ownknowledgecluster+2)% n
2. If (r page=NO)

 No Such page Exist in This Cluster & Goto step A
3. else /* Else of (2).2*/

i. Wait();
ii. Ql=ql+1;
iii. Signal();
iv. Repeat step 9
v. Return Rpage to CIP.
vi. Ql=ql-1;

Step 10: Else/*else of step 9*/

10.1. If(request is from proxyserver)&&(MB==1)&&(Same Cluster)
(1) Accept Connection();
(2) wait();
(3) ql=ql+1;
(4) signal();

New York Science Journal, 2012; 5(2); http://www.sciencepub.net/newyork

25

(5) Return Rpage to Proxy Server.
(6) ql=ql-1;

10.2 .Else If(request is from proxyserver)&&(MB==1)&&(Different Cluster)/*else of 10.1*/
(1) Accept Connection();
(2) wait();

 (3) ql=ql+1;
(4) signal ();
(5) Return rpage to proxy server.
(6) ql=ql-1;

10.3 Else if (request from proxy server) && (MB==0)/* Else of 10.2*/
(1) Accept Connection ();
(2) wait ();
(3) ql=ql+1;
(4) signal();
(5) Search Metadata();
(6) if(DataFound)
(7) GoTo Step 9.5

10.4 Else /*else of 10.3.(6)*/
(1) Send Request to Origin server.
(2) Accept Connection from origin server.
(3) If datafound

 Send Rpage to proxy server.
(4) Else /* Else of 10.4.(3)*/

 B. No page exist.
Step 11. If (Request is from origin server)

11.1. Accept Connection();
1.2. Update metadata & cache;

Step 12 Else If(ps2.ql<80)/*Else of step 6*/
12.1. Forward request of client to ps2.

Step 13. Else Forward request of client to ps3. /*Else of step 12*/
Step 14. Else Send Request of client to any other cluster. /*Else of step 5*/

4.3.2 Explanation
 In this Algorithm , Firstly request goes to
Proxy server from Client then proxy server will
check queue length of cluster in which that proxy
server lies, if it is less than 240(we have fixed the
queuelength of proxy server say 80, and consider
three proxy server in a cluster) then check the queue
length of proxy server if it is less than 80 then check
that the request is from client or from other proxy
server if request is from client then hold the wait
signal for lock and increase its queue length by 1 if
requested page is found in its current knowledge
based cluster and on current cluster on same proxy
server then return Rpage to client otherwise check its
metadata it has all information of its own proxy
servers and all information of its neighbor clusters. If
it is found in neighbor cluster then there is an match
bit (MB) it is equal to one it means that proxy server
know the requested page in that proxy server because
it has all information of its neighbor proxy server
send request to that match proxy server otherwise
send request to its neighbor cluster and match bit is
equal to zero if it has requested page then send reply
back to that proxy server otherwise it can be on

different cluster. If it is found in neighbor knowledge
based cluster then there is an Match Bit for
Knowledge based clustering (KBC) it is equal to one
it means that proxy server know the requested page in
that proxy server because it has all information of its
neighbor proxy server send request to that match
proxy server otherwise Repeat the previous
processing otherwise send request to its neighbor
cluster and Match Bit for Knowledge based
clustering is equal to zero if it has requested page
then send reply back to that proxy server otherwise it
can be on different knowledge based cluster. If
request is from proxy server of its same cluster and
MB is equal to one then return Rpage to that proxy
server if request is from different cluster and MB
equal to one then check in its metadata and return
page to the proxy server else there is an third case
request is from proxy server and MB is equal to zero
it means that requesting proxy server don’t have the
information of that proxy server. If the requested
page is not found in all the proxy servers then send
the request to the origin server and make connection
with origin server and receive the requested page.
There is another case the request can from origin

New York Science Journal, 2012; 5(2); http://www.sciencepub.net/newyork

26

server to update the information in metadata than
proxy server will receive the updated copy from
origin server and will update it.When the client will
request to the proxy server there may be possibility
that the proxy server have no more space means it is
equal to its defined queue length then send request to
other proxy server in same cluster if no space then
send other proxy server otherwise send the request to
the other cluster.
 Working of Client is just to send request for
Rpage to the Proxy server and wait for result if result
comes under the time limit then process the response
otherwise send request again.Working of Origin
Server is to send the updated data after a particular
time interval say after 3sec., and send the requested
pages to proxy servers whenever request comes.

5. Results and Discussion
 Based on this algorithm we got the better
results than previous algorithms in terms of hit ratio,
delay, scalability and robustness.

Table-1 Comparison between Different Architectures

Network Hit
Ratio

Delay Scalability Robustness Unmanageable
MetaData

Distributed
web

Caching

Average

Above

Average

Low

Low

High

Distributed
web

caching
with

clustering

Above

Average

Low

Average

Average

Low

Satellite
based

distributed
web

caching

High

Low

High

High

Low

 In this table there is comparison between
three architectures. In distributed web caching the hit
ratio was Average and delay was Above Average and
scalability, robustness was low, unmanageable data
was high. In second Architecture the result was better
than previous in case of hit ratio, Delay, scalability
and robustness. And in third Architecture the results
are better than previous architectures in case of hit
ratio, scalability and robustness.

6. Conclusions
 Satellite Web service becomes more and
more popular, users are suffering network congestion
and server overloading. Great efforts have been made
to improve Web performance. Web caching is
recognized to be one of the effective techniques to
alleviate server bottleneck and reduce network traffic,
thereby minimize the user access latency. In this
work, I give an algorithm to reduce the Extra
Overhead, solves the problem of Cache Coherence
(Get if Modified), problem of Scalability along with
solving all these problems it also improves the Hit
Ratio and the Latency Time .By surveying previous

works on Web caching, we notice that there are still
some open problems in Web caching such as proxy
placement, cache routing, dynamic data caching, fault
tolerance, security, etc. The research frontier in Web
performance improvement lies in developing
efficient, scalable, robust, adaptive, and stable Web
caching scheme that can be easily deployed in current
and future network. Further we can improve
performance by adding page replacement algorithm
and by making it pure Dynamic.

REFERENCES
[1] A. Chankhunthod et al., “A hierarchical

internet object cache,” in Proc. 1996 annual
conference on USENIX Annual Technical
Conference, San Diego, CA, Jan. 1996.

[2] D. Povey and J. Harrison, “A distributed
Internet cache,in Proc. 20th Australian
Computer Science Conf., Sydney, Australia,
Feb. 1997

[3] V. Cardellini, M. Colajanni, P.S. Yu,
“Geographic Load balancing for scalable
distributed Web systems”, Proc. of
MASCOTS’2000, IEEE Computer Society,
San Francisco, CA, pp 20-27 Aug. 2000.

[4] T. Schroeder, S. Goddard, B. Ramamurthy,
“Scalable Web server clustering
technologies”, IEEE Network, May-June
2000, pp. 38-45.

[5] K. Claffy and H.W. Braun, “Web traffic
characterization: An assessment of the
impact of caching documents from NCSA”s
web server” in Electronic Proc. 2nd World
Wide Web Conf.’94:pp- 37-51 Mosaic and
the Web, 17-10-1994 vol.28.

[6] Tiwari Rajeev and Khan Gulista, “Load
Balancing in Distributed Web Caching: A
Novel Clustering Approach”, Proc. of
ICM2ST-10, International Conference on
Methods and models in science and
technology pp. 341-345, November 6, 2010,
vol.1324.

[7] Rajeev Tiwari, Gulista khan, “Load
Balancing through distributed Web Caching
with clusters”, proceeding of the CSNA
2010 Springer, pp 46-54, Chennai, India.

[8] http://squid.nlanr.net.

1/2/2012

