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1. INTRODUCTION 

Flexible manufacturing systems (FMS) have 
extensively been studied over the past fifteen years. 
Selection of FMS is a challenging task because of the 
insufficient experience and data about this still-
evolving technology. Further, the large investment 
involved makes the selection process critical.An FMS 
is an integrated manufacturing system that consists of 
one or several work stations linked by a computerized 
inventory system, making it possible for jobs to follow 
diverse routes through the production system. An 
advantage of FMS is that it can simultaneously meet 
several goals: small batch sizes, high quality standards 
and efficiency of the production process. Boththe 
industrial and the academic community (Kuula, 1993., 
Buzacott et al, 1986., Jaikumar, 1986., Ranta et al, 
1988) have been interested in the design of flexible 
manufacturing systems. The rest of the paper is 
organized as follows: The following section presents a 
concise treatment of the basic concepts of fuzzy set 
theory. Section 3 presents the methodology of 
Logarithmic fuzzy preference programming and 
ELECTRE. The application of the proposed 
framework to FMS selection is addressed in Section 4. 
Finally, conclusions are provided in Section 5. 

 
2. FUZZY SET THEORY 

Fuzzy set theory was first developed in 1965 by 
Zadeh; he was attempting to solve fuzzy phenomenon 
problems, including problems with uncertain, 
incomplete, unspecific, or fuzzy situations. Fuzzy set 

theory is more advantageous than traditional set 
theory when describing set concepts in human 
language. It allows us to address unspecific and fuzzy 
characteristics by using a membership function that 
partitions a fuzzy set into subsets of members that 
‘‘incompletely belong to” or ‘‘incompletely do not 
belong to” a given subset. 
 
2.1. FUZZY NUMBERS 

We order the Universe of Discourse such that U 
is a collection of targets, where each target in the 
Universe of Discourse is called an element. Fuzzy 
number A� is mapped onto U such that a random 
x → U is appointed a real number, μ��(x) → [0,1]. If 
another element in U is greater than x, we call that 
element under A. 
The universe of real numbers R is a triangular fuzzy 
number (TFN)A�, which means that for x ∈ R, μ��(x) ∈
[0,1], and 

 

μ��(x) = �
(x − L) (M − L), L ≤ x ≤ M,⁄

(U − x) (U − M),⁄         M ≤ x ≤ U,
0, otherwise,                             

� 

 
Note that A� = (L, M, U), where L and U represent 
fuzzy probability between the lower and upper 
boundaries, respectively, as in Fig. 1. Assume two 
fuzzy numbers A�� = (L�, M�, U�), and A�� =
(L�, M�, U�); then, 
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Fig. 1: Triangular fuzzy number 
 

 
(1)  A�� ⊕ A�� = (L�, M�, U�) ⊕ (L�, M�, U�) = (L� + L�, M� + M�, U� + U�) 
(2)  A�� ⊗ A�� = (L�, M�, U�) ⊗ (L�, M�, U�) = (L�L�, M�M�, U�U�), L� > 0, M� > 0, U� > 0 
(3)  A�� − A�� = (L�, M�, U�) − (L�, M�, U�) = (L� − L�, M� − M�, U� − U�) 

(4)  A�� ÷ A�� = (L�, M�, U�) ÷ (L�, M�, U�) = �
L�

L�
,
M�

M�
,
U�

U�
� , L� > 0, M� > 0, U� > 0 

(5)  A�
�
�� = (L�, M�, U�)�� = �

1

U�

,
1

M�

,
1

L�

� , L� > 0, M� > 0, U� > 0 

2.2. FUZZY LINGUISTIC VARIABLES  
The fuzzy linguistic variable is a variable that 

reflects different aspects of human language. Its value 
represents the range from natural to artificial 
language. When the values or meanings of a linguistic 
factor are being reflected, the resulting variable must 
also reflect appropriate modes of change for that 
linguistic factor. Moreover, variables describing a 
human word or sentence can be divided into 
numerous linguistic criteria, such as equally 
important, moderately important, strongly important, 
very strongly important, and extremely important. For 
the purposes of the present study, the 5-point scale 
(equally important, moderately important, strongly 
important, very strongly important and extremely 
important) is used. 
 
3. RESEARCH METHODOLOGY  

In this paper, the weights of each criterion are 
calculated using LFPP. After that, ELECTRE is 
utilized to rank the alternatives. Finally, we select the 
best FMS based on these results. 
 
3.1. The LFPP-based nonlinear priority method 

In this method for the fuzzy pairwise comparison 
matrix, Wang et al (2011) took its logarithm by the 
following approximate equation: 
 
ln �� = (ln ���, ln ��� ,ln ����),        

 i,j = 1….,n                                                               (6)                                                            

        That is, the logarithm of a triangular fuzzy 
judgment aij can still be seen as an approximate 
triangular fuzzy number, whose membership function 
can accordingly be defined as 
 

���    �ln �
��

��
�� = 

⎩
⎪
⎨

⎪
⎧���

��
��

���� ���

�� ������ ���
, ln �

��

��
� ≤ ln ��� ,

�� �������
��
��

�

�� ������ ���
, ln �

��

��
� ≥ ln ��� ,

⎭
⎪
⎬

⎪
⎫

                                                                            

(7) 
 

Where ���    �ln �
��

��
�� is the membership degree of 

ln �
��

��
� belonging to the approximate triangular fuzzy 

judgment ln �� = (ln ���, ln ��� ,ln ����). It is very 

natural that we hope to find a crisp priority vector to 
maximize the minimum membership degree λ= min 

{���    �ln �
��

��
�� | i=1,…,n-1 ; j=i+1,…, n} . The 

resultant model can be constructed (Wang et al, 
2011) as 
 
 Maximize     λ 
 Subject to 

1 

L M U 0 

���(�) 
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�
���    �ln �

��

��
��  ≥  �, � = 1, … , � − 1; � = � + 1, … , �,

�� ≥ 0, � = 1, … , �,
�     

                                                                                   (8)  

 
Or as 
               

 
 
Maximize    1- λ 

 Subject to   �
ln ��  − ln ��  − � ln �

���

���
�  ≥ ln ��� , � = 1, … , � − 1; � = � + 1, … , �,

− ln �� + ln ��  − � ln �
���

���
�  ≥ − ln ��� , � = 1, … , �; � = � + 1, … , �,

�          (9) 

 
It is seen that the normalization constraint 

∑ ��  
�
��� = 1 is not included in the above two 

equivalent models. This is because the models will 
become computationally complicated if the 
normalization constraint is included. Before 
normalization, without loss of generality, we can 
assume ��    ≥ 1 for all � = 1, … , �  such that 
ln ��  ≥ 0 for � = 1, … , �. Note that the nonnegative 
assumption for ln ��  ≥ 0 (i = 1,. . . ,n) is not 
essential. The reason for producing a negative value 
for λ is that there are no weights that can meet all the 
fuzzy judgments in � � within their support intervals. 
That is to say, not all the inequalities ln ��  − ln ��  −

� ln �
���

���
�  ≥ ln ��� or− ln �� + ln ��  − � ln �

���

���
�  ≥

− ln ��� can hold at the same time. To avoid k from 

taking a negative value, Wang et al (2011) introduced 
nonnegative deviation variables ��� and ŋ�� for 

� = 1, … , � − 1; � = � + 1, … , �, such that they meet 
the following inequalities: 
 

ln ��  − ln ��  − � ln �
���

���
�  ≥ ln ��� , �

= 1, … , � − 1; � = � + 1, … , � 

− ln �� + ln ��  − � ln �
���

���
�  ≥ − ln ��� , � =

1, … , �; � = � + 1, … , �                                          (10)                                    
 
It is the most desirable that the values of the 
deviation variables are the smaller the better. Wang et 
al (2011) thus proposed the following LFPP-based 
nonlinear priority model for fuzzy AHP weight 
derivation: 
 

 
 

Minimize     J= (1-λ)2+M.∑ ∑ (���
� + ŋ��

� )�
�����

���
���  

 

Subject to 

⎩
⎪
⎨

⎪
⎧��  − ��  − � ln �

���

���
� + ��� ≥ ln ��� , � = 1, … , � − 1; � = � + 1, … , �,

−�� + ��  − � ln �
���

���
� +  ŋ�� ≥ − ln ��� , � = 1, … , �; � = � + 1, … , �,

�, �� ≥ 0, � = 1, … , �
���,  ŋ�� ≥ 0, � = 1, … , � − 1; � = � + 1, … , � ⎭

⎪
⎬

⎪
⎫

                        (11) 

 
Where ��= ln �� for i = 1,. . . ,n and M is a 

specified sufficiently large constant such as M = 103. 
The main purpose of introducing a big constant M 
into the above model is to find the weights within the 
support intervals of fuzzy judgments without 
violations or with as little violations as possible. 
 
3.2. The ELECTRE Method 
 

The ELECTRE (Elimination Et Choix Traduisant 
la REalite´) method originated fromRoy in the late 
1960s. The ELECTRE method is based on the study 

of outranking relations and uses concordance and 
discordance indexes to analyze the outranking 
relations among the alternatives. Concordance and 
discordance indexes can be viewed asmeasurements 
of satisfaction and dissatisfaction that a decision-
maker chooses one alternative over the other. 
Suppose a MCDM problem has m alternatives (A1, 
A2, . . . ,Am), and n decision criteria/attributes (C1,C2, 
. . . ,Cn). Each alternative is evaluated with respect to 
then criteria/attributes. All the values/ratings assigned 
to the alternatives with respect toeach criterion form 
a decision matrix denoted by X=(xij)m×n. Let W= (w1, 
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w2, . . . ,wn) be the relative weight vector about the 
criteria, satisfying ∑ ��

�
��� = 1. Then the ELECTRE 

method can be summarized as follows (Yoon and 
Hwang 1995).  
 
1. Normalize the decision matrix X= (xij)m×n by 
calculating rij, which represents the normalized 
criteria/attribute value/rating,  
 

rij= 

�

���

�∑
�

���
�

�
���

 for the minimization objective, where i = 

1, 2, . . . ,m and j = 1, 2, . . . , n,                             (12) 
 

rij = 
���

�∑ ���
��

���

 for the minimization objective, where i = 

1, 2, . . . ,m and j = 1, 2, . . . , n,                             (13) 
 
2. Calculate the weighted normalized decision matrix 
V= (vij)m×n 

vij= rij×wj, where i = 1, 2, . . . ,m and j = 1, 2, . . . , n,  
 
where wj is the relative weight of the jth criterion or 
attribute, and ∑ ��

�
��� = 1. 

 
3. Determine the concordance and discordance sets. 
For each pair of alternatives Ap and Aq(p, q=1, 2, . . . 
,m and p≠q) the set of criteria is divided into two 
distinct subsets. If alternative Ap is preferred to 
alternative Aq for all criteria, the concordance set is 
composed. This can be written as 
 
C (p,q) = {j |Vpj>Vqj}                                             (14)                                                                                     
 
Where Vpj is the weighted normalized rating of 
alternative Ap with respect to the jth criterion. In 
other words, C (p, q) is the collection of attributes 
where Ap is better than or equal to Aq. The 
complement of C (p, q), the discordance set, contains 
all criteria for which Ap is worse than Aq. This can be 
written as 
D (p,q) = {j |Vpj<Vqj}                                             (15)                                                                                                   
 

4. Calculate the concordance and discordance 
indexes. The concordance index of C (p, q) is defined 
as 
 
Cpq = ∑ ��∗�∗                                                           (16)                                                                                              

 
where j* are attributes contained in the concordance 
set C( p, q). The discordance index D (p, q) 
represents the degree of disagreement in (Ap→Aq) 
and can be defined as 
 

Dpq = 
∑ |�

��� �
�

��� |��

∑ |�
�� �  

�
��

|
�

                                             (17)                                                                 

 
where j+ are attributes contained in the discordance 
set D( p, q) and vij is the weighted normalized 
evaluation of alternatives i on criterion j. Outranking 
relationship. The method defines that Ap outranks Aq 
when Cpq ≥ C and Dpq ≤ D, where C and D are the 
averages of Cpq and Dpq, respectively. 
 
4. A NUMERICAL APPLICATION OF 
PROPOSED APPROACH  

The criteria for this example are taken from 
Shamsuzzaman et al (2003). These criteria are 
including: Flexibility (C1), Cost (C2), Risk (C3), 
Production rate (C4), System utilization (C5) and 
Throughput time (C6).In addition, there are six 
alternatives include A1, A2, A3, A4, A5 and A6.In this 
paper, the weights of criteria are calculated by using 
LFPP, and these calculated weight values are used as 
ELECTRE inputs. Then, after ELECTRE 
calculations, evaluation of the alternatives and 
selection of Flexible Manufacturing System is 
realized.  
 
Logarithmic Fuzzy Preference Programming: 
      In LFPP, firstly, we should determine the weights 
of each criterion by utilizing pair-wise comparison 
matrices. We compare each criterion with respect to 
other criteria. You can see the pair-wise comparison 
matrix for Flexible Manufacturing System criteria in 
Table 1.  
 

Table 1.Inter-criteria comparison matrix 
 C1 C2 C3 C4 C5 C6 

C1 (1,1,1) (3,4,5) (1,2,3) (2,3,4) (3,4,5) (2,3,4) 
C2 (1/5,1/4,1/3) (1,1,1) (1/4,1/3,1/2) (1/3,1/2,1) (1,2,3) (3,4,5) 
C3 (1/3,1/2,1) (2,3,4) (1,1,1) (1,2,3) (2,3,4) (1/3,1/2,1) 
C4 (1/4,1/3,1/2) (1,2,3) (1/3,1/2,1) (1,1,1) (1/2,3/2,5/2) (2,3,4) 
C5 (1/5,1/4,1/3) (1/3,1/2,1) (1/4,1/3,1/2) (2/5,2/3,2) (1,1,1) (1,2,3) 
C6 (1/4,1/3,1/2) (1/5,1/4,1/3) (1,2,3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) 
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        After forming the model (11) for the comparison 
matrix and solving this model using of Genetic 
algorithms, the weight vector is obtained as follow: 
 
��= (0.301755, 0.206396, 0.188336, 0.135751, 
0.08891, 0.078852) T 
 
 
ELECTRE: 
       The weights of the criteria are calculated by 
LFPP up to now, and then these values can be used in 
ELECTRE. So, the ELECTRE methodology must be 
started at the second step. Thus, weighted normalized 
decision matrix can be prepared. This matrix can be 
seen from Table 2. 
 

 

Table 2. The weighted normalized decision matrix 

 
C1 C2 C3 C4 C5 C6 

A1 0.05 0.04 0.02 0.01 0.01 0.01 

A2 0.05 0.03 0.02 0.02 0.02 0.01 

A3 0.06 0.03 0.04 0.03 0.02 0.02 

A4 0.06 0.04 0.02 0.02 0.01 0.01 

A5 0.06 0.03 0.03 0.03 0.02 0.01 

A6 0.04 0.05 0.05 0.03 0.01 0.01 

 
          In the next step, according to ELECTRE 
methodology, we obtain the concordance and 
discordance indexes that are show in Table 3 and 
Table 4. 
 

 
Table 3. Concordance indexes (Cpq) 

 
A1 A2 A3 A4 A5 A6 

A1  
0.206396 0.206396 0 0.206396 0.390665 

A2 0.793604 
 

0 0.167762 0.374158 0.469516 

A3 0.793604 1 
 

0.491849 0.864249 0.605268 

A4 1.00 0.508151 0.508151 
 

0.508151 0.390665 

A5 0.793604 0.625842 0 0.491849 
 

0.605268 

A6 0.609335 0.530484 0.394732 0.609335 0.394732 
 

 
Table 4. Discordance indexes (Dpq) 

 
A1 A2 A3 A4 A5 A6 

A1  
1 1 1 1 1 

A2 0.996292 
 

1 0.987174 1 1 

A3 0.529104 0 
 

0.427511 0 0.914291 

A4 0 0.277586 1 
 

0.788971 1 

A5 0.659379 0.315037 1 1 
 

1 

A6 0.30367 0.472277 1 0.715037 0.841566 
 

 
        After that we obtain the Cpq ≥ C¯ & Dpq ≤ D¯ 
that show in Table 5. 
 
Table 5. Cpq ≥ C¯ & Dpq ≤ D¯ 

 
A1 A2 A3 A4 A5 A6 

A1  
0 0 0 0 0 

A2 0 
 

0 0 0 0 

A3 1 1 
 

1 0 0 

A4 1 1 0 
 

0 0 

A5 1 1 0 0 
 

0 

A6 1 1 0 1 0 
 

 

     The ELECTRE results are shown in Table 6 as 
follow: 
 
Table 6. The result of ELECTRE method 

Alternative Ranking 
A3 & A6 1 

A2 2 
A4 3 

A1 & A2 4 
 
         According to result, if the best one is needed to 
be selected, then the alternative A3 or A6 must be 
chosen. 
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5. CONCLUSIONS 

Selection of a flexible manufacturing system 
(FMS) is a challenging task because of the 
insufficient experience and data about this still-
evolving technology. Further, the large investment 
involved makes the selection process critical. This 
paper illustrates an application of LFPP along with 
ELECTRE in selecting FMS. Fuzzy set theory is 
incorporated to overcome the vagueness in the 
preferences. Two steps LFPP and ELECTRE 
methodology is structured here that LFPP uses 
ELECTRE result weights as input weights. 
According to this methodology, A6 and A3 are 
selected as the best FMS. 
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