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Abstract: In mathematical programming it is customary to distinguish linear and convex programming. In nonlinear 
programming the objective function becomes nonlinear or one or more of the constraints inequalities have non-linear 
inequalities have non-linear relationship or both. Non-linear programming which has the problem of minimizing a 
convex objective function in the convex set of points is called convex programming where the constraints may taken 
to be non-linear.  
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Introduction:  

The Fritz John theorem is one of the most 
important results in mathematical programming.  In 
linear programming the objective function and 
constraints are linear, in convex programming the 
objective functions admissible set are convex. Convex 
optimization problems are far more general than linear 
programming problems, but they share the desirable 
properties of LP problems:  They can be solved quickly 
and reliably up to very large size up to hundreds of 
thousands of variables and constraints.  
            Nonlinear programming presents different 
perspective on mathematical programming problems in 
which the objective function and the constraint 
functions are not necessarily linear. There are many real 
world problems which have more than one conflicting 
objective functions. Such programming problems are 
called multiobjective programming problems. The 
mathematical discipline devoted to the theory and 
methods of finding the maximization and minimization 
of functions on sets defined by linear and nonlinear 
constraints.   Mathematical Programming is a branch of 
optimization. It is used in various fields of man’s 
activity where it is necessary to choose one course of 
action from several possible courses. 
The general mathematical programming problem can 
be expressed as: 
      (P)     Maximize (minimize) f(x) 

        Subject to ,0),,()x(g j   j=1,2,...,m    

                        x S  

Where f and ,jg  j=1,2,…,m are real valued functions 

defined on .nS R The function f(x) is called 

constraints functions. In any given problem, the various 
members of (P) may have different equality/inequality 
signs but one and only one of the signs holds for each 
constraint. 

            When there are, besides inequality constraints, 
also equality constraints, the existing proofs are usually 
quite long and intricated. This is the case, for example, 
of the paper of Mangasarian and Fromovitz (1967), 
perhaps the first paper dealing with this topic, of the 
book of Bazaraa and Shetty (1967) and of Bazaraa, 
Sherali and Shetty (1993), of the paper of Still and 
Streng (1996), etc. An interesting paper of McShane 
(1973) uses the penalty approach and therefore it is 
useful in those courses on optimization, where also the 
computational aspects are treated[1]. 

In mathematical programming it is customary 
to distinguish linear and convex programming. In 
nonlinear programming the objective function becomes 
nonlinear or one or more of the constraints inequalities 
have non-linear inequalities have non-linear 
relationship or both. Non-linear programming which 
has the problem of minimizing a convex objective 
function in the convex set of points is called convex 
programming where the constraints may taken to be 
non-linear. 
            In linear programming the objective function 
and constraints are linear, in convex programming the 
objective functions admissible set are convex. Convex 
optimization problems are far more general than linear 
programming problems, but they share the desirable 
properties of LP problems:  They can be solved quickly 
and reliably up to very large size up to hundreds of 
thousands of variables and constraints.  
            Nonlinear programming presents different 
perspective on mathematical programming problems in 
which the objective function and the constraint 
functions are not necessarily linear. There are many 
real world problems which have more than one 
conflicting objective functions. Such programming 
problems are called multiobjective programming 
problems. The mathematical discipline devoted to the 
theory and methods of finding the maximization and 
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minimization of functions on sets defined by linear and 
nonlinear constraints.   Mathematical Programming is a 
branch of optimization. It is used in various fields of 
man’s activity where it is necessary to choose one 
course of action from several possible courses. 
HYPOTHESES FORMULATION 
(a) The general mathematical programming problem 
can be formulated as: 
Max (or min) f(x) 

Subject to 
,0),,()x(g j 
    j=1,2,...,m 

                 Sx   
Where f and gj, j=1,2,...,m  are real valued functions 

defined on 
nRS   . The function f(x) is called the 

objective function and gj(x), j=1,2,...,m are called 
constraint functions. 
(b) A general multiobjective programming problem 

having k
)2(

objectives is of the form: 
(MP)  min f(x) = (f1(x), f2(x), ... fk(x)  )     

Subject to 
,0)x(g j 
    j=1,2,...,m 

                    Sx   
Where fi, i=1, 2,..., k and gj, j=1,2,...,m  are real valued 

functions defined on 
nRS   .. 

(c)The mathematical representation of non-linear 
programming problem is as follows:  
            (P) Minimize f(x)  

            Subject to 
( ) 0,  j=1,2,...,mjg x 

 

                              x S  

where f and  jg
,j=1,2,…,m are real valued functions 

defined on 
.nS R       

(d) In non-linear fractional programming we maximize 
(minimize) the ratio of two non-linear functions subject 
to linear or non-linear constraints. It is of the form; 

 (FP)    maximize 

( )

( )

f x

g x  

           subject to   
  0,   1, 2, ...,jh x j m 

  

                             x S   
 
(FP ) is said to be concave-convex fractional program, 
if f(x) is concave, g(x)is convex on the convex set S, if 
g is non-affine, then f is required to be non-negative. If 
f and g are differentiable, then concave convex 
fractional program has a pseudoconcave objective 
function. 
              Fritz-John [2] established necessary 
optimality conditions for the nonlinear programming 
problems without imposing any constraint qualification. 
Mangasarian[3] obtained necessary and sufficient 

conditions of optimality for nonlinear programming 
problems without assuming differentiability of the 
functions involved. He further derived Kuhn-Tucker’s 
necessary optimality conditions under the weaker 
constraint qualification for pseudo-convex objective 
function and quasi-convex constraints. 
             In fractional programming problem if objective 
function is differentiable then cancave-convex 
fractional programming has a pseudoconcave objective 
function. Since the Kuhn-Tucker optimality conditions 
are often sufficient for a global optimal solution, 
therefore, cancave-convex fractional programming 
problem can be solved by various algorithms of convex 
programming. For Frank-Wolfe’s method [4], 
Jagannathan [5], Dinkelbach [6] and Geoffrion[7] 
have shown that a fractional program can also be 
represented by a parametric program. Dinkelbach [6] 
proposed an iterative procedure that solves the 
equivalent parametric program. Schaible [8] modified 
Dinkelbach’s algorithm and gave an algorithm similar 
to Dinkelbach’s procedure and is based on a theorem 
by Jagannathan [5] concerning the relationship 
between fractional and parametric programming. 
              Proper efficiency of the solution of multi-
objective programming problem is a strengthened 
solution concept. It eliminates unbounded trade-offs 
between the objectives. It was originally introduced by 
Kuhn-Tucker[9] and later followed by 
Klinger[10],Geoffrion [11] and White[12] for the 
usual multiobjective programming problem. The 
concept of efficiency was generalized to cone 
efficiency by Yu[13]. Subsequently, proper efficiency 
was generalized by Browien[14]. Later the definition 
was strengthened by Benson[15] to assure equivalence 
to the Geoffrion definition even when the decision set 
is non-convex. 
Optimality condition in Fritz John theorem  
            Optimality conditions are very important 
because they lead to the identification of optimal 
solutions. Fritz-John gave necessary optimality criteria 
for a non-linear programming problem without 
imposing any constraint qualification. They have 
proved that if x* is an optimal solution of (P), then 

there exists 
* *

0 , ,mr R r R 
 such that  

                     
* * * *

0 ( ) ( ) 0Tr f x r g x   
 

                       
* *( ) 0Tr g x 

 

                        
* *

0( , ) 0r r 
 

  There is no guarantee that 
*

0 0r 
. In case 

when
*

0 0r 
, the objective function f disappears from, 

the Fritz-John conditions and we have a degenerate 
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case. In order to exclude such cases Kuhn-Tucker 
introduced restrictions on the constraints. 
Duality in Fritz John theorem: 
             Duality plays a crucial role in mathematical 
programming. It is very useful to both theoretically and 
practically. A given problem of minimizations 
(maximization) subject to constraints, called primal 
problem, sometimes leads to another problem of 
maximization (minimization) subject to certain 
constraints known as a dual problem. The dual theorem 
states that for every minimization (maximization) 
problem called the primal problem, there is 
corresponding maximization (minimization) problem 
called the dual problem such that the minimum 
(maximum) value of former is equal to the maximum 
(minimum) value of the later. 
Conclusion 

Optimization is the act of obtaining the best 
result under given circumstances. In design, 
construction and maintenance of any decisions at 
several stages. The ultimate goal of all such decisions 
is either to minimize the effort required or to maximize 
the desired benefit since the effort required or the 
benefit desired in any practical situation can be 
expressed as a function of certain decision variables. 
Optimization can be defined as the process of finding 
the conditions that give the maximum or minimum 
value of a function. Optimization, in its broadest sense, 
can be applied to solve any engineering problem.  
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