
 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

10

An optimistic concurrency control approach for faster abortion of conflicting transactions

Fatemeh Abdi Saghavaz

Faculty Member of Nima Non-profit Institution, Mahmudabad County, Mazandaran, Iran
fasaabdi@nima.ac.ir

Abstract: In this paper, the main focus was on designing a concurrency control mechanism which is suitable for
mobile database systems. In the suggested plan, a new architecture is proposed for mobile environments, which
causes acceleration when committing the transactions and reduces the communication overload of this environment.
In addition, we enhance the conventional optimistic concurrency control with an early termination mechanism on
conflicting transactions, called "intermediate validation phase". By using this phase, conflicting transactions can be
identified timely and terminated before reaching the validation phase. This mechanism is highly desirable in the
mobile environment, because allowing conflicting transactions to continue, not only wastes constrained computing
power and low bandwidth, but also exacerbates conflicts. This observation leads to ignore some conflicts and reduce
restarts.
[Fatemeh Abdi Saghavaz. An optimistic concurrency control approach for faster abortion of conflicting
transactions. N Y Sci J 2013;6(12): 10-16]. (ISSN: 1554-0200). http://www.sciencepub.net/newyork. 2

Keywords: Mobile Database, Concurrency Control, Transaction

1. Introduction

The mobile database architecture consists of a
Fixed sever, Mobile Hosts, Mobile Server, Mobile
Support Station (MSS) and Control Server. The
region under the network coverage is divided into
various zones each of which is again divided into
several cells. The Fixed Servers are computers that
are connected to the fixed network and do not have
the mobility feature. These computers have the duty
to process the transactions, manage the information
and respond to queries. Breaking down the
transaction and sending it to another fixed station in
the network which can execute that sub-transaction.
Another part of this architecture is the Mobile Hosts.
These hosts are computers that are moving through
the wireless network and have the ability to connect
to the network via the wireless interfaces [7]. In this
part, data storage and transaction management do not
take place. The mobile servers are similar to the fixed
servers except for this difference that they are capable
of mobility and making connection to the wireless
network. The main difference between the fixed
server and the mobile server is related to the
transactions breakdown and processing. In the mobile
database architecture, the connection of each cell
with other cells is facilitated via a wireless interface
specific to that cell which is called the Mobile
Support Station and holds the address of all cells. In
each network, there is only one Control Server that is
responsible for maintaining the physical location of
the Mobile Hosts in that network and also the global
concurrency control, management and recovery of
transactions [4]. As it's obvious, transaction
processing and concurrency control are always
biggest challenges in the database. Because of its

inherent limitations in mobile databases, greater
difficulties were faced with us in concurrency. Many
methods were proposed to improve the concurrency
in these environments and each of them has its
weaknesses and strengths. Some of these methods
are as following:
- S2PL method improvement in concurrency control
[5]
- Hybrid concurrency control for mobile transactions
[2]
- Flexible combination of pessimistic and optimistic
concurrency control in mobile environments
- Concurrency control approach based on forecasting
- Distributed lock management for mobile
transactions [1]
- Infinite block prevention of mobile transactions [6]

By studying the present approaches, it can be
understood that the lock-based methods always face
the concurrency level reduction, high rate of being
blocked, and an increase in the system response time.
Also the optimistic mechanisms scuffle with
numerous abortions of transactions and often
cascading abortions. Compared to the locking
methods, the optimistic approaches seem to be
attracting for mobile environments due to their nature
of being free from deadlocks and less communication
overload [8][9]. Therefore, in this paper, it has been
decided to take measures to help cover the
shortcomings of the optimistic concurrency control
mechanisms and evict those transactions condemned
to abortion from the colony of the system active
transactions by early detecting them and prevent the
proliferation of conflictions among other transactions
and reduce the system concurrency.

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

11

2. The architecture of the suggested system
In the suggested plan, a set of mobile support

stations (cells) form ‘a zone’. In each zone, an MSS
is considered to be the mobile transaction manager
(MTM) (fig. 1). It should be mentioned that in the
presented figure the dotted lines indicate the wireless
communications and the connected lines indicate the
wired communications. Upon arriving at each zone,
the mobile host stores the number of the zone MTM
in its memory. This information enters a two
dimensional array in which one dimension includes
the MSS numbers and the relevant MTM number is
inserted in another dimension. Suppose that MSSs 1,
2 and 3 are under the supervision of MTM number 1
and the MSSs 4, 5 and 6 are under the supervision of
the MTM number 2. Both The mobile host and the
MSSs have this array. The MTM of each zone has a
copy of all MSS data under its cover. When a
transaction is issued from a mobile host, it gets
divided into some sub-transactions which will be
distributed to various MSSs. The sub-transactions
that are executed in the MSSs of a zone will also be
executed in the MTM of that zone identically with
the same scheduling. In fact, MTM is an intensive
pattern from the whole MSSs of a zone and performs
the execution of sub-transactions under the same
applied scheduling in MSSs. The advantage of this
architecture is that it does not require a coordinator
when committing the transactions so as to send the
committing command to all MSSs involved in the
execution of the transaction and only sends it to the
mobile transaction managers of each zone (MTMs).
Hence, the exchange of information in the network
will be reduced and committing will occur faster. In
each zone, the number of MSSs is constant and the
number of mobile hosts is variable. Each MTM keeps
its list of constant and variable members and updates
them. If a mobile host goes from one cell to another
cell which is under the zone MTM cover, no change
will be made in the list. But if the mobile host exits a
zone under an MTM cover and enters a new zone,
(gives its previous MSS/Id to the new MSS as a part
of hand-off. Then the new MSS checks the received
Id with its two dimensional array. If any differences
arise, which means the mobile host entered a new
zone, the MSS sends the join () message (through the
wired network) to the zone manager which places the
mobile host in its list, and simultaneously informs the
previous MSS of removing the mobile host from the
previous zone manager’s list (He sends the Leave ()
message to the previous MSS and it in turn sends the
message to the MTM of its zone). It should be
mentioned that the exchanged messages across the
network will be transferred at the fixed network level
which can be ignored due to the high speed of these
networks compared to the mobile networks. The zone

manager should have enough information about its
zone data, MSSs under cover and the mobile hosts
which enter or exit the zone and also the transactions
that are issued from these hosts and work on the data
to be able to manage the concurrency and data
processing. Ergo, there is a quadruplet set called ‘the
access set’ in the form of di:<timei,Oi,MSSi,MHi> for
each datum in the MTM which indicates that in timei
, the Oi operation (the subscript indicates the
transaction and O is the read and write operations
(Oi(ri, wi)) performed an operation on the datum di
from a transaction which its origin is the MHi and is
in the MSSi. ri indicates the read operation and wi
indicates the write operation. Information was created
under the name ‘report’ from the union of access sets
belonging to various data in the MTM memory which
is stored in the MTM memory of each zone. The
report containing information is about an operation
that the transaction performs temporarily in the read
phase and is supposed to be evaluated in the
validation phase. Therefore, after these transactions
are aborted, this information will be continually
updated and cannot be reflected in the database until
the end of the final evaluation. Also, MTM keeps a
variable called R(ti) for each transaction which
indicates the number of commands that have been
read by the ti transaction. One unit is added to R(ti)
each time a command is performed. This variable
indicates the transactions working progress and
serves a purpose when comparing their performance
rate and making decisions to select a victim to get
aborted in the ‘intermediate validation phase’.

Figure 1: Mobile database architecture, taking into
account regional manager of mobile transactions

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

12

3. Concurrency control under the suggested
architecture

As it's obvious, in the optimistic concurrency
control approach, transactions are allowed to
continue their job until they arrive at the committing
point without any obstacles. Then, they will be
validated before being committed. In the traditional
optimistic concurrency control, performing the
transactions consists of three phases, namely read,
write and validation. The transactions fate will be
sealed in the last phase [10] [11]. Validation can take
place in one of the two ways, namely ‘backward
validation’ and ‘forward validation'. Most of the
existing OCC protocols use the forward validation
due to its flexibility when selecting the transaction
condemned to restarting in terms of criticality or
priority from among then transactions being validated
or the conflicting active transaction [4]. While in the
backward validation, the candidates are only those
transactions under validation. Also, the forward
approach recognizes the conflictions quicker which
leads to economization in time and the system
sources. Hence, the forward validation will be used in
the suggested plan. In the suggested concurrency
control mechanism, performing the transaction has
four phases, namely the read, intermediate validation,
final validation and the write phase.
3.1 Reading Phase

At this stage, the transactions are conducted
freely, but they all write operations in the working
space which is accessible only for private
transactions, so they are not visible to other
transactions.
3.2 Intermediate validation

By using this phase, conflicting transactions can
be detected early and before the final validation phase
are completed. In our proposal, MTM performs
validation on a periodic basis every L seconds. So the
steps which are taken up to the moment of the
transaction (intermediate validation moment), are
compared to other concurrent transactions. To avoid
repetition of tests a “check point” can be inserted into
transaction reading set. However, despite using of
intermediate validation phase, transaction failure in
final validation phase is probable. For example, the

intermediate validation could be done every 7
seconds and transaction execution time is 17 seconds.
Last intermediate validation will be happen in the 14th
second, while it may be failed in the 15th second. As
noted above, in this phase the reading set of the
transactions is compared to reading set of other
concurrent transactions. Intermediate validation is
performed on MTM. As it's clear, MTM keeps an
access set di:<timei,oi,Mssi,MHi> for each of its data.
This information is continually updated based on the
transactions reading set which is temporary. If they
have been studied, it could be inferred that
confliction of those transactions which
simultaneously get access to a datum. Whenever a
transaction is aborted, its related information is
removed from the access set of those data with which
the transaction worked. During the intermediate
validation, this information is exchanged among the
MTMs that cooperated with one another during the
performance of the transaction, because it is possible
that the datum ‘di’ gets accessed by those
transactions that are outside of a zone under MTM
coverage. After getting information from other
MTMs, the serializability graph of each zone will be
created during the evaluation, the transaction is
aborted sooner if a cycle is found. It should be
mentioned that these reports are exchanged
periodically and concurrent with applying the
intermediate validation phase by the MTMs. Each
MTM is responsible for sending the report definitely
to other engaged MTMs. In the following, you can
see the report-making and sending algorithm:
1- For each di<timei,oi,Mssi,MHi> which is in each
MTM, Id of each Mssi is scanned.
2- If Mssi belongs to the zone under MTM coverage,
it means that the datum is accessed locally.
Therefore, we will insert di:<timei,oi,Mssi,MHi> into
the related report.
3- Otherwise (i.e. non-local access to the data), it
would be inserted to access the set into the report and
then send it to the MSS which is the supervisor of the
non-local MTM.
4- It has been combined the local report with reports
from other MTMs.

Figure (2): The report-making and sending algorithm

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

13

In each intermediate validation, an
evaluation is carried out in order to identify the
conflicting transactions by receiving and combining

reports. Figure (3) shows the algorithm for
identifying the conflicting transactions.
For two transactions tiand tj on the MTM

Figure (3): The algorithm for identifying the conflicting transactions

3.3 The final validation phase

In this phase, the evaluation will be carried out
in front of all of the transactions that are being
performed concurrently. Identification of the
conflictions takes place by comparing the write set of
the transaction under evaluation with the read set of
the active transaction. Most of the OCC protocols use
the forward validation. The transaction that is aborted
in this phase should be restarted immediately. In
order to carry out the final validation, it is not
necessary for all commands to be evaluated from the
beginning and evaluating the commands after the last
check point will suffice. This way, the transaction
won’t wait too much for the final validation and the
speed of its being committed and as a result the
concurrency of the system goes up.
3.4 The writing phase

In this phase, after the final validation, the result
of the transaction operation in the read phase is
transferred from the workspace to the database. This
way, the transaction private records will be visible for
other transactions.

4. Comparison of the suggested plan and the
traditional optimistic approach

In order to evaluate the performance of the
concurrency control mechanisms, there are various
parameters such as the response time, the effective
output and the probability of transactions conflict. In
this part, two approaches were compared, namely the
traditional optimistic concurrency control mechanism
and the suggested plan based on the framework of
these parameters.
4.1 The time complexity function of the
transactions’ responsiveness

The average of transactions’ response time has a
direct relationship with the size of transaction and the
number of conflicts in the system [3].

)1(wkp)M(s)1k()M(R ca

In equation (1), K is the transaction size; and pc
is the probability of conflict for each data requested

by the transaction.
)M(S a is the average of the

processing time for each transaction step in a system
with M active transactions. The conflicting
transactions restart after the specified delay (W). If
this transaction is condemned to abort, according to
the suggested plan and based on the period
adjustment of the intermediate validation phase, a
specific transaction might be identified after
executing k/2 of its size (on average). Therefore, the
average of the conflicting transactions’ response time
decreases as follows which is shown with index
(our):

)2(
2

Wkp
)M(S)1

2

k
()M(R c

aour

4.2 The transactions’ effective output
The transactions’ effective output can be

obtained from equation (3) and equals to dividing the
number of the database transaction by the
transactions’ response time
[3]:

)3(
Wkp)M(s)1k(

M
)M(T

)M(R

M
)M(T

ca

Since the amount of response time for the
transactions decreases in the suggested plan
according to equation (2), the transactions’ effective
output is as follows which is indicated by the index
(our):

)4(

2

Wkp
)M(S)1

2

k
(

M
)M(T

)M(R

M
)M(T

c
a

our
our

It goes without saying that as the R(M) decreases, the
amount of the conflicting transactions’ effective
output increases.
4.3 The relationship between the conflict
probability and the transaction size

Regarding the fact that nc is the average of the
number of conflicts for each transaction, it equals
nc=kpc. When a transaction requests data, the
probability of data conflict (pc) for the ith data request
equals [3]:

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

14

)5(
D2

k)1M(
~

D

L)1M(
~

iD

iN
Pc

L Indicates the number of data that are accessed by

the transaction; N is the average of the number of
data which is utilized by other transactions (M-1);
and D is the total number of the database data. Hence,
the data conflict probability after performing the last
step of a transaction equals:

)6(
D2

k)1M(
~kp~)p1(1p

2

c
k

cw

This conflict probability is obtained after the
last data required by the transaction was requested in
the last step (kth) of performing the transaction; while
in the suggested plan, it's possible to decrease this
percentage to the proposed value in equation (7) by
evaluating the transaction in the intermediate
validation phase and identifying the transaction
condemned to abort by executing k/2 its size.

)7(
D8

k)1M(
~p2/k~)p1(

p2/kk
D2

k)1M(
p

2

c
2/k

c

our
w

2

w

4.4 The average of the transactions’ validation
time

In the optimistic techniques, transactions
undergo evaluation after the reading phase is
completed and before committing .Considering the
probability of data conflict and the number of active
transactions, the average of the evaluation time
equals [3]:

)8(]p)M(S()jk[(
)1k(k

j2
E ca

K
1j

j is the number of data that are accessed by the
active transactions. In the proposed approach,
committing of the transactions takes place after
making some arrangements with a limited number of
MTMs and it occurs faster compared to other
concurrency control approaches in which the
coordinator exchanges information with a large
number of MSS involved in the operation. On the
other hand, the status of the active and delayed
transactions can be determined faster using the
intermediate validation in general and the data
conflict decreases as a result. It is clear that the

decrease in
j,)M(S a ,pc affects the final validation

time average of transactions. Besides, according to
the intermediate validation phase effect and the fact
that at least half of the transaction size is evaluated in
the pre-mentioned phase, the rest of the steps will be

evaluated after the check point in the final validation
phase. Ergo, the average of the final validation time
decreases as follows:

)9(]p)M(S()j[(

)
2

1
k(

4

k

j2
E2/kk

]p)M(S()jk[(
)1k(k

j2
E

ca2
k2/K

1jour

ca
K

1j

5- The evaluation environment

This system is evaluated via the MATLAB
software in which the parameters are considered as
depicted in table (1). It should be mentioned that the
selected values in this table are common in many of
the evaluations in the mobile environment. [3][4]. as
it's obvious, the optimistic approaches are suitable for
the environments in which the number of reading
operations is more than the writing operations [10].
Also, since the transaction size in the mobile
environment is not much, the maximum size is taken
to be 20.

Table (1): The characteristics of the evaluation
environment

Values Parameters

λu
The input rate of write transaction is
5 per second.

λr
20 read-only transactions enter the
system each second.

m
The probability of the mobile host’s
movement from one cell to another
equals 0.1

M
The total number of transactions that
enter the system is between 50 to 250

D
Database size were considered the to
be 250. By size, we mean the number
of data items in the bank.

K
The maximum size of transactions is
considered to be k=20

W
Delay to restart a transaction is taken
to be 10 time unit.

D

kM
P

c

)(1

The probability of one write
command conflict with another read
command equals 2

5.1 The evaluation results

Regarding the relationships which were
proposed in the previous part, the suggested approach
is compared to the traditional OCC approach and the
results of evaluation are depicted as some charts.

According to the suggested plan, most of the
conflicting transactions in the intermediate validation
phase will abort except for those which commit
failure after the last intermediate validation.
Therefore, the system’s response time for conflicting

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

15

transactions decreases as figure (4). It is clear that as
the time decreases for the conflicting transactions, the
total average of the response time decreases for all
the transactions that are a combination of the
conflicting transaction and those without conflicts.
As can be seen in figure (4); the response time of
both approaches increases as the size of transactions
increases. In the traditional OCC approach, the time
equals 450 time units considering the values depicted
in table (1). Each transaction gets restarted all over
again after getting aborted with a w(10) delay of the

time unit.
)M(S a is the average of the processing

time for each transaction step in a system with M
active transactions which equaled 0.2 [3] and pc
which happened to be 2 after placing the values of
table (1).

Figure (4): The comparison of the transactions’

response time average between the traditional OCC
and the suggested approach

The effective output of transaction is obtained

by dividing the ratio the total number of transactions
by the response time average. Needless to say, the
effective output of each transaction increases when
the transactions’ response time decreases according
to figure (4). Figure (5) indicates an improvement in
the suggested plan. The increase in the transactions’
size led to an increase in the conflict probability and
the response time increases as well. In both
approaches, the increase in transactions’ response
time led to a decrease in the transactions’ effective
output. But, the transactions’ effective output shows
lesser decrease in the suggested plan due the
improvement in the response time. In such a way that
to obtain 0.3<Tour<1.2 and 0.2<Tocc<0.6.

Figure (5): The comparison of the average of the

transactions’ effective output between the traditional
OCC and the suggested approach

It is clear that the more the transaction size, the

more the conflict probability in the system. If this
transaction is a transaction condemned to abort, in
traditional OCC techniques, the total transaction size
will be evaluated in the final evaluation phase; but in
the suggested technique, at least half of the
transaction size will be evaluated in the intermediate
phase; So if this is a transaction condemned to fail, it
does not wait for the evaluation and prevents more
conflicts by getting early aborted. As it is shown in
figure (6), in both approaches, the increase in
transaction size leads to an increase in the conflict
probability. Regarding the evaluation environment
parameters, in the traditional OCC approach, this
conflict probability is between 0 to 20 and in the
suggested plan, it is between 0 to 4.

Figure (6): The relationship between the conflict

probability and the transaction size and its
comparison in the traditional OCC and the suggested

plans.

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

16

Also, in the presented plan, due to the presence
of the intermediate evaluation phase which of course
does not create any delays in the transaction process,
according to figure (7), the final evaluation time
decreases. In both approaches, as the transactions size
increases, the evaluation time increases as well. But
in the suggested plan, commands will be evaluated
after the check point in the final phase. In such a way
that obtained 0.05<Eour<0.45 and 0.1<Eocc<1 when
we consider the evaluation environment parameters
of table (1).

Figure (7): The relationship between the evaluation
time and the transaction size and its comparison in

the traditional OCC approach and the suggested plan

6. Conclusion
In the suggested plan, a set of MSSs form a

zone and each zone is under the supervision of a
station, namely the mobile transactions manager.

1. Under the proposed architecture, the time-
consuming and costly operations such as the
intermediate validation, the final validation and
committing in the fixed and intensive part of the
network, namely MTM will take place. Thus, the pre-
mentioned operations will take place quicker and the
fate of a transaction (commit or abort) will be
determined sooner.

2.When sending the commit command from a
mobile host, there is no need for a coordinator to send
the commit command to all MTMs involved in
performance of the transaction and simply should
send it to the managers of each zone, MTMs,
(MSS>>MTM). Therefore, the information exchange
among the mobile support stations will decrease and
so does the network traffic.

3.When committing the transactions, under the
2PC protocol, the coordinator which is responsible
for committing should send the committing command
to all mobile support station involved in performing
the transaction. The coordinator waits until it gets
‘yes’ from all MSSs or set a specified deadline. If one

of the MSSs stop working and does not send the
message, the deadline will be missed and the
coordinator attempts to abort the transaction [4]. In
the suggested plan, in case of a failure in any MSS
when receiving the answer ‘yes’, committing the
transaction does not get delayed or often aborted.

4. Using the intermediate validation, the
conflicting transactions can be identified and aborted
sooner. In this way, we can economize significantly
in consuming the system sources which is very vital
in the mobile systems.

References
1. Jin jing, omran Bukhres, Ahmed Elmagarmid, “Distributed

lock management for mobile Transactions”, proceedings of
the 15th International conference on distributed computing
systems (ICDCS), 1995 IEEE.

2. Sung Ho Cho. Jong Min Lee, chong- sun Hwang, “Hybrid
concurrency control for mobile computing” proceedings of
the High- Performance computing on the international super
highway, 1997 IEEE.

3. Thomasian. Alexander, “concurrency control: methods,
performance, and Analysis”, ACM computing surveys,
vol.30, No.1, March 1998.

4. Particia Serpando- Alvarado, Claudia Ronancio and Michel
ADIBA,
“A Survey of Mobile Transaction”, Distributed and parallel
Databases, Kluwer Academic Publisher’s March 2004

5. Shapour joudi Begeillo, Fariborz Mahmoudi, Mehdi Asadi,
“Improving strict 2 phase locking (S2PL) in transactions
concurrency control”, International conference on
convergence Information Technology, 2007 IEEE.

6. Sebastian obermeier, stefan Bottcher, “Avoiding infinite
blocking of mobile transactions” ll' th Internation Data base
Engineering and Application symposium (IDEAS), 2007
IEEE.

7. Jing Li, Jianhua Wang, "A New Architecture Model of
Mobile Database Based on Agent," dbta, pp.341-344, 2009
First International Workshop on Database Technology and
Applications, 2009

8. Salman Abdul Moiz, Lakshmi Rajamani, "Concurrency
Control Strategy to Reduce Frequent Rollbacks in Mobile
Environments," cse, vol. 2, pp.709-714, International
Conference on Computational Science and Engineering,
2009

9. Anne Marie Amja, Abdel Obaid, Normand Seguin, "A
Distributed Mobile Database Architecture," apscc, pp.62-69,
2011 IEEE Asia -Pacific Services Computing Conference,
2011

10. Kamal Solaiman, Matthew Brook, Gary Ushaw, Graham
Morgan, “ A Read-Write-Validate Approach to Optimistic
Concurrency Control for Energy Efficiency of Resource-
Constrained Systems”, Wireless Communications and
Mobile Computing Conference (IWCMC), 2013 9th
International

11. Ganeshkohad,Shikhagupta,Trupti gangakhedkar,Jogender
raghuvanshi,Umesh ahirwar”, Concurrency Control issues in
Mobile Database”, International Journal of Computer
Architecture and Mobility, (ISSN 2319-9229) Volume 1-
Issue 8, June 2013.

11/16/2013

