
 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

110

An architecture design for low aborting rate (LAR) concurrency control in mobile databases

Fatemeh Abdi Saghavaz

Faculty Member of Nima Non-profit Institution, Mahmudabad County, Mazandaran, Iran
fasaabdi@nima.ac.ir

Abstract: In the mobile environments, due to some specific features such as the bandwidth restriction, displacement
in various geographical regions and disconnection, the efficient and cost-effective design of the concurrency control
mechanisms, require techniques that are completely different from the distributed databases. Although the
concurrency control protocols which are suggested for the distributed environments can be developed for the mobile
environments, their efficiency might be very different from that of the distributed environments. In the suggested
plan, it's offered a new architecture for the mobile database in which a set of cells form a region and one of these
cells under the name ‘mobile transaction manager’(MTM) is responsible for the transactions concurrency control
which is very suitable for the mobile databases. Also, the suggested concurrency control mechanism which is
adopted from an optimistic approach is able to significantly reduce the aborting rate of the transactions in the mobile
environment using the transactions early termination mechanism and ignoring some conflictions.
[Fatemeh Abdi Saghavaz. An architecture design for low aborting rate (LAR) concurrency control in mobile
databases. N Y Sci J 2013;6(12):110-120]. (ISSN: 1554-0200). http://www.sciencepub.net/newyork. 18

Keywords: Mobile Database, Optimistic Concurrency Control, Conflicting Transaction

1. Introduction

It is obvious that the fulfillment of fast
access to the information in the mobile networks
level is dependent upon the fast process of transaction
and an increase in their concurrency. The
concurrency control is responsible for controlling the
performance of concurrent transactions and has a
direct and significant effect on the efficiency of the
transaction process [3]. Numerous approaches are
proposed to improve the concurrency in the mobile
environments [2, 5, 6, and 8]. Some of them use the
lock-based approaches that often have a high
blocking rate. Others are from the optimistic
approaches (OCC) that are the cause of often
improper aborts in the validation phase [1, 4].

Compared to the locking methods, the
optimistic approaches seem to be attracting for
mobile environments due to their nature of being free
from deadlocks and less communication overload [8].
Therefore, in this paper, it's decided to take measures
to help cover the shortcomings of the optimistic
concurrency control mechanisms and Evict those
transactions condemned to abortion from the colony
of the system active transactions by early detecting
them and prevent the proliferation of conflictions
among other transactions and reduce the system
concurrency.

2. The architecture of the suggested system

 Based on our experience, the mobile
database architecture consists of a Fixed sever,
Mobile Hosts, Mobile Server, Mobile Support Station

(MSS) and Control Server. The region under the
network coverage is divided into various zones each
of which is again divided into several cells. The
Fixed Servers are computers that are connected to the
fixed network and do not have the mobility feature.
These computers have the duty to process the
transactions, manage the information and respond to
queries. Breaking down the transaction and sending it
to another fixed station in the network which can
execute that sub-transaction. Another part of this
architecture is the Mobile Hosts. These hosts are
computers that are moving through the wireless
network and have the ability to connect to the
network via the wireless interfaces [7]. In this part,
data storage and transaction management do not take
place. The mobile servers are similar to the fixed
servers except for this difference that they are capable
of mobility and making connection to the wireless
network. The main difference between the fixed
server and the mobile server is related to the
transactions breakdown and processing. In the mobile
database architecture, the connection of each cell
with other cells is facilitated via a wireless interface
specific to that cell which is called the Mobile
Support Station and holds the address of all cells. In
each network, there is only one Control Server that is
responsible for maintaining the physical location of
the Mobile Hosts in that network and also the global
concurrency control, management and recovery of
transactions [4].

In the suggested plan, a set of mobile
support stations (cells) form ‘a zone’. In each zone,

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

111

anMSS is considered to be the mobile transaction
manager (MTM) (fig 1). It should be mentioned that
in the presented figure the dotted lines indicate the
wireless communications and the connected lines
indicate the wired communications. Upon arriving at
each zone, the mobile host stores the number of the
zone MTM in its memory. This information enters a
two dimensional array in which one dimension
includes the MSS numbers and the relevant MTM
number is inserted in another dimension. Suppose
that MSSs 1, 2 and 3 are under the supervision of
MTM number 1 and the MSSs 4, 5 and 6 are under
the supervision of the MTM number 2. Both The
mobile host and the MSSs have this array. The MTM
of each zone has a copy of all MSS data under its
cover. When a transaction is issued from a mobile
host, it gets divided into some sub-transactions which
will be distributed to various MSSs. The sub-
transactions that are executed in the MSSs of a zone
will also be executed in the MTM of that zone
identically with the same scheduling. In fact, MTM is
an intensive pattern from the whole MSSs of a zone
and performs the execution of sub-transactions under
the same applied scheduling in MSSs. The advantage
of this architecture is that it does not require a
coordinator when committing the transactions so as
to send the committing command to all MSSs
involved in the execution of the transaction and only
sends it to the mobile transaction managers of each
zone (MTMs). Hence, the exchange of information in
the network will be reduced and committing will
occur faster. In each zone, the number of MSSs is
constant and the number of mobile hosts is variable.
Each MTM keeps its list of constant and variable
members and updates them. If a mobile host goes
from one cell to another cell which is under the zone
MTM cover, no change will be made in the list. But
if the mobile host exits a zone under an MTM cover
and enters a new zone, (gives its previous MSS/Id to
the new MSS as a part of hand-off.Then the new
MSS checks the received Id with its two dimensional
array. If any differences arise, which means the
mobile host entered a new zone, the MSS sends the
join () message (through the wired network) to the

zone manager which places the mobile host in its list,
and simultaneously informs the previous MSS of
removing the mobile host from the previous zone
manager’s list (He sends the Leave () message to the
previous MSS and it in turn sends the message to the
MTM of its zone). It should be mentioned that the
exchanged messages across the network will be
transferred at the fixed network level which can be
ignored due to the high speed of these networks
compared to the mobile networks. The zone manager
should have enough information about its zone data,
MSSs under cover and the mobile hosts which enter
or exit the zone and also the transactions that are
issued from these hosts and work on the data to be
able to manage the concurrency and data processing.
Ergo, there is a quadruplet set called ‘the access set’
in the form of di:<timei,Oi,MSSi,MHi> for each data
in the MTM which indicates that in timei , the Oi
operation (the subscript indicates the transaction and
O is the read and write operations (Oi(ri, wi))
performed an operation on the data difrom a
transaction which its origin is the MHi and is in the
MSSi. indicates the read operation and wi indicates
the write operation. Information was created under
the name ‘report’ from the union of access sets
belonging to various data in the MTM memory which
is stored in the MTM memory of each zone. The
report containing information is about an operation
that the transaction performs temporarily in the read
phase and is supposed to be evaluated in the
validation phase. Therefore, after these transactions
are aborted, this information will be continually
updated and cannot be reflected in the database until
the end of the final evaluation. Also, MTM keeps a
variable called R(ti) for each transaction which
indicates the number of commands that have been
read by the ti transaction. One unit is added to R(ti)
each time a command is performed. This variable
indicates the transactions working progress and
serves a purpose when comparing their performance
rate and making decisions to select a victim to get
aborted in the ‘intermediate validation phase’.

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

112

Figure 1: Mobile database architecture, taking into account regional manager of mobile transactions

3. Concurrency control under the suggested
architecture

In this section, it's proposed an approach
which is called ‘low aborting rate’ optimistic
concurrency control (LAR). This idea resulted from
the fact that it could be ignored aborting some of
those apparently conflicting transactions which are to
be aborted in the validation phase, via the application
of more serializable scheduling. On the other hand,
with early recognition of the problematic transactions
which are condemned to be aborted in the future
(final validation phase), it's possible to economize
significantly in consumption of the system resources
which are very important in the mobile environment
and prevent more conflictions. This way the system
output and the transactions concurrency will increase.
In this paper, it's assumed that all of the protocols are
strict in that the transactions perform the operations
in a private workspace and its results are not visible
for other transactions until it is committed. In this
situation, some of the conflicting transactions are not
inevitable to abort. Let’s pay attention to the
following example to explain the problem.
Example 1) the transactions are T1, T2 and scheduling
with the following commands:

   awbR1T 

   ewaR2T 

      1Va2Ra1wb1R:1Sch
Here, a read-after-write (in short: R-after-W)
confliction on ‘a’ occurred. After w1 (a), the r2 (a)

command was executed. As a result, when T1 arrives
at its validation phase (V1), the T2 will be aborted
according to the forward validation [10]. With a bit of
contemplation, it's been find out that in the optimistic
approaches, T2, in fact, read the data ‘a’ before the
effect of command w1(a) appears in the bank (T2
cannot read w1(a) in a private workspace, and
therefore reads the old value of the data in the
bank)[4]. Hence, the R-after-W confliction can create

the 1T2T 
priority with regards to the invisibility

of the private workspace under the strict protocol.
Ergo, if T1 can (in case of not violating the principles
which we will mention) delay its validation; until first
the T2 is committed, there is no need to abort T2.

It should be noted that allowing the 1T2T  scheduling
with such transpired confliction is only possible due
to the strict protocol assuming conditions which will
be mentioned further and is not true under the
conditions in which the transactions changes are
applied instantly in the bank.
In any way, our scheduling will be as follows:

         .1C1V2C2Ve2w1Va2Ra1wb1R
[V1] indicates the delay in executing V1 and the
serializability order is T2T1
Example 2) Now, pay attention to the example of
write-after-read (in short: W-after-R) confliction. We
see the same transactions with different scheduling.

      1Va1wa2Rb1R:2sch
Again, according to the forward validation, T2 is
condemned to abort, yet since T2 had read the data ‘a’

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

113

before it was applied in the bank, and did not commit
any violations –which will be explained- so far, it
could be ignored that its abort and delay the T1
validation until the T2 is first committed.

         .1C1V2C2Ve2w1Va1wa2Rb1R
The scheduling result is the T2T1

serialization.
By allowing such scheduling, it's possible to reduce
the aborting rate in OCC. It should be mentioned that
the write-after-write (in short: W-after-W) confliction
will not cause any priority among the transactions.
3-1 The suggested serializable graph

By allowing the ‘read’ to come before the
‘write’ and literally precede it without observing any
principles, and in the case of writing for others to
come ‘prior’ and the write to be ‘preceded’ by them,
a complicated graph with cycles will form. Therefore,
it could be explained specific principles and criteria
which will simplify our serializable priority graph
into a two-part graph. It's called this two-
partserializable priority graph under the priority
protocol ‘serializable priority graph’ (fig 2).
3-2 The priority protocol

Priority among the transactions will be
posed only when the conflictions are R-after-W or
W-after-R. For simplification, we call the transaction
which writes a data the ‘write transaction’ of that data
and the one which reads a data the ‘read transaction’
of that data. Ergo, in the R-after-W confliction, the
read transaction will precede the write transaction.
Knowing the type of transaction whether it is
‘posterior’ or ‘prior’ and after the type of priority is
specified, we can draw the serializable priority graph
of the transactions which indicates their priority. It's
called graph G (V, E) the serializable priority graph
of a system that follows the strict protocol. The
instructive information of these graphs in MTMs is
exchanged via reports and is specified sooner if a
problem arises in the graph, which appears as a cycle.
In any way, E indicates the edge among the
transactions which specifies their priority. Assume

jTiT 
 and an edge that is drawn from Ti to Tj,

namely Ti, read the data written by Tj in its
workspace. If let the transactions with R-after-W or
W-after-R confliction, precede each other without
any obstacles, this creates a complicated serializable
priority graph.
For simplification, the prior and posterior
transactions observe the priority protocol rules. The
purpose is to allow the conflicting transactions to be
either prior or posterior and not both. (One form of
the possibility of a cycle appearing in a graph is that a
node should have both an input and an output edge.)
● the priority protocol rules.
1- For read (Ti)- after – write (Tj):

Ti is allowed to proceed the Tj (Prior=Ti,
Posterior=Tj) If there is no other transaction prior to
Ti (posterior=Ti), Tj will not be prior to any other
transactions (Prior=Tj).
2- For write (Ti) – after – read (Tj):
Tj is allowed to precede the Ti (Posterior= Ti) If Ti is
not prior to any other transactions (Prior=Ti) and Tj
does not have the posterior role by any other
transactions.

A transaction can be independent which
means it has no confliction with any other
transactions or can be dependent which means it has
conflictions with other transactions. The serializable
priority graph which follows the priority protocol has
two parts in which the edge always goes from the
transactions to the posterior ones and not visa versa.
Transactions that follow the priority protocol will not
create any cycles in the graph.

Figure 2: The serializable priority graph under the
priority protocol

3-3 The violating transactions

It is possible that the posterior transaction
(for example Ti) wants to be prior to another
transaction (Ti gets the prior role too) or the
Tjtransaction which is posterior itself wants to be
prior to the Ti (Tj is prior too) and/or it is possible
that the prior transaction (for example Tk) is prior to
another prior transaction such as TL (TL has the
posterior role too) or another transaction become
prior to Tk (in this case, Tk will get the posterior role
too). These transactions that violate the priority
protocol rules are called the violating transactions. In
the following, it's possible to show such an example:
Example 3): The transactions, namely T1, T2 and T3
are given with their related scheduling:

)a(w)b(R1T 
)e(w)a(R2T 

)e(R3T 

)e(3R)e(2w)a(2R)a(1w)b(1R:3sch

Violating the priority protocol the R-after-W
confliction

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

114

When T2 reads the data ‘a’, which is written by the
transaction T1 (in the T1 workspace and not in the

bank), faster committing of T2
)1T2T( will be

established.
When T3 wants to read ‘e’, it thinks that it can be
prior to T2, but since T2 has already become prior,
now it cannot play the role of posterior for T3.

(1T2T3T 
a cycle is probable to appear). In

case a transaction violates a rule, it will be aborted.
3-4 the transaction execution model

Based on our experince, in the optimistic
concurrency control approach, transactions are
allowed to continue their job until they arrive at the
committing point without any obstacles. Then, they
will be validated before being committed. In the
traditional optimistic concurrency control,
performing the transactions consists of three phases,
namely read, write and validation. The transactions
fate will be sealed in the last phase [10] [11].
Validation can take place in one of the two ways,
namely ‘backward validation’ and ‘forward
validation'. Most of the existing OCC protocols use
the forward validation due to its flexibility when
selecting the transaction condemned to restarting in
terms of criticality or priority from among then
transactions being validated or the conflicting active
transaction [4]. While in the backward validation, the
candidates are only those transactions under
validation. Also, the forward approach recognizes the
conflictions quicker which leads to economization in
time and the system sources. Hence, the forward
validation will be used in the suggested plan. In the
suggested concurrency control mechanism,
performing the transaction has four phases, namely
the read, intermediate validation, final validation and
the write phase.
3-4-1 Reading Phase

At this stage, the transactions are
conducted freely, but they all write operations in the
working space which is accessible only for private
transactions, so they are not visible to other
transactions.
3-4-2Intermediate validation phase

By using this phase, conflicting
transactions can be detected early and before the final
validation phase are completed. In this phase, if a
conflicting transaction that follows priority protocol
rules can be prior. Otherwise, it will abort and restart.
Perhaps it is assumed that the priority protocol and
observing its rules causes an increase in the aborting
rates. While according to this approach, if a
transaction meets the conditions of the examples (1)
and (2), based on the forward validation it is
condemned to abort, but according to the priority
protocol one such confliction between two

transactions will be ignored, yet in case any
confliction arises which is against the principles of
the priority protocol, (which is disproved by the
forward validation approach too) it cannot be ignored
based on the priority protocol.

In the suggested plan, MTM performs the
intermediate validation operation periodically, for
example every L seconds. In a way that those steps
that are taken from the transaction until the
intermediate validation moment will be compared to
other concurrent transactions. In case a non-
negligible confliction arises, with regards to the
priority protocol, the transaction is condemned to
restart is chosen in terms of criticality or priority. It's
assign a tag to each transaction which shows the type
of transaction based on priority.

This tag can be adjusted as prior, posterior
or independent. In order to help commit the
transactions that follow the arranged priorities, a
‘before-list’ is made which is the list of transactions
that are prior to this transaction. Similarly, if the
transaction is a prior transaction (the type of
transaction is recognizable from the tag in MTM of
each region), an ‘after- list’ will be made for it that
includes transactions which took the role of posterior.
When the transaction becomes final, the system can
use this information in the direction of updating the
prioritization information of the posterior
transactions.

 As noted above, MTM performs
validation on a periodic basis every L seconds. To
avoid repetition of tests a “check point” can be
inserted into transaction reading set. However,
despite using of intermediate validation phase,
transaction failure in final validation phase is
probable. For example, the intermediate validation
could be done every 7 seconds and transaction
execution time is 17 seconds. Last intermediate
validation will be happen in the 14th second, while it
may be failed in the 15th second.
Figure (3) shows intermediate validation algorithm.

Figure 3: intermediate validation phase

As noted above, in this phase the reading

set of the transactions is compared to reading set of
other concurrent transactions. Intermediate validation
is performed on MTM. According to our experience,

If there is a Read- After- Write or Write-after-Read
confrict
{ if transaction follows priority
protocol,
proceed with the operation;
else
with comparing the R(ti) Value of conflicting transactions
abort transaction with the less value of R(ti)

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

115

MTM keeps an access set di:<timei,oi,Mssi,MHi> for
each of its data. This information is continually
updated based on the transactions reading set which
is temporary. By study them, we can infer the
confliction of those transactions which
simultaneously get access to a data. Whenever a
transaction is aborted, its related information is
removed from the access set of those data with which
the transaction worked. During the intermediate
validation, this information is exchanged among the
MTMs that cooperated with one another during the
performance of the transaction, because it is possible
that the data ‘di’ gets accessed by those transactions
that are outside of a zone under MTM coverage.
After getting information from other MTMs, the
serializability graph of each zone will be created
during the evaluation, the transaction is aborted
sooner if a cycle is found. It should be mentioned that

these reports are exchanged periodically and
concurrent with applying the intermediate validation
phase by the MTMs. Each MTM is responsible for
sending the report definitely to other engaged MTMs.
In the following, you can see the report-making and
sending algorithm:
1- For each di<timei,oi,Mssi,MHi> which is in each
MTM, Id of each Mssi is scanned.
2- IfMssi belongs to the zone under MTM coverage;
it means that the data is accessed locally. Therefore,
it's possible to insert di:<timei,oi,Mssi,MHi> into the
related report.
3- Otherwise (i.e. non-local access to the data), it's
possible to insert the access set into the report and
then send it to the MSS which is the supervisor of the
non-local MTM.
4- it's possible to combine the local report with
reports from other MTMs.

Figure 4: The report-making and sending algorithm

In each intermediate validation, an

evaluation is carried out in order to identify the
conflicting transactions by receiving and combining
reports. Figure (5) shows the algorithm for
identifying the conflicting transactions.

The period of sending report is identical
with the period of performing a validation; i.e. As
soon as an MTM receives a new report it combines it
with its report and creates a single report. The act of
intermediate validation is so simple. It is enough to

specify the data that at one time (by studying the
timei belonging to the access-set of each data) were
not accessed by the conflicting transactions. This
way, by recognize them, the conflicting transactions.
As mentioned before, MTMs retains a variable called
R(ti) for each transaction which is indicative of the
progress being made in the transaction process. By
comparing R(ti) of the two conflicting concurrent
transactions, it's possible to choose the transaction
with the smaller variable as the victim for aborting.

Figure (5): The algorithm for identifying the conflicting transactions

3-4-3 The final validation phase

In this phase, the evaluation will be carried
out in front of all of the transactions that are being
performed concurrently. Identification of the
conflictions takes place by comparing the write set of
the transaction under evaluation with the read set of
the active transaction. The transaction that is aborted
in this phase should be restarted immediately. In
order to carry out the final validation, it is not
necessary for all commands to be evaluated from the
beginning and evaluating the commands after the last

check point will suffice. This way, the transaction
won’t wait too much for the final validation and the
speed of its being committed and as a result the
concurrency of the system goes up. A transaction that
enters this phase immediately requests for the right
on the data that changed in the private work space. A
timer is set for each transaction that undergoes
validation and its value decreases over time (it's
possible to adjust the timer value as mush as the time
until which it has been expected that the transaction
to be committed). The transactions being validated

{for each di:<timei,oi,MSSi,MHi> in the combined report of MTMi
{for each dj:<time j ,oj, MSSj, MHj> in the combined report of MTMj
{if (di=dj and ti<tj)
Terminate ti ;/* if the read timestamp <update timestamp*/} } }

For each di:<timei,oi , Mssi, Mhi> in MTM
{if (di is accessed locally)
add access- set to the report ;
else { add access- set to report and send it for MTM which Mssi belongs to it } }
Combine Report with external reports from another MTM

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

116

will be adjusted in two states based on the before-list
and after-list.

The first state: All of the prior
transactions will be committed as long as the timer
has not reached 0.

The second state: The transactions that
are prior are not committed completely. But timer
turns 0 (timer=0). In this case, the transaction being
validated will abort the prior transaction and it will be
committed itself

Figure (6): final validation phase

3-4-4The writing phase

In this phase, after the final validation, the
result of the transaction operation in the read phase is
transferred from the workspace to the database. This
way, the transaction private records will be visible for
other transactions.

In order to explain the proposed algorithms
and the suggested architecture, consider the following
example:

Assume there is a network with the
following specifications:
The network has 18 mobile support stations with
numbers 1 to 18 and has 3 regions. Each region has 6
mobile support stations. MTM1 of the first region
covers MSSs 1 to 6, MTM2 cover s MSSs 7 to 12 and
MTM3 covers MSSs 13 to 18, respectively. When the
mobile host enters each region, the number of related
MSSs and the mobile transaction manager of the
region, enter a two-dimensional array which is in
mobile host memory.

Consider the transactions T1, T2 and the
following scheduling. Assume the data ‘a’ has full
repetition in all MSSs. The place of execution for
each instruction is mentioned under each command.
Example 4)

)c(w)c(R)b(R)a(w)a(R:2T

)a(w)a(R:1T



 1c,1V,

6Mss

2ab,

3Mss

)c(2w)c(2R,

4Mss

)a(2w,

7Mss

]1V[,

7Mss

)b(2R,

7Mss

)a(1w,

5Mss

)a(2R,

1Mss

)a(1R:4Sch

  



The execution of the transactions T1 and T2
is distributed among the MSSs of the regions 1 and 2.
r1 (a) and r2 (a) are executed in region number one.
The information related to the data ‘a’ is written in
the access set of the data ‘a’ (This set is registered in
a file called ‘report’ which is related to the MTM of
each region). When transaction T1, writes ‘a’ in the
second region, according to the priority protocol
rules, T1 takes the role of posterior via T2 (T1T2)
i.e. when T1 arrives at its final validation phase, it
will be delayed [V1]. It is because T2 became prior to
it due to the earlier r2 (a).

When T2 wants to write ‘a’, w2 (a), i.e. it
wants to take the posterior role via the T1 and the
command r1 (a) (T1T2) and this intermediates a
violation of the priority protocol rule. With the
occurrence of the intermediate validation and the
exchange of reports between the MTMs of regions 1
and 2, one of the violating transactions should be
aborted. Since T2 becomes prior to the transaction T1
which is being validated (T1 arrived earlier at the
final validation phase), in order to avoid longer
validation time T1, the T2 transaction will be aborted
(ab2). Finally, T1 is validated and committed. It is
observed that the T2 transaction is aborted before
arriving at the final validation phase via the
intermediate validation.

When a mobile host of the transaction T1
enters the second region, the commit command (c1)
will be issued. The commit command has been sent
from the cell 7 coordinator (according to the
information stored in the mobile host memory) to the
managers of the visited regions. After the final
validation (by exchanging reports between the two
managers involved in executing the transaction), the
committing act will take place. The changes in data
will be distributed across the two MTMs data and
then according to the repetition protocols[1], these
changes will be applied in all of the desired mobile
environment banks.
4. Comparison of the suggested plan and the
traditional optimistic approach

In order to evaluate the performance of the
concurrency control mechanisms, there are various
parameters such as the response time, the effective
output and the probability of transactions conflict. In
this part, it's possible to compare two approaches,
namely the traditional optimistic concurrency control
mechanism and the suggested plan based on the
framework of these parameters.
4-1The time complexity function of the
transactions’ responsiveness

The average of transactions’ response time
has a direct relationship with the size of transaction
and the number of conflicts in the system [3].

/* when final validation phase of transaction tistarts*/
set timer for ti ;
if timer is equal to 0 {
abort all the transactions which precede ti ;
ti commits ;
} Else {
ti waits
(until all preceding transaction terminates);
ti commits ;
}

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

117

)1(wckp)aM(s)1k()M(R 
In equation (1), K is the transaction size;

and pc is the probability of conflict for each data

requested by the transaction.)M(S a is the average of
the processing time for each transaction step in a
system with M active transactions. The conflicting
transactions restart after the specified delay (W). If
this transaction is condemned to abort, according to
the suggested plan and based on the period
adjustment of the intermediate validation phase, a
specific transaction might be identified after
executing k/2 of its size (on average). Therefore, the
average of the conflicting transactions’ response time
decreases as follows which is shown with index
(our):

)2(
2

Wckp
)aM(S)1

2

k
(our)M(R 

4-2 The transactions’ effective output

The transactions’ effective output can be
obtained from equation (3) and equals to dividing the
number of the database transaction by the
transactions’ response time [3]:

)3(
Wckp)aM(s)1k(

M
)M(T

)M(R

M
)M(T




Since the amount of response time for the
transactions decreases in the suggested plan
according to equation (2), the transactions’ effective
output is as follows which is indicated by the index
(our):

)4(

2

Wckp
)aM(S)1

2

k
(

M
)M(T

our)M(R

M
our)M(T





It goes without saying that as the R(M) decreases, the
amount of the conflicting transactions’ effective
output increases.
 4-3 The relationship between the conflict
probability and the transaction size

Regarding the fact that nc is the average of
the number of conflicts for each transaction, it equals
nc=kpc. When a transaction requests data, the
probability of data conflict (pc) for the ith data request
equals [3]:

)5(
D2

k)1M(
~

D

L)1M(
~

iD

iN
cP








L Indicates the number of data that are

accessed by the transaction; N is the average of the
number of data which is utilized by other transactions
(M-1); and D is the total number of the database data.
Hence, the data conflict probability after performing
the last step of a transaction equals:

)6(
D2

2k)1M(
~ckp~k)cp1(1wp




This conflict probability is obtained after
the last data required by the transaction was requested
in the last step (kth) of performing the transaction;
while in the suggested plan, it's possible to decrease
this percentage to the proposed value in equation (7)
by evaluating the transaction in the intermediate
validation phase and identifying the transaction
condemned to abort by executing k/2 its size.

)7(
D8

2k)1M(
~cp2/k~2/k)cp1(

our
wp2/kk

D2

2k)1M(
wp









4-4 The average of the transactions’ validation
time

In the optimistic techniques, transactions
undergo evaluation after the reading phase is
completed and before committing .Considering the
probability of data conflict and the number of active
transactions, the average of the evaluation time
equals [3]:

)8(]cp)aM(S()jk[(K
1j)1k(k

j2
E   


j is the number of data that are accessed by

the active transactions. In the proposed approach,
committing of the transactions takes place after
making some arrangements with a limited number of
MTMs and it occurs faster compared to other
concurrency control approaches in which the
coordinator exchanges information with a large
number of MSS involved in the operation. On the
other hand, the status of the active and delayed
transactions can be determined faster using the
intermediate validation in general and the data
conflict decreases as a result. It is clear that the

decrease in
j,)M(S a ,pc affects the final validation

time average of transactions. Besides, according to
the intermediate validation phase effect and the fact
that at least half of the transaction size is evaluated in
the pre-mentioned phase, the rest of the steps will be
evaluated after the check point in the final validation
phase. Ergo, the average of the final validation time
decreases as follows:

)9(]p)M(S()j[(

)
2

1
k(

4

k

j2
E2/kk

]p)M(S()jk[(
)1k(k

j2
E

ca2
k2/K

1jour

ca
K

1j












 

 

5- The evaluation environment
This system is evaluated via the MATLAB

software in which the parameters are considered as
depicted in table (1). It should be mentioned that the

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

118

selected values in this table are common in many of
the evaluations in the mobile environment. [3][4].
Based on our experience, the optimistic approaches
are suitable for the environments in which the
number of reading operations is more than the writing
operations. Also, since the transaction size in the
mobile environment is not much, the maximum size
is taken to be 20.

Table (1): The characteristics of the evaluation
environment

Values Parameters

λu
The input rate of write transaction is
5 per second.

λr
20 read-only transactions enter the
system each second.

m
The probability of the mobile host’s
movement from one cell to another
equals 0.1

M
The total number of transactions that
enter the system is between 50 to 250

D
We consider the database size to be
250. By size, we mean the number of
data items in the bank.

K
The maximum size of transactions is
considered to be k=20

W
Delay to restart a transaction is taken
to be 10 time unit.

D

kM
Pc

)(1


The probability of one write
command conflict with another read
command equals 2

5-1 The evaluation results

Regarding the relationships which were
proposed in the previous part, the suggested approach
is compared to the traditional OCC approach and the
results of evaluation are depicted as some charts.

According to the suggested plan, most of
the conflicting transactions in the intermediate
validation phase will abort except for those which
commit failure after the last intermediate validation.
Therefore, the system’s response time for conflicting
transactions decreases as figure (7). It is clear that as
the time decreases for the conflicting transactions, the
total average of the response time decreases for all
the transactions that are a combination of the
conflicting transaction and those without conflicts.
As can be seen in figure (7); the response time of
both approaches increases as the size of transactions
increases. In the traditional OCC approach, the time
equals 450 time units considering the values depicted
in table (1). Each transaction gets restarted all over
again after getting aborted with a w(10) delay of the

time unit.
)M(S a is the average of the processing

time for each transaction step in a system with M

active transactions which equaled 0.2 [3] and pc
which happened to be 2 after placing the values of
table (1).

Figure (7): The comparison of the transactions’
response time average between the traditional OCC
and the suggested approach

The effective output of transaction is

obtained by dividing the ratio the total number of
transactions by the response time average. Needless
to say, the effective output of each transaction
increases when the transactions’ response time
decreases according to figure (7). Figure (8) indicates
an improvement in the suggested plan. The increase
in the transactions’ size led to an increase in the
conflict probability and the response time increases
as well. In both approaches, the increase in
transactions’ response time led to a decrease in the
transactions’ effective output. But, the transactions’
effective output shows lesser decrease in the
suggested plan due the improvement in the response
time. In such a way that we obtain 0.3<Tour<1.2 and
0.2<Tocc<0.6 when we consider the preliminary
values of table (1).

It is clear that the more the transaction
size, the more the conflict probability in the system.
If this transaction is a transaction condemned to
abort, in traditional OCC techniques, the total
transaction size will be evaluated in the final
evaluation phase; but in the suggested technique, at
least half of the transaction size will be evaluated in
the intermediate phase; So if this is a transaction
condemned to fail, it does not wait for the evaluation
and prevents more conflicts by getting early aborted.
As it is shown in figure (9), in both approaches, the
increase in transaction size leads to an increase in the
conflict probability. Regarding the evaluation
environment parameters, in the traditional OCC

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

119

approach, this conflict probability is between 0 to 20
and in the suggested plan, it is between 0 to 4.

Figure (8): The comparison of the average of the
transactions’ effective output between the traditional
OCC and the suggested approach

Figure (9): The relationship between the conflict
probability and the transaction size and its
comparison in the traditional OCC and the suggested
plans

Also, in the presented plan, due to the
presence of the intermediate evaluation phase which
of course does not create any delays in the transaction
process, according to figure (10), the final evaluation
time decreases. In both approaches, as the
transactions size increases, the evaluation time
increases as well. But in the suggested plan,
commands will be evaluated after the check point in
the final phase. In such a way that we obtain
0.05<Eour<0.45 and 0.1<Eocc<1 when we consider the
evaluation environment parameters of table (1).

Figure (10): The relationship between the evaluation
time and the transaction size and its comparison in
the traditional OCC approach and the suggested plan

Conclusion

In the suggested plan, a set of MSSs form
a zone and each zone is under the supervision of a
station, namely the mobile transactions manager
(MTM).
1. Under the proposed architecture, the time-
consuming and costly operations such as the
intermediate validation, the final validation and
committing in the fixed and intensive part of the
network, namely MTM will take place. Thus, the pre-
mentioned operations will take place quicker and the
fate of a transaction (commit or abort) will be
determined sooner.
2.When sending the commit command from a mobile
host, there is no need for a coordinator to send the
commit command to all MTMs involved in
performance of the transaction and simply should
send it to the managers of each zone, MTMs,
(MSS>>MTM). Therefore, the information exchange
among the mobile support stations will decrease and
so does the network traffic.
3.When committing the transactions, under the 2PC
protocol, the coordinator which is responsible for
committing should send the committing command to
all mobile support station involved in performing the
transaction. The coordinator waits until it gets ‘yes’
from all MSSs or set a specified deadline. If one of
the MSSs stop working and does not send the
message, the deadline will be missed and the
coordinator attempts to abort the transaction [4]. In
the suggested plan, in case of a failure in any MSS
when receiving the answer ‘yes’, committing the
transaction does not get delayed or often aborted.
4. Using the intermediate validation, the conflicting
transactions can be identified and aborted sooner. In
this way, it's possible to economize significantly in
consuming the system sources which is very vital in
the mobile systems.

 New York Science Journal 2013;6(12) http://www.sciencepub.net/newyork

120

References
1. Jin jing, omranBukhres, Ahmed Elmagarmid,

“Distributed lock management for mobile
Transactions”, proceedings of the 15th
International conference on distributed
computing systems (ICDCS), 1995 IEEE.

2. Sung Ho Cho. Jong Min Lee, chong- sun
Hwang, “Hybrid concurrency control for mobile
computing” proceedings of the High-
Performance computing on the international
super highway, 1997 IEEE.

3. Thomasian. Alexander, “concurrency control:
methods, performance, and Analysis”, ACM
computing surveys, vol.30, No.1, March 1998.

4. Particia Serpando- Alvarado, Claudia Ronancio
and Michel ADIBA “A Survey of Mobile
Transaction”, Distributed and parallel
Databases, Kluwer Academic Publisher’s March
2004

5. Shapourjoudi Begeillo, Fariborz Mahmoudi,
Mehdi Asadi, “Improving strict 2 phase locking
(S2PL) in transactions concurrency control”,
International conference on convergence
Information Technology, 2007 IEEE.

6. Sebastian obermeier, Stefan Bottcher,
“Avoiding infinite blocking of mobile
transactions” ll'th Internation Data base
Engineering and Application symposium
(IDEAS), 2007 IEEE.

7. Jing Li, Jianhua Wang, "A New Architecture
Model of Mobile Database Based on Agent,"
dbta, pp.341-344, 2009 First International
Workshop on Database Technology and
Applications, 2009

8. Salman Abdul Moiz, Lakshmi Rajamani,
"Concurrency Control Strategy to Reduce
Frequent Rollbacks in Mobile Environments,"
cse, vol. 2, pp.709-714,InternationalConference
on Computational Science and Engineering,
2009

9. Anne Marie Amja, Abdel Obaid, Normand
Seguin, "A Distributed Mobile Database
Architecture," apscc, pp.62-69, 2011 IEEE Asia
-Pacific Services Computing Conference, 2011

10. Kamal Solaiman, Matthew Brook, Gary Ushaw,
Graham Morgan, “A Read-Write-Validate
Approach to Optimistic Concurrency Control
for Energy Efficiency of Resource-Constrained
Systems”, Wireless Communications and
Mobile Computing Conference (IWCMC), 2013
9th International

11. Ganeshkohad, Shikhagupta,
Truptigangakhedkar, Jogenderraghuvanshi,
Umeshahirwar”, Concurrency Control issues in
Mobile Database”, International Journal of
Computer Architecture and Mobility, (ISSN
2319-9229) Volume 1-Issue 8, June 2013.

12/2/2013

