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Abstract. This paper deals with two aspects of the subject of the study. The first one consists of an operator of positive type in Hilbert space without bounded imaginary powers. The second one is concerned with the closedness of the sum of two closed operators in a Hilbert space. It  shows the corresponding operators in   with commuting resolvents and closable.
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1. Introduction
In a recent paper, Dore and Venni (G. Dore and A. Venni, 1987) have used imaginary powers of operators in connection with the problem of the closedness of the sum of two operators. Roughly speaking, if  and  are two commuting  closed operators in a UMD-space, then their sum is closed provided that the following conditions holds:


The UMD–spaces are precisely the Banach spaces  for which the vector valued. Hilbert transform is bounded in  (J. Bourgain, 1983). In particular, the Hilbert spaces and –spaces, 1, are UMD-spaces.
The growth condition (1.1) implies that the spectrum of   lies in a sector of "angle" .
In (G. Dore and A. Venni, 1987), the question was raised whether the converse is true. The Example   below shows that this is not the case, even in a Hilbert space.
However, in a Hilbert space, the conditions for the closedness of the sum can be weakened, as shown again by Dore and Venni (G. Dore and A. Venni, 1987). Based on a characterization of the domain of fractional powers together with an earlier result of Da Prato and Grisvard (G. DA PRATO and P. GRISVARD, 1975), they proved the following result. If  is a  of bounded operators (without any assumption on ), then  is closed provided that the sum of the “angles”  and  is less than .
In Example B, we give two operators  and  in a Hilbert space which satisfy the "angle condition" such that    is not closed. This shows again that  and  are not   of bounded operators. Moreover this implies that some extra condition is needed for the closedness of the sum .
In Section 2, we state the main results.
In Section 3, we interoduce the main tools for examples, in particular the notion of spectral family (E. Berkson and T. A. Gillespie, 1987).
In Section 4, we construct the example  inspired by Example 5.10, p. 168, of Berkson and Gillespie (E. Berkson and T. A. Gillespie, 1987).
Finally, in section 5, we give Example , and corresponding operators in they resolvent commuting and closable. We are convinced that the  method used in Sections 4 and 5 can lead to more examples.

2. Preliminaries and main results
Let  be a complex Banach space, and let  be a closed and densely defined operator with domain  and range . As usual, we denote the resolvent set of  by  and its spectrum by  .
The operator  is called positive  (G. Dore and A. Venni, 1987) if
(i) 
(ii) there exists such that  for every .
In particular, if , then  is called .
For   we define the   as

The operator    is said to be closable if it has an extension that  is closed.
The operator  is said to be of type  (H. TANABE, 1979), if there exist  and  such that;
(i)  ;
(ii) for every there exists  with , such that  for any .
We recall that if the operator  is positive, then there exist   and  such that  is of type  (H. TRIEBEL, 1978).
We also recall that if  is –accretive,  then   is of type  (H. TANABE, 1979). Moreover if A is of type  for some  and  , then  generates an analytic semigroup on the space .
If  is abounded positive operator with , then the fractional powers of   denoted by    with   are usually defined by the Dunford integral

Where the contour   does not meet  and contains the spectrum of  . Then for  ,   is a bounded operator satisfying the group property


The function     is also holomorphic.  Moreover,  one has the other  representations of (J. PRÜB and H. SOHR, 1990),




or equivalently





If the positive operator    satisfies only  and dense in , then for every  which is dense in , the function , defined by (2.1) or (2.2)  is holomorphic and satisfies the group property   
For   we say that   is bounded if the operator  defined by (2.1) or (2.2) is bounded on . Then it can be uniquely extended to , as a bounded operator.
Following  and Sohr (J. PRÜB and H. SOHR, 1990),  the operator    is said to belong to the class  for some  if :
(i)  is positive;
(ii) ;
(iii) and there exists  such that 
In the case where  is positive,   implies the density of  in  if  is a reflexive Banch space (a Hilbert space, for example).
It is proven in (J. PRÜB and H. SOHR, 1990), that if   then  is of type   for some . In Example , we show in particular that the converse is not true even if the space   is a Hilbert space.
Example A. There exists an operator A in a Hilbert space which is of type    for some  and for all  and such that the imaginary powers are not bounded for all  .
Remark. It is known (J. PRÜB and H. SOHR, 1990) that if an operator A in Hilbert space is of type (, 1) for some  (it is m-accretive), then  .
Let A and B be two positive operators in a Banach  space . The operators A and B are called  if and   commute for some and  (equivalently for all  and  ) .
Building upon results of Dore and Venni (G. Dore and A. Venni, 1987), and Sohr (J. PRÜB and H. SOHR, 1990) have proven that if , are resolvent commuting and if  is a  UMD-space, then  where  = max ().
Da Prato and Grisvard ( G. DA PRATO and P. GRISVARD, 1975)  have proved that if    are of typeresolvent commuting ( hence   closable ) then the closure of  is of type with  = max() for some .
Therefore a natural question is to know whether the sum of two operators  and  satisfying the assumptions of Da Prato and Grisvard in a UMD-space is closed. In the Hilbert space, Da Prato and Grisvard ( G. DA PRATO and P. GRISVARD, 1975) gave a sufficient condition for this to be the case, namely if the interpolation spaces  and   are equal for some  .Since  is closed if and only if  is closed, we may assume without loss of generality that  and  . Under these assumptions Dore and Venni (G. Dore and A. Venni, 1987. p. 194), have shown that if the imaginary powers is are uniformly bounded for  , then  is closed .
Example  B.   There exists two resolvent commuting operators  and  in aHilbert space which are of type for some  and for every   such that  is not closed.
Remarks.  (i)  It follows from Da Prato and Grisvard (G. DA PRATO and P. GRISVARD, 1975) that  and  for every .
(ii)  It follows from Dore and Venni (G. Dore and A. Venni, 1987) that both  and  are not uniformly bounded on .

3. Tools
We recall the notion of spectral family of projections in a Hilbert space  (E. Berkson and T. A. Gillespie, 1987).
Definition.  Aspectral family of projections in  is a uniformaly bounded projection–valued function  ( the algebra of bounded linear operators in  ) such that:
(i)  is right–continuous  in the strong operator topology,
(ii)  has a strong left–hand limit at each  ,
(iii) 
(iv)  in the strong operator topology as .
If there is a compact interval   such that     for     and   for ,  then we say that  is concentrated on . Following (E. Berkson and T. A. Gillespie, 1987), (H. R. DOWSON, 1987), if is a spectral family concentrated on , each complex–valued function  defines abounded operator  in  stands for bounded variation) :

by means of convergence of Riemann-Stieltjes sums. Moreover the norm of    can be estimated by

Where

If  is concentrated on  and , then  exists. This limit defines abounded operator  in  satisfying.

Where  is defined by (3.3) and  which exists since  .
If    and


then 
If moreover  , then

If  , for every  and   belongs to , then  and

For the construction of a spectral family in    which is not spectral measure, we shall use, as in (E. Berkson and T. A. Gillespie, 1987), a conditional basis which can be found in Singer ( I. SINGER, 1970). For the sake of completeness, we give it here explicitly.
 The sequences    and      in  defined by




Where    is the canonical basis of   and ,   (e.g., one can take   are biorthogonal conditional bases of  . Defining   by

Where   is the scalar product, then each  aprojection with    for   satisfying

Moreover


4. Example  A
we construct an example of appositive operator    in a Hilbert space  such that imaginary powers     are not bounded for  ,  although    is of type   for some   and for every  .
In order to do that, we construct the operator    on a Hilbert product.
Let    be a family of complex  Hilbert spaces. Let  be the Hilbert product.

The family    of bounded operators on  , defines the following closed densely defined operator    on :


Moreover is bounded if and only if    and if this is the case
 .
We say that family of positive operators   satisfies  if:
(i) 
(ii) for every , there is  independent of ,  such that   for every    and every   
We have
Lemma 4.1.   Let     be a family of bounded positive operators on      (P)   then there exists    such that the operator    defined by (4.1), is of type      for every  .
Moreover if  , then for every     and  ,   we have    and  .
Proof .	 (i)  Let  and let . Since  satisfies Property (P),    and there exists    such that

Since   we have  Moreover since ,  we have   and  This implies that  is of type    with  , for every  
(ii)	Assume   then     for every .  Let   Then clearly, .  Since   for some , we have , hence  Therefore  and     are well–defined by (2.1), for   . Since , we obtain  This completes the proof of Lemma 4.1.
Next we construct a family of bounded positive operators    in  , such that   and satisfying Properly . Notice that the imaginary powers  , are then bounded. We give a necessary condition for    to be finite for some  .
Lemma 4.2.  Let    be a (Schauder) basis on    with corresponding projections .
Let    be the spectral family concentrated on    defined by



.
Then for every     and every 
	is well–defined
and
1. The family of operators     satisfies Property  and  
1. For every , the imaginary power  is bounded and , .  Moreover 
1. If for some   then the basis  is unconditional.
1. If the basis   is unconditional then for all .
Proof .	    (i)	 For every    the function    is continuous, bounded, increasing, hence of bounded variation on . Therefore  is well-defined and bounded on  as well as  . Moreover  .
Let  and. Then the function  is continuous, bounded, and of bounded variation on [0,1]. Indeed   then    where

Moreover



       with

Let . We observe that  and  increases on .
Therefore  which implies that the family   satisfies Property .
(ii)     Let  then   and

Hence  defines a bounded operator  for every  and . For   (finite sequences in , we have
  for some  depending on .
By using the Dunford integral for the imaginary power   we obtain




Since both    and  are bounded on   and  is dense in we have . We also have  .
(iii) If   for some   then   and without loss of generality, we may assume . We also have  . By using a result of Nagy (B. SZ-NAGY, 1947) , there exists an equivalent Hilbertian norm  on    such that    for every . (Take, e.g.,  where Lim is a Banach limit in ℕ.) Then  is unitary in   and  are eigenvectors corresponding to the eigenvalues

Then for   we have .  Therefore  is an orthogonal system in , hence   is an unconditional basis in   and also in .
(iv) Suppose the basis   is unconditional. By using a characterization of unconditional bases, there exists a constant  such that  for every  and every finite scalar sequence 
For  (the linear dense subspace spanned by   , we have

the sum is finite. Hence
. Then .
After these preparations, we can easily construct the operator .
Construction of . Let  and let  be a conditional basis of , for example, the basis defined in (3.5). Define  like in Lemma 4.2, then for every . Then define the operator  like in Lemma 4.1. The operator   is of type  for some ,  and for every   Moreover for   cannot be bounded, otherwise   would be finite. There for the operator    satisfies all the required properties.

5. Example B
In this section, we construct an example of two resolvent commuting, closed  operators  and ,  in a Hilbert space  such that  and  are of type  for some  and every  with  not closed.0
Let  be a (Schauder) basis in , and  be the associated projections.
We shall denote by  the linear dense subspace spanned by .
Let   be the spectral family defined by

where  denotes the greatest integer   .
We define  .
Lemma 5.1.  Let , and  be as above. Let   be a continuous and increasing function. For any   let

Then, for every    there exists   such that for every    is a bijection in   and

Moreover   is closable and its closure  is of type   for some   for every  and satisfies  .
Proof of Lemma 5.1 . (i)  Proof of  (5.2).  For every   ,  we  define
. We get The spectral representation of  is given by

By using (3.4), we have

for every   which may be infinite.
   with   .
Then we get (5.2).
(ii) Closure of  . It is known, see, e.g., ( G. DA PRATO and P. GRISVARD, 1975), that (5.2) implies that    closable  and that its closure    satisfies the same inequality. For the sake of completeness, we prove that   closable.
Let  be such that  and   for some  . We have to prove .  Let    then for , we have and  by taking the limit. Hence  and   by letting    for every . Since  is dense in  .
(iii)	Type of . From (5.2), we get for every  and , which implies that  is injective and that  is closed, hence   Therefore  and  holds for every .
(iv)  .  Let   .  is the inverse of     by using (3.4),  we get


Then    is bounded and densily defined. This  implies that the closure of    is the inverse of  .
Next, we consider  properties of two operators   and   of the form  given by Lemma 5.1.
Lemma 5.2. Let  and  be two continuous, increasing functions from    into [1,. Let   and  be the corresponding operators in  defined by


Let   and    be their closure in .
Then, we have
(i) 
(ii)  and  are resolvent commuting;
(iii)  is closable and 
Proof . (i) We have  
. Since   is a bijection on , it follows that  and  commute.
(ii)   As is well known it suffices to prove . But this is a consequence of the commutativity  of   together with their boundedness.
(iii)   First we prove that    is closable. Let   be  such that   and    with   Then


Hence  .
Since the closure of   is contained in the closure of , we only have to prove   or . Let  Then there are tow sequences  .
Set  . We have

by using part  (i). Since   is bounded by Lemma 5.1, we obtain that the sequence  converges to some  Moreover  , then  since  is closable by Lemma 5.1. Rewriting  (5.3), we get

which implies by passing to the limit

Corollary 5.3. Let  be two increasing continuous sequences of functions from  into . Let  and  be the corresponding operators in  defined by


and

Let   ,  be their closure in  then we have


on .
 and  are resolvent commuting .
is closable and   .
Proof .	 Lemma 5.2 implies that


since x is total we have . It follows  that, , since  is a bijection, then ,  implies that .








hence  .
Follows directly from Lemma 5.2.
Now we give a Lemma which characterizes the closedness of  .
Lemma 5.4. Let the operators  and  be defined as in Lemma 5.2. Then   is not closed if and only if there exists a sequence  in  such that

Proof .	 (i)  Let  .  We define two norms on :


Clearly    for .   and   are closed,   is complete with respect to the norm . Moreover   is complete with respect to   if and only if    is closed.  By using the open mapping theorem (for one implication), one has    is closed if and only if there exists  such that

(ii)   Let   be such that   with
 Then (5.6) cannot hold. Indeed, we have

and
       which is unbounded.
Hence    is not closed .
(iii) Assume  . By triangular inequality, there is    such that

Then if    we have



.
Then the norms and  are equivalent on  . Observe that  . which is dense in  with respect to the norm  Notice that  
Hence   is dense on  with respect to  . For  there exists  such that  and ,  by using the continuity of   on . It follows that the norm    and    are equivalent on .
Construction of the Example B. It is enough to choose   and   as in Lemma 5.1 and 5.2 such that condition (5.5) of Lemma  5.3  is satisfied, i.e., to find tow functions    and    as in Lemma 5.1 such that

We show that this is possible .
First we choose for   the conditional basis of example (3.5) which satisfies
.
If  we impose the following conditions on   and  ,

then


which satisfies (5.7).
Finally, we give one possible choice of functions    and    satisfying the hypothesis of Lemma 5.1 and condition (5.8).
Set 
We contract   and    by induction :
      and       
Suppose we know the functions between  ,  then we define for 

and for   

Then,  are continuous on , nondecreasing, not less than one with  
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