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Abstract: To evaluate exposure estimation methods such as spatially resolved land-use regression models and 
ambient monitoring data in the context of epidemiological studies of the impact of air pollution on pregnancy 
outcomes. The study measured personal 48 h exposures (NO, NO2, PM2.5 mass and absorbance) and mobility (time 
activity and GPS) for 62 pregnant women during 2005–2006 in Vancouver, Canada, one to three times during 
pregnancy. Measurements were compared to modeled (using land-use regression and interpolation of ambient 
monitors) outdoor concentrations at subjects’ home and work locations. Various studies have reported associations 
between modeled estimates of traffic-related air pollution and adverse birth outcomes but these models have not yet 
been evaluated. A growing body of epidemiological research indicates adverse effects of outdoor air pollution on 
birth outcomes such as low birth weight, preterm birth and intrauterine growth retardation. Studies of birth outcomes 
have used different methods to estimate exposure, including nearest monitor, interpolation and traffic-based metrics 
or, for small study populations, short-term personal sampling.  
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1. Introduction 

These researches support the use of land-
use regression models in epidemiological studies, as 
the ability of such models to characterize high 
resolution spatial variability is “reflected” in personal 
exposure measurements, especially when mobility is 
characterized.  Personal NO and absorbance (ABS) 
measurements were moderately correlated with 
monitor interpolations and explained primarily within-
subject (temporal) variability. Land-use regression 
estimates including work location improved 
correlations for NO over those based on home postal 
code (and explained more between-subject variance, 

limiting to a subset of samples (n = 88) when 
subjects spent >65% time at home also improved 
correlations.  Limitations of the GPS equipment 
precluded assessment of including complete GPS-
based mobility information. A few evaluations of 
“living near a busy road” or traffic density and 
urbanization measures, as indicators of personal 
exposure in children, demonstrated contrasts in 
personal exposure using these metrics. No published 
studies have evaluated LUR estimates of exposure 
against personal measurements. Spatial variability in 
air pollutant concentrations between cities, between 
urban and rural areas and within cities has been 
demonstrated. Recent epidemiological studies have 
identified the importance of capturing within-city 
spatial variability in air pollution exposure 

specifically; studies of traffic-related air pollution 
have used proximity (ie, living near a busy road) 
traffic volume or density measures or land-use 
regression (LUR) models as exposure indicators. LUR 
models use a combination of outdoor measurements 
and geographical variables to estimate within-city 
variations in traffic-related air pollution generally, 
traffic-related air pollution exposure indicators 
incorporate little or no temporal variability and are 
used to assess impacts of chronic exposures. A recent 
evaluation of the use of a small number of ambient 
monitors to predict population exposure to air 
pollution in France showed little association between 
ambient monitors and personal measurements.  

These authors called for caution in using 
monitor-based approaches in epidemiological studies 
of long-term exposure (those exploiting spatial 
contrasts). The study found moderate agreement 
between short-term personal measurements and 
estimates of ambient air pollution at home based on 
interpolation of ambient monitors and land-use 
regression. In evaluating air pollution exposure 
assessment methods for epidemiological studies we 
suggest some key questions: First, how well do 
exposure models estimate personal exposure? 
Secondly, can the ability of models to account for 
spatial effects be improved by including personal 
mobility data if available? For example, although 
people spend 60–80% of their time at and/or near 
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home, including subject-level mobility, such as time 
spent at work or in transit, could improve exposure 
assessments. Thirdly, how well do models account for 
temporal variability (ie, changes in ambient 
concentrations over time)? Depending on the health 
effect being studied, either spatial or temporal 
precision may be particularly important for detecting 
associations.  

Using repeated samples per subject, we 
examined two intermediate term (monthly) exposure 
models’ ability to predict measured short-term 
exposures. We attempted to compare the models’ 
abilities to predict the spatial and temporal 
components affecting measured personal exposures. 
Air pollution exposure assessment methods 
commonly used in large epidemiological cohort 
studies have rarely been evaluated against personal 
sampling. Accordingly, we collected short-term 
personal air pollutant measurements and mobility data 
for a sample of pregnant women and compared these 
to their modelled concentrations using interpolated 
ambient monitoring data and LUR models. 

 
Material and Methods 

We measured personal fine particles with 
personal environment monitors (PEM) (MSP, 
Shoreview, MN, USA). The PEM was loaded with a 
pre-weighed 37 mm Teflon filter (Pall, East Hills, 
NY) connected to a battery-powered sampling pump 
(Leland Legacy, SKC, Eighty Four, PA) set to 5 l/min 
flow rate. This flow rate, resulting in a 50% cut point 
of 2.2 μm, was used to collect a sample more 
representative of traffic-combustion generated fine 
particles. For each study subject, we generated 
estimates of exposure to ambient nitric oxide (NO), 
nitrogen dioxide (NO2), fine particulate (PM2.5) mass 
and filter absorbance, using three approaches: (1) 
personal sampling (2) interpolated ambient 
monitoring measurements and (3) previously 
developed LUR models.  

Triplicate mass measurements were made 
in a temperature (23°C (SD 0.77°C)) and humidity-
controlled (34% (SD 3%)) weighing room as 
described previously. The limit of detection, 
calculated as three times the standard deviation of the 
laboratory blanks, was 1 μg/m3 based on a 48 h 
sample. After weighing, we measured the reflectance 
of each filter (Smoke Stain Reflect meter, Diffusion 
Systems, and London, UK) and calculated the 
absorbance (SOP ULTRA/KTL-L-1.0). 

We verified the GPS signal at the start of 
each session but did not ask subjects to check the 
signal during the session to avoid overburdening them 
and to reduce potential bias. We also wanted to 
evaluate the technology’s application in exposure 
studies when participants were specifically instructed 

to ignore the equipment.  We studied a sample of 62 
pregnant women living in the central Vancouver 
metropolitan area in 2005–2006 (population of 1.3 
million over 1500 km2). Vancouver benefits from a 
temperate climate year round, has a relatively healthy 
and active population, low smoking rates (15% across 
the province of British Colombia) and high incomes 

(2003 average income per tax-filer was C$47 000 per 
year). The inclusion criteria were women who self-
reported as healthy and experiencing low-risk 
pregnancies and non-smokers living with non-
smokers. 

We recruited through prenatal classes, 
word-of-mouth and posters. The study protocol and 
material were approved by the University of British 
Columbia Behavioral Research Ethics Board (#B05-
0441). Each woman carried personal air monitoring 
equipment and a global positioning system (GPS) data 
logger in a small backpack or shoulder bag (with the 
air monitors attached to the shoulder strap in the 
breathing zone), and completed a self-administered 
time-activity diary during each 48 h sampling session. 
Subjects completed one to three sampling sessions 
each (one per trimester); most were in their second 
trimester when recruited, and thus completed only two 
sampling sessions. In total, there were 127 sampling 
days with one to four subjects monitored per day; 
sampling was conducted from September 2005 to 
August 2006. In the activity diary, subjects recorded 
their locations (indoors at home/work/other, outdoors, 
or in transit) at 0.5 h intervals and we calculated the 
percentage of time each subject spent in each 
microenvironment. For GPS route data, points within 
350 m of home and 400 m of work were identified, 
and we calculated percentages of time spent at home 
and at work from these data. 

The models used in this study were based 
on measures of road length and population density. R2 
values for the models The LUR models generate raster 
(continuous) surfaces (10×10 m resolution) covering 
the whole of the Greater Vancouver Regional District. 
Briefly, the models were based on a saturation 
sampling campaign (112 locations for NO, NO2; 25 
locations for PM2.5 mass and absorbance). 
Geographical predictors representing road density, 
land use, population, elevation and traffic density 
were used in regression models to predict measured 
concentrations and generate surfaces from which 
estimates of concentration at any location in the study 
area could be obtained. The surfaces were smoothed 
to decrease the resolution to 30×30 m to avoid small 
errors in encoding resulting in large numerical 
changes in exposure estimates. A unique feature of 
these models was the addition of ambient monitoring 
network data from 1998–2004 to generate adjustment 
factors for monthly temporal variation. These 
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adjustment factors assume that the spatial pollution 
patterns remained the same, and raised or lowered the 
entire model surface relative to an annual average. 

These monthly adjustment factors were 
applied to the model surfaces, therefore generating 
LUR exposure estimates for this study that 
corresponded to the same month as the personal 
samples, for each subject-sampling session 
combination. Both annual and monthly-adjusted 
surfaces were used for all pollutants except 
“absorbance” (no monthly trend was applied, by 
design, because ambient absorbance did not vary 
consistently by season). Generally, only postal codes 
are available in population-based epidemiology 
studies due to privacy concerns. Therefore, for each 
subject, we encoded the home and work address, as 
well as the postal code centric, using ArcGIS/ArcMap 
v 9.1 (ESRI, Redlands, CA, USA), the CanMap 
Streetfiles, 2001 (DMTI Spatial, Markham, Canada) 
road network and CanMap Multiple Enhanced Postals 
(DMTI Spatial). 

In Canadian urban areas, postal codes can 
represent an area as small as an apartment building or 
a block face. Since encoding may misallocate 
addresses for large building footprints, we obtained 
land parcel data (lot boundaries and addresses) from 
the municipalities (2004–2005) in the study area and 
combined these with attribute data from BC Property 
Assessment. All address points were adjusted to the 
centre of the street-facing portion of their respective 
land parcels. We extracted hourly PM2.5, NO and NO2 
measurements from all ambient monitoring stations 
within 50 km of the subjects’ homes (11 stations for 
NO/NO2, six stations for PM2.5). 

All stations used consistent methods: 
chemiluminescence for NO/NO2 and TEOMs for 
PM2.5. We assigned ambient monitor data to subjects’ 
home postal codes using: (1) values from the nearest 
station and (2) an inverse distance weighted (IDW) 
interpolation (1/distance2) of the nearest three stations. 
Measurements were averaged for the 14 days before 
and after the personal sampling to generate a 
“monthly” estimate. Spatiotemporal comparisons and 
visual representations of LUR and ambient monitor 
methods for this study area are reported elsewhere. 
We also incorporated “mobility” indicators into the 
LUR model estimates in this study, using the time-
activity and GPS route data. Thus, we generated LUR 
exposure estimates based on home location only (ie, 
assuming the subject spent 100% of time at home), 
homework locations (weighted by the percentage of 
time spent at home and work from the participants’ 
time-activity diary, assuming that the home and work 
time summed to 100%), and estimates based on the 
detailed GPS route data (taking into account the full 
range of locations for each participant during a 

sampling session). We also created linear regression 
models for each pollutant with personal exposure 
(log-transformed) as the dependent variable, using 
mixed effects models, to examine the ability of 
exposure estimates to explain different components of 
the variability (between- and within-subject) in 
personal measurements, while controlling for repeated 
measures among subjects. This last was done by 
extracting the LUR model values for every GPS route 
point and then averaging the time-weighted estimates 
for every GPS point in a route. This approach reflects 
all of the subjects’ mobility during their sampling 
session and was used only for sampling sessions with 

“complete” GPS route data (n = 35). To determine 
“complete routes”, we calculated time gaps between 
each GPS point (average signal precision was ±30 m 
when signal was established). Routes were excluded if 
there were large time gaps (>16 h) or a combination of 
space and time gaps between points. Two sets of 
home and homework estimates were generated: one 
based on address location and the other based on 
postal codes. Data were analyzed using SAS-PC v 9.1 
(SAS Institute, Cary, NC). All personal measurements 
were compared against modeled estimates using 
Pearson’s r correlations.  
 
Findings 

Of the 62 women in the study, 55 
completed two samples and, of those, 10 completed 

three samples. Subjects with only one sample (n = 7; 
due to miscarriage, early delivery, moving out of the 
study area or withdrawal from study) were still 
included in the analysis. Subjects were primarily 
white (82%), with a mean age of 32 years, highly 
educated (90% university educated) and with a 

median family income of C$60 000–80 000 per year. 
A total of 127 samples were collected between 
October 2005 and August 2006 (31% in winter, 39% 
in spring, 17% in summer and 13% in fall). The mean 
distance from participants’ home to work was 6.3 km 
(range 0.7–21 km). There were 13 women who 
worked from home or did not work.  

Since LUR exposure estimates based upon 
addresses were very highly correlated with those 
based upon postal code estimates for all pollutants 
(home: Pearson’s r = 0.90–0.96; work: Pearson’s 

r = 0.87–0.97), only postal code results are 
presented. Postal code information is more commonly 
available for population-based cohorts. Not 
surprisingly, given monitor density and 1/distance2 
weighting, estimates based on the nearest ambient 
monitor were very similar to those based on inverse 
distance weighting (IDW); therefore results are 
reported for IDW only.  
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Personal exposure measurements were 
higher and more variable than LUR or ambient 
monitor (IDW) exposure estimates. LUR estimates 
had greater variability and covered a wider range 
compared to the monitor-based estimates. This is 
expected for several reasons: LUR incorporates higher 
spatial resolution, monitor-based estimates are 
constrained by the range of the (relatively few) 
monitoring sites and the monitor-based sites are 
primarily urban background sites which will suppress 
some variability.  

For the 35 samples with complete GPS 
route data, the percentage of time calculated to have 
been spent at home and work was highly correlated 
with percentage estimates based on activity logs 

(home: r = 0.96; work: r = 0.88). Six participants 
worked at home but coded their activities as “work”, 
which may account for the observed lower correlation 
for work activities. Similarly, for this same subset, 
mobility-adjusted LUR exposure estimates (using full 
GPS route data) were highly correlated with home-

only estimates (r = 0.83–0.92) and very highly 

correlated with the homework estimates (r = 0.94–
0.98) for all pollutants. 

It shows scatter plots and simple 
correlations between personal monitoring results and 
each of the following exposure estimates: estimates 
based on ambient monitors (monthly, with inverse 
distance weighting) and LUR (home-based estimates). 
Only NO demonstrated moderate correlations using 
all approaches to exposure estimation.  
 
Mobility effects 

When stratifying to subjects who spent 
more time at home (>65%), the LUR and monitor-
based estimates were more strongly correlated with 
the personal measurements than when using all 

samples (eg, for NO home LUR: r = 0.72, NO 

monitors: r = 0.59). The normalized root mean 
squared errors (NRMSE) show similar trends across 
the pollutants, the lowest error (7–10%) for NO 
indicating the trends are strongest for this pollutant. 
Higher NRMSEs when stratified by mobility are 
likely due to smaller sample sizes. As the data were 
log-transformed for analysis, we converted the 
residuals to the untransformed domain before 
calculating the RMSEs and normalized the results 
using the true measurement range thus giving the 
NRMSE (a percentage) for ease of interpretation. The 
mixed-effects regression results show the proportion 
of variability in personal measurements explained by 
the various exposure estimate “predictors”. If an 
exposure estimate explains some of the variability in 
the personal measurements, a reduction in the 

variance component is expected, compared to a model 
with no exposure predictors (baseline model).  

The within-subject variance reflects 
differences in exposures measured on the subject’s 
repeated samples, differences expected to be 
dominated by temporal changes in ambient pollution 
but also affected by variations in subjects’ mobility or 
the impact of indoor sources between sampling days. 
LUR exposure estimates using home and work 
locations were slightly more highly correlated with 

personal measurements for NO (r = 0.55) and NO2 

(r = 0.28) than using only home location. For the 
subset of data with full GPS routes, using route-based 
(GPS) LUR estimates showed only slight 
improvement over the homework estimates when 
compared to personal measurements (NO: homework 

r = 0.77, GPS r = 0.78; NO2: homework r = 0.57, 

GPS r = 0.66; absorbance: not significant; PM2.5: 

homework r = 0.45; GPS r = 0.47). The correlations 
were stronger for all pollutants when analyzing only 
the subjects with complete GPS data. However, we 
noted that on sampling sessions with complete GPS 
route data, subjects spent significantly more time at 
home than on the sessions with incomplete GPS route 
data. The between-subject variance we expect to be 
dominated by spatial differences in pollution.   

The within-subject variance component for 
NO showed little change with different exposure 
estimates. Since both estimates include the same 
temporal trends but different spatial characteristics, 
we conclude that this within-subject variance is 
dominated by temporal changes in ambient 
concentrations. For between-subject variance, more 
variance is explained for NO when work location is 
incorporated (from 4% to 20%), which supports the 
hypothesis that this variance is dominated by spatial 
effects. Overall, the variance components show 
similar patterns to the correlations but inform us about 
how the exposure estimate contributes to predicting 
the variability in personal data. An increase in within 
subject variance suggests that temporal effects are 
important, whereas an increase in between-subject 
effects suggests importance of spatial components. 
The LUR approaches are intended to detect intra-
urban spatial differences in exposure, so improving 
our estimates spatially (ie, by including work location) 
should increase the ability of the LUR model to 
predict between subject differences. In the case of NO 
and (weakly) NO2, we observed an increase in 
variance explained by the LUR model with a more 
spatially refined estimate. The results for absorbance 
and PM2.5 show that the weak correlation of the 
personal measurements with ambient monitoring data 
was dominated by within-subject effects likely caused 
by temporal shifts in ambient pollution. In addition, 
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for these pollutants the between-subject variance was 
small overall, likely from the low intra-urban spatial 
variability in concentrations. The fixed-effect (slope) 
values from the regression models in describe a 
predicted change in the personal sample (dependent) 
for a change in the exposure estimate (independent) 
adjusted to the interquartile range (IQR) of that 
independent variable.  
Discussion: 

We found that LUR models showed the 
strongest ability to predict personal measures for some 
pollutants (NO and NO2), while ambient monitor 
estimates were also predictive in some cases (NO, 
absorbance, PM2.5). Including mobility, based on work 
location, improved exposure models. This research is 
evaluating LUR models as predictors of personal 
exposure in any study population. The unique focus 
on personal exposures of pregnant women has also 
increased exposure data for this potentially vulnerable 
population. Focusing on LUR, we saw moderate 
correlations and an increasing slope based on the fixed 
effect estimates from regression models where we 
controlled for repeated measures among subjects.  

For NO2, only annual average LUR values 
were modestly associated with personal results. While 
both the NO and NO2 models were developed using 
the same number of samples and have similar R2 
values, only NO showed a strong relationship with 
personal measurements in this study. Considering 
only the annual LUR values, NO had much greater 
spatial variability (higher SD) than NO2. The surfaces 
also show less distinct spatial variation for NO2 than 
NO (less transitions in colour/shading) this result was 
expected, given that NO2 requires atmospheric 
transformation, whereas NO is a primary emission. 
We suspect that the NO2 signal from traffic is 
obscured by the effects of indoor sources and its lower 
spatial variability relative to NO. We saw little 
relationship between personal measurements and LUR 
estimates for particulate pollutants (absorbance, 
PM2.5), likely because of the low spatial variability of 
these pollutants in our area, the fewer sites (compared 
to NO/NO2) sampled when developing LUR models, 
and the resulting lower LUR model and validation R2 
values. In our study, we found small and non-
significant increases in arithmetic means for NO (47.2 
vs 53.3 ppb) and NO2 (18.2 vs 20.7 ppb) for subjects 

living within 75 m of a road with 15 000 cars/day 
compared to the rest of the study population. Our 
inability to detect a strong proximity effect may be 

due to the relatively few subjects (n = 15) living 
close to busy roads. In addition, distance to road was 
confounded by building type; high-rise or large multi-
unit buildings were on average 150 m closer to busy 

roads than smaller buildings (p = 0.003). Similarly, 

those living more than four floors above ground were 
also closer to busy roads and higher elevations around 
high-rise buildings can result in lower concentrations. 
Several studies have also demonstrated that 
differences in traffic intensity and/or living near a 
busy road can be correlated with personal 
measurements (NO, NO2 and/or absorbance). Van 
Roosbroeck et al found an increase of 77% 
(unadjusted for indoor sources) in home outdoor NO 
(but no significant increase for NO2) and 38% in 
personal absorbance for children living near a busy 

road (within 75 m of road with 10 000 cars/day) in a 
study of 40 children in the Netherlands compared to 
children living at urban background locations.  

The inability of ambient monitoring 
methods to capture spatial variability between subjects 
has been shown in other (primarily cross-sectional) 
analyses comparing ambient and personal 
measurements. For example, a traffic-based index 
explained more variance in the personal 
measurements than ambient monitored NO2 but less 
than ambient PM2.5.  Ambient monitoring stations 
were relatively poor predictors of spatial variability in 
personal exposures for all measured pollutants except 
NO, but good predictors of temporal variability. 
Mixed models analyses show that most of the variance 
explained by the ambient monitor-based estimates was 
due to temporal correlations between subjects’ 
personal measurements and outdoor concentrations 
(within-subject variance component).  

In the case of NO, we saw a small amount 
of between-subject (spatial) variance explained by 
ambient monitoring data. This is likely due to the 

dense network in the study region (n = 11 monitors) 
and the relatively high spatial variability of this 
pollutant. Monitor-based PM2.5 estimates explained no 
spatial variability between subjects; all variance 
explained was temporal or within-subject. This is 
unsurprising given both the lower within-city 
variability of ambient PM2.5 and the relatively few 

(n = 6) monitoring stations available for 
interpolation. We found low longitudinal correlations 
with ambient monitoring data when compared to other 
studies because we had few repeated samples (one to 
three per subject) and used the monthly average (to be 
consistent with the temporal component in the LUR 
model) of the ambient monitors.  

However, in sensitivity analyses, we 
recalculated ambient monitor concentrations averaged 
over the exact 48 h sampling session to clarify the 
impact of temporal trends on personal exposures. 
Moving to a more time-specific exposure window 
improved correlations between personal and ambient 
monitor-based concentrations for NO, PM2.5 and 
absorbance but not for it. A unique feature of this 
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study is the investigation of both ambient monitor-
based and LUR estimates in comparison to personal 
measurements. The fact that both estimates were 
predictive of personal NO is especially interesting 
given that these two estimates show very different 
spatial characteristics. Hoek et al described three 
contributions to long-term average exposures: 
regional (ie, differences at a 100 km scale), urban (10 
km scale) and local (1 km or less, modified by spatial 
proximity to traffic sources) and argued that 
contributions from each should be estimated 
separately and then combined to approximate long-
term exposure.  

The results from this study showing that 
both local (represented by LUR estimates) and urban 
level components (represented by ambient monitoring 
concentrations) are contributors to personal 
measurements in this population lend further weight 
to this argument. We note that measurements in this 
study were from a non-random (high educational 
attainment and non-smoking) sample of pregnant 
women. Sampling was weekday only and unevenly 
distributed across four seasons (but evenly distributed 
across heating and non-heating seasons). We 
acknowledge in particular that temporal scales are not 
consistent between the exposure measurements and 
estimates as a limitation of this analysis; however, it 
would be difficult to conduct month-long personal 
sampling to obtain the appropriate validation time 
scale for intermediate term exposure models. There 
were also differences in measurement methods 
(different samplers for ambient and personal 
sampling; personal measures of PM2.2 compared to 
monitoring network measures of PM2.5; variable 
badge performance for personal versus ambient 
sampling because of different face velocities) but we 
do not expect this to bias our results. The comparison 
between relatively few snapshot (48 h) measurements 
per person to exposure models designed for chronic 
exposure studies (LUR) suggests this is an imperfect 
evaluation of spatial differences in models designed 
for long-term exposure assessment. However, we 
found the GPS technologies did not work well for the 
most mobile segment of our population. In university 
and multiple regression analyses (results not shown), 
time spent in motorized and non-motorized transit was 
not associated with personal exposures. There have 
been calls for increased use of mobility and time-
activity patterns to improve exposure assessment. 
When we analyzed the subset of subjects spending 
more time at home on the sampling day, the (personal 
to home-only LUR) correlations were stronger with 
increasing time spent at home. This supports the use 
of LUR as a proxy for home exposure, especially for 
populations who spend a greater proportion of time at 
home. Including work locations as well as home 

locations improved our ability to estimate personal 
exposures.  Transit-time exposures can occur during 
peak pollution times on or near roadways, but in this 

study using GPS route data (n = 35) had little effect 
on exposure estimates compared to using homework 
locations.  

For short-term exposures ambient monitor-
based methods are likely adequate. When considering 
exposure assessment methods to be used in future air 
pollution epidemiological studies, understanding the 
relevant time frame of the health effect of interest is 
important. For example, in studies of chronic 
exposure a LUR model could be combined with a 
yearly trend based on ambient data. The combination 
of LUR and monthly or yearly time trends presented 
in this paper is relatively novel and was developed for 
a study of birth outcomes which required an 
intermediate-length exposure window.  
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