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Abstract: In 1859 Riemann defined the zeta function ( )s . From Gamma function he derived the zeta function 

with Gamma function ( )s . ( )s  and ( )s are the two different functions. It is false that ( )s  replaces 

( )s . After him later mathematicians put forward Riemann hypothesis(RH) which is false. The Jiang function 

( )nJ 
 can replace RH. 
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In 1859 Riemann defined the Riemann zeta function (RZF)[1] 

1

1

1
( ) (1 )s

sP
n

s P
n




 



   
 ,      （1） 

where , 1s ti i    ，  and t  are real, P ranges over all primes. RZF is the function of the 

complex variable s  in 0, 0t   ，which is absolutely convergent. 
In 1896 J. Hadamard and de la Vallee Poussin proved independently [2] 

(1 ) 0ti   .                   （2） 
In 1998 Jiang proved [3] 

( ) 0s  ,                       （3） 

where  0 1  . 
Riemann paper (1859) is false [1]  We define Gamma function [1, 2] 
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For 0  . On setting 
2t n x , we observe that 
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Hence, with some care on exchanging summation and integration, for 1  , 
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where ( )s  is called Riemann zeta function with gamma function rather than ( )s , 
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is the Jacobi theta function. The functional equation for ( )x  is 
1

12 ( ) ( ),x x x  
                  （8） 

and is valid for 0x  . 

Finally, using the functional equation of ( )x , we obtain 
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From (9) we obtain the functional equation 
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The function ( )s  satisfies the following 

1. ( )s  has no zero for 1  ; 

2. The only pole of ( )s  is at 1s  ; it has residue 1 and is simple; 

3. ( )s  has trivial zeros at 2, 4, ...s     but ( )s  has no zeros; 

4. The nontrivial zeros lie inside the region 0 1   and are symmetric about both the vertical line 

1/ 2  . 

The strip 0 1   is called the critical strip and the vertical line 1/ 2   is called the critical line. 

Conjecture (The Riemann Hypothesis). All nontrivial zeros of ( )s  lie on the critical line 1/ 2  , which is 
false. [3] 

( )s  and ( )s  are the two different functions. It is false that ( )s  replaces ( )s , Pati proved that is 

not all complex zeros of ( )s  lie on the critical line: 1/ 2   [4]. 
Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly 

related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang 

discovered Jiang function 
( )nJ 

 which can replace RH, Riemann zeta function and L-function in view of its 

proved feature: if 
( ) 0nJ  

 then the prime equation has infinitely many prime solutions; and if 
( ) 0nJ  

, 

then the prime equation has finitely many prime solutions. By using 
( )nJ 

 Jiang proves about 600 prime 
theorems including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic progressions in 
primes[7,8]. 

In the same way we have a general formula involving ( )s  
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where ( )F y  is arbitrary. 

From (11) we obtain many zeta functions ( )s  which are not directly related to the number theory. 
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly 

related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory Green 

and Tao prove that there exist infinitely many arithmetic progressions of length k  consisting only of primes which 
is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 using elliptic curves 
Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the complex hyperbolic functions 
and complex trigonometric functions. In 1991 without using any number theory Jiang proved FLT which is Fermat’s 
marvelous proof[7, 13]. 

Primes Represented by 1 2
n nP mP

[14] 

（1）Let 3n   and 2m  . We have 
3 3

3 1 22P P P 
. 

We have Jiang function 
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Where ( ) 2 1P P    if 
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32 1
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  (mod P ); ( ) 2P P     if 

1

32 1
P

  (mod P ); ( ) 1P   
otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
3 3
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It is the simplest theorem which is called the Heath-Brown problem [15]. 

（2）Let 0n P
 be an odd prime, 

2 m
 and 

0Pm b  . 
we have 

0 0
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where ( ) 2P P     if 0 0; ( ) ( 1) 2P m P P P P    
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Since 
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, there exist infinitely many primes 1P
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 such that 3P
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The Polynomial 
2

1 2( 1)nP P 
 Captures Its Primes [14] 
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（1）Let 4n  , We have 
4 2

3 1 2( 1)P P P  
, 

We have Jiang function 
2
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, 

Where ( )P P   if 1P   (mod 4); ( ) 4P P    if 1P  （mod 8）; ( ) 2P P     otherwise. 

Since 
( ) 0nJ  

, there exist infinitely many primes 1P
 and 2P

 such that 3P
 is a prime. 

We have the best asymptotic formula 
4 2
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It is the simplest theorem which is called Friedlander-Iwaniec problem [16]. 

（2）Let 4n m , We have 
4 2

3 1 2( 1)mP P P  
, 

where 1, 2,3,m   . 
We have Jiang function 

2
3

3

( ) ( 3 3 ( )) 0
iP P

J P P P 
 

    
, 

where ( ) 4P P m    if 
8 ( 1); ( ) 4m P P P  

 if 
8 ( 1)P

; ( )P P  if 
4 ( 1)P 

; 

( ) 2P P     otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is a prime. It is a 
generalization of Euler proof for the existence of infinitely many primes. 

We have the best asymptotic formula 
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（3）Let 2n b . We have 
2 2

3 1 2( 1)bP P P  
, 

where b  is an odd. 
We have Jiang function 
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We have the best asymptotic formula 
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（4）Let 0n P
, We have 

0 2
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where 0P
 is an odd. Prime. 
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we have Jiang function 
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where 0( ) 1P P  
 if 0 ( 1); ( ) 0P P P 

 otherwise. 

Since 3( ) 0J  
, there exist infinitely many primes 1P

 and 2P
 such that 3P

 is also a prime. 
We have the best asymptotic formula 
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The Jiang function 
( )nJ 

 is closely related to 

the prime distribution. Using 
( )nJ 

 we are able to 
tackle almost all prime problems in the prime 
distributions. 
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