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Abstract: At the general intra- stage some operational actions are possible, but there is an absence of relationships 
between properties. At the inter- stage, the identification of relations between different processes and objects, and 
transformations are starting to form, but they remain isolated. The trans- stage is defined in terms of the construction of 
a synthesis between them to form a coherent structure. For example, in the genetic decomposition that we are about to 
describe, different processes and objects for solving quadratic equations using square roots, completion of square, 
quadratic formula, factoring, and graphical interpretation are given. The stage of development (intra-, inter-, trans-) of 
the schema of quadratic equations is a measure of the degree of interconnectedness of these ideas in the students’ 
minds. The progression from action, to process, to object, and to having such constructions organized in schemas is a 
dialectical progression where there may be passages and returns from one type of construction to the other 
[Dagar, J. and Kumar, R. STUDY ON LINEAR ALGEBRIC AND ITS APPLICATION. N Y Sci J 
2022;15(7):8-11] ISSN 1554-0200 (print); ISSN 2375-723X (online) http://www.sciencepub.net/newyork. 2. 
doi:10.7537/marsnys150722.02. 
 
Keywords: linear algebra, Application, Mathematics  
 
 
Introduction 

The lobes of the alga Micrasterias (Lacalli 
and Harrison, 1987) and some microtubule arrays near 
the cell surfaces of ciliates such as Paramecium and 
Tetrahymena (Frankel, 1989) are further unicellular 
examples. Such phenomena show the ability of a 
living organism to establish a quantitative measure of 
spacing between adjacent repeats of similar structures 
and to use it repeatedly in the same direction. Here, 
“repeatedly” is not intended to imply a time sequence 
in which structures are formed one by one. In some 
cases, very numerous parts of the overall pattern are 
expressed precisely simultaneously, e.g., up to 80 
striations in the reproductive cap primordium of 
Acetabularia. In a large taxonomic group wherein one 
may expect the mechanism for formation of a 
particular kind of pattern to have been conserved, the 
pattern formation process can be essentially 
simultaneous in some species and time sequential in 
others (e.g., the onset of seg mentation in the class 
Insecta). In this research, we consider the problem of 
generating the parts of a pattern simultaneously. This 
approach does not lack generality.  

Earlier work (Lacalli et al., 1988) has shown 
that spatially inhomogeneous inputs (such as 
gradients) to the same kind of pattern-forming 
mechanism can lead to the parts of the pattern forming 
sequentially rather than simultaneously. Where a 

quantitative spacing mechanism exists, it seems 
intuitively reasonable to expect the mechanism to 
work impartially in all available directions. Therefore, 
when operating in a two-dimensional space, it should 
generate a spotted pattern. On this basis, one expects 
that mechanisms for the formation of stripes should 
contain some additional asymmetrizing element, such 
as a unidirectional gradient or a highly asymmetric 
shape of pattern-forming region, to impose unequal 
treatment of the spatial dimensions. The main purpose 
of this research is to show that such additional features 
are not essential.  

Some pattern-forming mechanisms have an 
intrinsic tendency to form stripes. This involves 
competition between emerging patterns which 
remains intuitively not obvious to us although we can 
establish it by computation and, in part, by analysis we 
describe here. Our conclusions are applicable to a 
wide range of pattern-forming mechanisms within the 
general category of kinetic mechanisms. These 
include reactiondiffusion models, first proposed by 
Turing (1952) and to date the most extensively 
developed kind of kinetic mechanism. The category 
also includes mechanochemical theories (Oster et al., 
1983) as well as mechanisms involving complex 
cell-cell interactions, for example between groups of 
incipient synapses in the assembly of the nervous 
system. These last are involved in the formation of 
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ocular dominance patterns in the primary visual cortex 
(also known as the striate cortex, area 17 or V1) of 
higher vertebrates (Fig. 1B). In an earlier publication 
(Lyons and Harrison, 1991) we showed that the 
observed patterns are similar to those which can be 
modelled using reaction-diffusion systems. The 
present analysis and discussion is applicable to these 
disparate mechanisms.  

The general form of these equations is y = mx 
+ b, where m and b are numbers and m cannot be zero. 
The way to identify these types of equations is to look 
for an x with no exponents. The x should be the only 
variable you see other than the y. You should not have 
any other exponents or square roots. The x is also 
always in the numerator, never in the denominator. 

These equations are called 'linear' because 
when you graph them, you end up with a single line. 
So, to help you remember that you should only see 
one x, think of linear as having one line, and link the 
one line to the one x in your head. For example, y = 
4x + 3 is a linear equation. Note that you see the x and 
no other x's. We can start building a table to keep all of 
these equations and their names organized. 

These questions in turn influence the sense 
learners make of the subject matter. In this article I 
focus on the outcomes and implications of research on 
(a) use of symbols in mathematics, (b) 
algebraic/trigonometric expressions, (c) solving 
equations, and (d) functions and calculus. In seeking 
to explain the complex phenomena of biological 
pattern formation, one must start with an a priori 
concept of where the complexity lies. Wortis et al. (in 
press) have drawn the contrast between complex 
machines and simple machines with complex 
behaviour. Molecular biologists seek the former: the 
complex machine as a multiplicity of genes and gene 
products, mutually governed by many regulative 
processes which are complex by their sheer number 
but each rather simple in character. Physical scientists 
tend to seek the latter: dynamic processes which can 
be described by a few simple terms in two or three 
equations, but which display complex behaviour.  

 
 

Numerical Linear Algebra 

The application of linear algebra in computers is often 
called numerical linear algebra. 
 
“numerical” linear algebra is really applied linear 
algebra.— Page ix, Numerical Linear Algebra, 1997. 

 
It is more than just the implementation of 

linear algebra operations in code libraries; it also 
includes the careful handling of the problems of 

applied mathematics, such as working with the limited 
floating point precision of digital computers. 

Computers are good at performing linear 
algebra calculations, and much of the dependence on 
Graphical Processing Units (GPUs) by modern 
machine learning methods such as deep learning is 
because of their ability to compute linear algebra 
operations fast. 

Efficient implementations of vector and matrix 
operations were originally implemented in the 
FORTRAN programming language in the 1970s and 
1980s and a lot of code, or code ported from those 
implementations, underlies much of the linear algebra 
performed using modern programming languages, 
such as Python. 

Three popular open source numerical linear 
algebra libraries that implement these functions are: 

 
 Linear Algebra Package, or LAPACK. 
 Basic Linear Algebra Subprograms, or 

BLAS (a standard for linear algebra 
libraries). 

 Automatically Tuned Linear Algebra 
Software, or ATLAS. 
 
Often, when you are calculating linear 

algebra operations directly or indirectly via 
higher-order algorithms, your code is very likely 
dipping down to use one of these, or similar linear 
algebra libraries. The name of one of more of these 
underlying libraries may be familiar to you if you have 
installed or compiled any of Python’s numerical 
libraries such as SciPy and NumPy. 
 
Linear Algebra and Statistics 
Linear algebra is a valuable tool in other branches of 
mathematics, especially statistics. 
 
Usually students studying statistics are expected to 
have seen at least one semester of linear algebra (or 
applied algebra) at the undergraduate level. 
 
— Page xv, Linear Algebra and Matrix Analysis for 
Statistics, 2014. 
 

The impact of linear algebra is important to 
consider, given the foundational relationship both 
fields have with the field of applied machine learning. 
Some clear fingerprints of linear algebra on statistics 
and statistical methods include: 
 

 Use of vector and matrix notation, especially 
with multivariate statistics. 

 Solutions to least squares and weighted least 
squares, such as for linear regression. 
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 Estimates of mean and variance of data 
matrices. 

 The covariance matrix that plays a key role in 
multinomial Gaussian distributions. 

 Principal component analysis for data 
reduction that draws many of these elements 
together. 

 
As you can see, modern statistics and data 

analysis, at least as far as the interests of a machine 
learning practitioner are concerned, depend on the 
understanding and tools of linear algebra. 

 
 

Applications of Linear Algebra 

As linear algebra is the mathematics of data, 
the tools of linear algebra are used in many domains. 

In his classical book on the topic titled 
“Introduction to Linear Algebra“, Gilbert Strang 
provides a chapter dedicated to the applications of 
linear algebra. In it, he demonstrates specific 
mathematical tools rooted in linear algebra.  

Here, some of the linear algebra applications are 
given as: 

 

 Ranking in Search Engines – One of the 
most important applications of linear algebra 
is in the creation of Google. The most 
complicated ranking algorithm is created 
with the help of linear algebra. 

 Signal Analysis – It is massively used in 
encoding, analyzing and manipulating the 
signals that can be either audio, video or 
images etc. 

 Linear Programming – Optimization is an 
important application of linear algebra which 
is widely used in the field of linear 
programming. 

 Error-Correcting Codes – It is used in 
coding theory. If encoded data is tampered 
with a little bit and with the help of linear 
algebra it should be recovered. One such 
important error-correcting code is called 
hamming code 

 Prediction – Predictions of some objects 
should be found using linear models which 
are developed using linear algebra. 

 Facial Recognition- An automated facial 
recognition technology that uses linear 
algebraic expression is called principal 
component analysis. 

 Graphics- An important part of graphics is 
projecting a 3-dimensional scene on a 

2-dimensional screen which is handled only 
by linear maps which are explained by linear 
algebra. 

Another interesting application of linear algebra is that 
it is the type of mathematics used by Albert Einstein in 
parts of his theory of relativity. Specifically tensors 
and tensor calculus. He also introduced a new type of 
linear algebra notation to physics called Einstein 
notation, or the Einstein summation convention. 
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