
Report and Opinion 2010;2(5)

http://www.sciencepub.net/report reportopinion@gmail.com

36

Software Cost Estimation through Entity Relationship Model

Arshid Ali 1, Salman Qadri 2, Syed Shah Muhammad 2, Jalil Abbas 3, Muhammad TariqPervaiz 2,

Sarfaraz Awan 2

1. Department of Computer Science, GCU Faisalabad, Pakistan

2. Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan
3. Department of Computer Science, University of Central Punjab, Lahore, Pakistan

sayyed_qadri@hotmai.com

Abstract: Software Cost Estimation is essential for efficient control and management of the whole
software development process. Today, Constructive Cost Model (COCOMO 11) is very popular for
estimating software cost. In Constructive Cost Model lines of code and function, points are used to
calculate the software size. Actually, this work represents the implementation stages but in early stages in
software development, it was not easy to estimate software cost. The entity relationship model (ER Model)
is very useful in requirement analysis for data concentrated systems. This paper highlights the use of Entity
Relationship Model for software cost estimation. Pathway Density is ushered in. By using the Pathway
Density and other factors, many regression models are built for estimating the software cost. So in this
paper, Entity Relationship Model is based on estimated cost of software. [Report and Opinion
2010;2(5):36-40]. (ISSN:1553-9873).

Keywords: ER Model, Cost Estimation, Entity

1. Introduction Software cost
estimation is critical process for software
development. It is important for efficient control
and management of the whole software
development process. A number of models, such
as Farr and Zagorski Model, Woverton Model
have been anticipated [1].Now days Constructive
Cost Model (COCOMO11) is popular cost
Estimation model. COCOMO 11 is divided into
three sub models:

• Applications Composition
• Early design strategy
• post-architecture strategy
They can be blended in various ways to

deal with the current and likely future software
practices market place [4] it accesses the
software effort based on the same model:

E = a (EDSI) b × EAF
Where E is an effort estimate, expressed

in person-months. EDSI refers to the number of
Estimated Delivered Source Instructions. The
parameters a and b are determined by the
application complexity mode. EAF (Effort
Adjustment Factor) is equal to one for the basic
sub-model, and equals the product of fifteen cost
factors for the intermediate and advanced sub-
models [3, 4].

COCOMO II uses Function Points or
Lines of Code for estimating the size of a
software system. Intuitively, lines of code cannot
be obtained or estimated at the early stage of the

software development. Function Point appears to
be requirements oriented. However, Function
Point counts the number of files updated and
reports printed, etc, which are actually the result
of design. As a result, it also confronts many
problems [2]. This research proposes the use of
the popular data model, ER model, for the
estimation of software cost. ER model is usually
constructed in the requirements analysis stage.
The organization of this paper is as follows:
section 2 shows the background of ER model
and the factors we want to use in our research.
Section 3 proposes a new term, Path Complexity
and how to count the value of Path Complexity.
Section 4 illustrates the new estimating model
for software cost that is based on the multiple
linear regression technique and gives the
conclusion.

2. Background
The ER Diagram was brought to

limelight by Professor Chen in 1976 [8] and
adapted in the Information Engineering
approach. The ER Diagram originally used in the
database field and now is being used in Object-
Oriented Analysis. An ER model is constructed
to show the ideal organization of data,
independent of the physical organization of the
data and where and how data are used. Currently,
data-intensive systems constitute a main domain
in software. These systems maintain a large

Report and Opinion 2010;2(5)

http://www.sciencepub.net/report reportopinion@gmail.com

37

amount of structured data in a database built
through a database management system
(DBMS). Although UML (Unified Modeling
Language) has gained its popularity as a standard
software modeling methodology, ER model is
still used to model the data conceptually in the
requirement capturing and analysis stages.
Moreover, most of the design and development
activities are based on the ER model. Therefore,
ER model seems to have the most readily
available information from requirements
capturing and analysis stages. After studying the
ER Diagram, we find that ER diagram is a non-
directional graph[6]. It is easy to sketch an ER
Diagram onto a directional graph by considering
the entity as the vertex in a graph, and
considering the relationship as the edge in a
graph. From our observation, software effort is
effected by the number of entities, relationships
and attributes. In addition, it can be seen that
more complex structure of ER Diagram is, mere
effort that will be spent on the software system.
Thus, we want to find out some relationships
with software effort. In this research, we use the
following metrics in the estimating model [7, 8]:

NOE: the number of entities in an ER
Diagram.

NOR: the number of relationships in an ER

Diagram.

NOA: the number of attributes in an ER

Diagram.

NOP: the number of Path Complexity of an ER

Diagram.

3. Complexity Metrics:
 The ER Diagram shows the whole structure of
the Database, where one entity can access the
other entities through the relationship and get the
related data. More ways one entity can access the
other entities, more things we should consider
about it. This can reflect the whole system
complexity. Thus, we want to quantify the data
that can be used in the software system. It is a
problem of complexity metrics of the software
product. Path Complexity is proposed as a
complexity metrics to measure software effort
[5]. In order to quantify the whole system data,
we should first know through how many paths
one entity could influence the other entities, and
the length of each path. Because an ER Diagram
can be converted into a graph, we can calculate
these data by using graph theory path.

Definition 1:

 Path Complexity of a vertex is:

 Pi = ∑ j ≠ i 1/n ∑ j ≠ i lij

 Where

The ith vertex is not the same to the jth vertex;

Pi is the Path Complexity of the ith vertex;

n is the number of the paths through which ith

vertex can access the jth vertex;

l is the length of each path through which ith

vertex can access the jth vertex.

Definition 2

Path Complexity of an ER Diagram is:

 P = ∑ v€G PV

Where

P is the Path Complexity of the whole ER

Diagram;

Pv is the Path Complexity of the vth vertex in the
ER Diagram. Algorithm Search Path (G,s) given
by following is used to count how many paths

we can get from a fixed vertex in a connected
graph to the other vertices in the same graph, and
the length of each. We assume that the input
graph G= (V,E) is a connected graph and it can
be represented using adjacency matrix. Each
vertex u in the connected graph has a timestamp
time[u], it records how many edges it has in one
path from s (the beginning vertex) to u (the
destination vertex). We use P[u] to record a set
of vertices that are ahead of the vertex u through
a path. N(G) is a vertex set to present the vertices
left in a connected graph
Search Path
1 for each component G
2 while () (G N)
3 do select s N (G) as the Beginning Vertex
4 for each t } {) (s G N
5 set t = EndVertex
6 for each vertex u) (G V
7 time[u] = 0
8 P[u] NIL
9) (s Search)
(s Search

1 for each vertex u Adj[s]

2 P[u] P[s] + s

3 time[u] time[s] +1

4 if u = t

Report and Opinion 2010;2(5)

http://www.sciencepub.net/report reportopinion@gmail.com

38

5 print time[u]

6 else if u P[u]

7 break

8 else) (s Search)

3.1 Proposed Model
We proposed a model to estimate

software effort (shown in Figure 1). It contains
an Adjacency Matrix Generator, A Path
Complexity Generator, a Metric Generating Tool
and a Statistical Module. Among the existing
techniques used in software estimation,
regression-based techniques are the most popular
ways of building models. After comparing four
techniques (regression, neural networks, Case-
Based Reasoning, Rule induction)[3]. shows a
result that regression and Case-Based Reasoning
perform better than the other techniques [4] also
compares the methods used in regression, neural
networks and genetic programming. We winds
up that although neural networks and genetic

programming can improve the estimations of
regression, the results are not very impressive.
Thus in its multiple linear regression model was
adopted. All system data used in this project are
actual industry data. Several software
development companies in Singapore and
Pakistan were considered, and provided twelve
software systems’ data. These projects cover
multiple application domains including freight
management, quotation, billing or order
processing. We got data of NOE, NOR, NOA
and NOP from those software systems. And we
use Man-Day to measure software cost. (Shown
in Figure1). To measure the strength of the
relationships between the

Figure 1: Complexity path definition

Factors and software cost, we use the
coefficient of correlation r. The closer r is to 1,
the stronger the positive linear relationship is.the
values of r to NOE, NOR, NOA and NOP are
respectively 0.9395, 0.9729, 0.9474 and 0.8842.
According to these values, all these factors have
the strong linear relationships with software cost.
We got the multiple regression equation are Y =
23.01 + 3.80 NOV + 1.03NOR – 0.01 NOA –
0.49 NOP to check the accuracy of this multiple
linear regression model, we use the multiple
coefficient of determination R2 and the F-
statistic. R2 can evaluate the strength of the
multiple regression relationship. In this project,
the value of R2 is 0.8766. It shows this model
has a high regression relationship. In order to use
the F-statistic, the hypotheses were set as below,
and

alpha =0.05:

H0: all the regression coefficients are
zero

H1: not all the regression coefficients
are zero

After F-statistic, it gives a p-value of
0.0171; this value is much smaller than, so H0
was rejected. It indicates that it is highly unlikely
that all of the regression coefficients are zero.
Therefore, we can jump to a conclusion that this
multiple regression model is reasonable. The
comparison of estimating cost and actual cost is
shown in figure 2.Here, the authors are grateful
to the support and help of AKEMCO
Technology Pvt Ltd, IPACS e-Solutions(S) Pvt
Ltd and Singapore Computer Systems Ltd. to
provide the system data. However, only twelve
projects are not enough, more system data will
be collected in the future work.

Adjacency Matrix
Generator

Path Complexity
Generator

Metric Generating
Tools

Statistical
Module

Statistical
Module

Report and Opinion 2010;2(5)

http://www.sciencepub.net/report reportopinion@gmail.com

39

NOE

NOR

NOA

ODP

Predictive

Cost

Actual

Cost

1 6 5 112 9.33 45 48

2 6 5 75 8.33 46 38

3 21 22 512 63.17 90 81

4 3 2 86 2.67 34 29

5 3 2 86 2.67 34 34

6 25 33 656 118.03 88 92

7 4 3 66 5.00 43 33

8 8 7 212 19.00 49 70

9 14 14 126 31.43 74 80

10 16 17 441 33.93 80 85

11 64 69 1524 204.15 324 322

12 38 38 779 84.36 225 235

Figure 2 Predictive Cost and Actual Cost

Figure 3. Comparison of Predictive and Actual

Software Cost

This work is exploring a software cost

estimation model, especially for software
development industries [10] and it is best software
cost estimation model for large-scale development
and in house development. It is very plain model for
software costing rather than the difficult techniques
like COCOMO MODEL, which is not efficient in the
environment of Pakistan. We can estimate a cost of a
project from scratch by using this simple model. our
aim to provide a model and a user-friendly tool to do
those estimations in order to assist managers
assessing the worthiness of the investment they are
going to undertake. We believe that massively
collected software project data present an interesting
aspect of cost modeling, providing a unique
opportunity to design helpful tools for software
managers that wish to benchmark their projects and
are interested in developing knowledge concerning
software measurement and estimation [9].

4. Future Work:
This research focuses on the cost estimation

technique and finds the best way cost estimation
through ER Diagram for large-scale project and small
projects. For future Extension, this area requires
the improvement by using agile software cost
methodology implementation technique to finds out
the software cost estimation for better and more
efficient way.

Comparison of predictive and actual cost

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12

Number of projects

C
o

s
t

No of Projects

Predicted Cost

Actual Cost

Report and Opinion 2010;2(5)

http://www.sciencepub.net/report reportopinion@gmail.com

40

Acknowledgements:
Authors are grateful to the Department of

Computer Science, Virtual University of Pakistan, for
support to carry out this work.

Corresponding Author:
Syed Shah Muhammad
Department of Computer Science,
Virtual University of Paksitan,
Lahore, Pakistan.
E-mail: sayyed_qadri@hotmail.com

5. References:

1. Boehm B, Software Cost Estimation with
COCOMO II. Prentice Hall PTR, 2000, pp 436

1. Stirilng G, Wilsey B. Emprical relationships

between species richness, eveness and
proporational diversity. Am Nat
2001;158(3):286-99.

2. Chen P. P, The Entity-Relationship model –
towards a Unified View of Data. ACM Trans,
Database Syst, 1(1), Mar,1976: pp. 9-36.
3. Dolado J, Limits to the Methods in Software
Cost Estimation, SCASE 99, Soft Computing
Applied to Software Engineering, Limerick
University Press. 1999 pp 63-68,
4. Londeix B, Cost Estimation for Software
Development, STC Telecommunications,UK,
Addison-Wesley Publishing Company. 1987, pp386
5. Magne Jorgeson & Martin January, 2007
ShepperdIEEE Transactions on Software
Engineering, , 1987 Volume 33, Issue No. 1
6. Mair C, “An Investigation of Machine
Learning Based Prediction Systems”, pp102
7. Nikolaos Mittas & Lefteris Angelis May,
Comparing cost prediction models by resampling
techniques, Journal of Systems and Software, 2008
Volume 81 , Issue 5 PP: 616-632,ISSN:0164-1212
8. Ruhe G, Attribute Selection and Weighting
Using Rough Sets for Effort Estimation by
Analogy—Initial Results, Software Engineering
Decision Support Laboratory at the University of
Calgary, Canada, 2007, PP:46-102.
9. Stefan Gueorguiev, Mark Harman and
Giuliano Antonio Software project planning for
robustness and completion time in the presence of
uncertainty using multi objective search based
software engineering, Montreal, Québec, Canada
.SESSION: Track 14: search based software
engineering Pages: 1673-1680, 2009 ISBN:978-1-
60558-325-9
10. Zhong, N, and Dong, J. Using Rough Sets
with Heuristics for Feature Selection, Journal of

Intelligent Information Systems 2001 16 PP:199-
214.73.

4/4/2010

