Antimicrobial potentials of some spices on beef sold in Gwagwalada market, FCT, Abuja

Agarry Olubunmi Olaitan*, Ugoh Sylvanus Chukwudi and Abeku Margaret

Department of Biological Sciences, University of Abuja, Nigeria
Corresponding author: oluagarry@yahoo.com

ABSTRACT: Studies on the antimicrobial activities of some spices on beef sold in Gwagwalada market, F.C.T, Abuja were carried out. The spices were chopped to sizes and were mixed with the beef sample. The bacterial load count of the beef sample before treatment is 1.9×10^7 and after treatment were 1.0×10^3, 1.5×10^3 and 1.6×10^3 for garlic, thyme and bayleaf respectively. The fungal spore count of beef sample before treatment is 1.0×10^2 and 0.5×10^2, 0.1×10^2, 0.6×10^2 for the thyme, bayleaf and garlic respectively. The fungal spore count for the beef sample after treatment with the spices combined is 0.1×10^1. The microbial isolates of beef sample include: Staphylococcus aureus, Pseudomonas spp, Proteus spp and Bacillus spp for bacterial isolates and fungal isolates were Aspergillus niger, Mucor spp, Rhizopus spp and Aspergillus flavus the combined effect of the three spices inhibited the growth of S. aureus, Bacillus spp, Proteus spp, A. flavus and Mucor spp.

Keywords: Antimicrobial agents, spices, meat

INTRODUCTION

Spices are strongly flavoured parts of plants usually rich in essential oils used in fresh or dry forms (Iwu, 1993). Some spices are reported to have bactericidal or bacteriostatic activities (Onwuliri and Wonang, 2005). The inhibitory effects of spices are mostly due to the volatile oils present in their composition (Arora-Daljit and Kaur, 1997), factors that determine the antimicrobial activity of spices are the concentration and composition of the spices, the amount of spices used, type of microorganisms, composition of the food, pH value, temperature of the environment and proteins, lipids, salts and phenolic substances present in the food (Sagdic, 2003).

Bayleaf is the dried leaf of cinnamon jamale. It is a medium sized tree which grows in many parts of India, more likely in Khasi hills. The leaves are commonly used as a spice for flavouring various kinds of curries, some sweet preparation of vegetables, fruits and in food preservation. Bayleaf is used as medicines (Chandarana et al., 2005).

Thyme (thyme vulgars) belongs to the family lamiaceae. The oil of thyme is important and is obtained by distillation of the fresh leaves and flowering tops of thyme vulgaris. Its chief constituents are from 20-25% of phenols, thymol and carvacol. They are valuable for medicinal purposes (Juven et al., 1994). Thyme has a partial or complete anti-flatulence, anti-phlegmasia effect in addition to regulating digestion. Thyme is enemy of poison. It is antispasms and pain. It eases blood flow and invokes sexual activities and promotes consciousness and intelligence (Muhammad and Ali, 2006).

Garlic (Allium sativum) is a perennial plant of the family of Alliaceae. Garlic is widely used in many forms of cooking for its strong flavour when crushed or finely chopped. It yields allicin - a powerful antibiotic (Prescott et al., 2008), it also contains Allin, Ajoene, enzymes, vitamin B, minerals and flavonoids. Garlic consists of not less than 200 components, these include antioxidants, the volatile oils, (allin, allicin and ajoene) consisting of sulfur enzymes (allinase, peroxidase and miracynase), carbohydrates (sucrose, glucose), mineral (germanium, selenium, Zinc), amino acids like cysteine, glutamine isoleucine and methionine, bi-flavonoids like quercetin and cyanidin and allstatin I and II,C,E and A vitamins and niacin, B1, B2 vitamins and beta carotene (Gulsen and Erol, 2010).

Meat is a highly perishable food items, the high perishability is due to high temperature (Buchanan, 1986). Meat is frequently involved in food- borne illnesses because they provide ideal media for the growth of disease – causing microorganisms (Pearson and Dutson, 1986). Ouattara et al., 1997 stated that essential oils from plant products that contain carvacrol and eugenol have been shown to exhibit the strongest antimicrobial activity (Prescott et al., 2008). This study therefore aims at isolation and identification of microorganisms associated with meat spoilage and to evaluate the potency and the inhibitory effects of spices as preservative agents.

MATERIALS AND METHODS
Collection of samples
The spices used (garlic, thyme and bayleaf) and beef were purchased from Gwagwalada main market, F.C.T Abuja in sterile containers and conveyed to the laboratory for microbial analysis.

Determination of antimicrobial activity

The spices were not ground or blended mechanically according to the standard method of the American Spices Trade Association (ASTA, 1997) to avoid contamination of samples. The beef sample was divided into two halves, one half was analyzed for associated microflora and the other half was analyzed combined with the spices. About 0.2g of each spice was mixed with 1.8g of beef in sterile beakers while three spices (0.2g each) were combined with the beef (1.8g) in another beaker sealed and left for 15 minutes. The resultant stock was thereafter pipetted and used for the microbial analyses. All preparations were carried out under aseptic condition. The plates were incubated for 24-48 hours for bacterial isolates and 72 hours for fungal isolates. The colonies were counted with the aid of colony counter. MacConkey and Nutrient agar were used for bacterial isolates and Sabrauds Dextrose Agar (SDA) for the fungal isolates. The number of isolates were expressed as colony forming unit per ml. The morphological, microscopical and biochemical characterization of isolates were determined.

RESULTS AND DISCUSSIONS

The bacterial load count (cfu/g) of beef sample before treatment is 1.9x10^7 and after treatment were 1.0x10^3, 1.5x10^3, 1.6x10^3 for garlic, thyme and bayleaf respectively (table 1).

<table>
<thead>
<tr>
<th></th>
<th>Garlic with beef</th>
<th>Thyme with beef</th>
<th>Bayleaf with beef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before treatment</td>
<td>1.9x10^7</td>
<td>1.9x10^7</td>
<td>1.9x10^7</td>
</tr>
<tr>
<td>After treatment</td>
<td>1.0x10^3</td>
<td>1.5x10^3</td>
<td>1.6x10^3</td>
</tr>
</tbody>
</table>

The fungal spore count of beef sample before treatment was 1.0x10^7 and after treatment were 0.5x10^2, 0.1x10^2 and 0.6x10^2 for thyme, bayleaf and garlic respectively (table 2). The fungal spore count for the beef sample after treatment with the spices combined was 0.1x10^1.

The microbial isolates of beef sample include:

- *Staphylococcus aureus*, *Pseudomonas* spp, *Proteus* spp, and *Bacillus* spp for bacterial isolates and the fungal isolate were *Aspergillus niger*, *Mucor* spp, *Rhizopus* spp and *Aspergillus flavus*.

Garlic inhibited the growth of *Bacillus* spp, *A. flavus*, *S. aureus*, *proteus* spp and *Rhizopus* spp in the beef sample (table 3). This was not in agreement with the report of Yin and Tsao, 1999 who reported the non availability of antifungal effect of garlic extracts on *A. niger* and *A. flavus*, but in this study garlic inhibited *A. flavus* but not *A. niger*.

The combined effect of the three spices inhibited the growth of *S. aureus*, *Bacillus* spp, *Proteus* spp, *A. flavus* and *Mucor* spp.

This result was in agreement with the work of Muhammad and Ali, (2006) who reported the antimicrobial activity of thyme on *S. aureus*, *Salmonella* spp, *Escherichia coli*, *Shigella sp* and *Helicobacter pylori* that has been implicated to course gastric ulcer. Bayleaf inhibited the growth of *Bacillus* spp, *Pseudomonas* spp, *A. niger*, *A. flavus* and *Rhizopus* spp (table 3).

The synergic effect of the three spices inhibited the growth of *S. aureus*, *Bacillus* spp, *Proteus* spp, *A. flavus* and *Mucor* spp.

The combined effect of the spices was not as effective as would have been expected. This could be as a result of the interactions of the biochemical compounds of these spices.

Beef contamination begins immediately after the slaughter of the animal. This is due to poor hygienic procedure adopted in slaughter and cutting of beef when sold which serves as a medium for transfer of microbes. *Bacillus* spp as isolated in this study are capable of producing enterotoxins in food during their growth and multiplication, thus they cause abdominal cramps, nausea, vomiting and diarrhea. *S. aureus* is a well known pathogen and has been incriminated in many food poisoning cases (Prescott *et al.*, 2008). Garlic inhibited the growth of *Bacillus* spp, *A. flavus*, *Proteus* spp and *Rhizopus* spp and this is in agreement with the work of Onwuliri and Wonang, 2005, An *et al.*, 2009, Ayaz and Alpsy, 2007, although they reported on *A. niger* instead of *A. flavus*. Zaika, 1988 reported the antimicrobial activity of thyme and bayleaf and Onwuliri and Wonang, 2005 on garlic which are in agreement with this study.

\[97\]
From this study it being reported for the first time that *A. flavus* was isolated from meat sample. This calls for caution in the handling of meat for human consumption because *A. flavus* has been incriminated as a producer of mycotoxins which have been reported to be carcinogenic.

<table>
<thead>
<tr>
<th>Table 3: Inhibition of Microorganisms by Spices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Beef treated with garlic</td>
</tr>
<tr>
<td>Beef treated Bayleaf</td>
</tr>
<tr>
<td>Beef treated with the three spices combined</td>
</tr>
</tbody>
</table>

REFERENCES

7/25/2010