Information and communication technologies (ICT) in rural education

¹ Hamidreza Hossein, ² Bibisadat Miresmaeili and ³ Alireza Talkhabi

^{1, 2,3} Department of Communication, Damavand Branch, Islamic Azad University, Damavand, Iran Corresponding author: <u>hossein@damavandiau.ac.ir</u>

Abstract: Information and communication technologies (ICT), including radio and television and the newer digital technologies like computers and the Internet as potentially are introduced powerful tools and activators of educational reform and changes. different ICT, when properly applied can be developed to help access to education and the relationship between training and workshops to strengthen the increasingly digital, the quality of education also helped to create teaching and learning in an active process connected to real life high take. However, the experience of being raised by ICT in the classroom and other educational sites around the world during the last few decades proves that is not automatic fully realize the potential benefits of ICT training. With the help of state and local funding, information technology has been purchased for schools ever since the 1980s. The state has also found many ways to support teacher training in the use of IT, and it has also allocated funds for the production of IT programs. Instruction in the use of IT has also played an important role in teacher training organized by local school authorities. It is against this background that the need arose to find out how far we have progressed in the application of ICT in education and what impacts these significant economic investments have had. It is also time to start a value-oriented discussion of how strongly the future of the Iran society-and with it, of education and training- will be linked to the vision of an information society brimming over with technology.

[Hamidreza Hossein, Bibisadat Miresmaeili and Alireza Talkhabi. Information and communication technologies (ICT) in rural education. Report and Opinion 2011;3(7):9-12]. (ISSN: 1553-9873). http://www.sciencepub.net.

Keywords: information and communication technologies (ICT), rural, education

Introduction:

In the rural context, development involves use of physical, financial and human resources for economic growth and social development of the rural economies (Burkey, 2000). The term rural development also represents improvement in quality of life of rural people in villages. As per Chambers (1983) "Rural Development is a strategy to enable a specific group of people, poor rural women and men, to gain for themselves and their children more of what they want and need." Singh (1999) defines Rural Development as "A process leading to sustainable improvement in the quality of life of rural people, especially the poor". The fact of the matter is that three quarters of the world's poor, about 900 million people are in rural areas, and the Millennium poverty target set by Millennium Development Goals (MDG), cannot be met unless the world addresses rural poverty. "Sustainable Rural Development can make a powerful contribution to four critical goals of: Poverty Reduction, Wider shared growth, Household, national, and global food security and Sustainable natural resource management" (World Bank, 1997). Hence worldwide there is a growing emphasis on development of rural economy of the countries. Any improvement, in the social or economic status of rural areas would not just directly benefit rural poor but would also bring down the migration-pressures on

cities and contribute by positive ripple effect in global stride towards development.

Institutions and experts accept Governance as a reflexive process, wherein policies, institutions, outcomes and analysis interact, to maximize the process of participatory development (UNDP, 1997; Ludden, 2005; Mehta, 2006).

The importance of communication in the development process has been acknowledged for many years by the development community. FAO has spent at least thirty years pioneering and promoting - both in thinking and practice - the centrality of communication in development. The most essential ingredient of good communication – putting people at the centre of the communication process - has similarly been understood and documented for many years.

Information Technology, more precisely the Information and Communication Technology (ICT), has emerged world over as a technology of the new millennium. By augmenting the process of information exchange and reducing the transaction costs, this ubiquitous technology is instrumental in increasing productivity, efficiency, competitiveness and growth in all spheres of human activity. The potential benefits of, however, can be harnessed only if the technology diffuses across the different sectors of the society. Unfortunately, we are living in a world of 'digital divide' wherein half of the world population have never made a telephone call. The digital divide is not only an international problem, but for most developing nations including is also a national phenomenon. Nonetheless, it has been argued that in an era of globalization, the ability to harness this technology for the 'rural' improves the capability of the developing country.

The concept of development of the rural, today, is not just project initiatives and governance; it is much more beyond that. This paper uncovers a whole plethora of ICT emergence as a technology of the new millennium. Against the backdrop of the ongoing ICT boom, this paper makes an attempt towards studying its applications and usage planning process and policy making for the rural communities focusing on how it helps in aligning the key factors and reduce the problems of alienation, fragmentation and dislocation of knowledge. Policy makers and service providers have increasingly come to view information and communication technologies (ICT), and particularly the Internet, as an important tool in providing disadvantaged groups and areas with access to information, services and markets that would otherwise be inaccessible. The concept of development of the rural, today, is not just project initiatives and governance; it is much more beyond that.

Information technology (IT) has connected the world globally and is now changing our lifestyle and social consciousness dynamically. Of late, it has emerged as a best tool for information sharing and mutual communication. None of the walks of life have been left untouched by the IT sector be it grain threshing or global business. Agriculture has also been greatly influenced by IT in the present era though the share of IT in agriculture is only 1.3%.

Information Technology Components

Induction of IT as a strategic tool for agricultural development and welfare of rural requires that the necessary IT infrastructure is in place. The rapid changes and downward trend in prices in various components of IT makes it feasible to target at a large scale IT penetration into rural. Some of the broad factors to be noted with respect to various components of IT are listed below:

1. Input devices:

Radical improvements are witnessed with respect to the means of communication by human beings with computers such as key boards, mouse devices, scanners. The advent of touch screen monitors that allow users to give input to computers by touching on the appropriate location of the monitor has made it possible to develop user-friendly interface for farmers which is easy, intuitive, circumvents language barrier and at the same time provides a relaxed environment to the users. The present day digital cameras make it possible to capture and store good quality graphics and large video clips. The small size and low weight of these digital cameras, which are increasingly becoming affordable, open up the possibilities of providing computer based demonstration clips to educate the farmers.

2. Output devices :

Monitor screens, printers & plotters, data projectors support high resolution and good quality output. The quality of these output devices have the potential of generating renewed interest in the farmers in using IT based services. The light weight portable data projectors can be easily carried by the agricultural extension personnel for serving larger audience. Similarly, speakers can also be attached to the computers to incorporate voice based trainings for farmers.

3. Processors:

The processing speeds of computers have gone up. At present, Intel P-IV based processors @ 1.5 Ghz are available in the PC range which makes it possible to undertake substantial processing of data at the client side.

4. Storage Devices :

40GB and even higher hard disk drives have become common in PC range of computers. This makes it possible to store substantial information at the local level which facilitates faster access. Similarly, high capacity floppy disk drives, CDs make it possible to transfer large volumes of data to locations which can not be connected to networks immediately. These storage devices are also used for backup of crucial data. As a precaution, many corporates store their backups at locations away from the place of work.

5. Software :

Various operating systems are available which act as interface between the user and the machine. The graphic user interface (GUI) has become an accepted prerequisite for end users. Microsoft's 'Windows' continues to be a favourite. Application softwares which can support complex user requirements are available. Of the shelf solutions office automation packages. for groupware applications. complex database solutions. communication products, solutions based on remote sensing & geographical information systems are available. In addition, solutions based on some or all of these are also readily available. The present downward trend in the IT industry provides an

opportunity get customised application for any specific task developed at an affordable price. Rapid Application Development and Deployment (RADD) is a popular model for quick development and deployment of applications. Development environment itself is simplified with tools that quicken the pace of software specialists. Project management and monitoring software are available that facilitate efficient execution of large and complex applications that are required for rural

6. Networking devices :

The capacity of modems, used to convert the data from digital to analog and vice versa, which are popularly employed to use telephone lines have increased. Internal modems are available integrated into the computer so that they are not exposed to outside environment. The capacities of other networking devices such as routers have also gone up which makes it possible to create large networks with smooth data transmission.

7. Transmission Media:

The media through which the data transfer takes place has also undergone revolutionary change. Telephone lines are still the popular source although the reliability and low bandwidth are still major issues. High capacity cables, optical fibre, radio, wireless local loops, satellite transmission and various solutions based on a combination of these are already being used in many parts of the country.

8. Other accessesories :

Uninterrupted Power Supply (UPS) devices are crucial to ensure the

longetivity of the IT equipment as well as provide backup mechanisms. The potential of solar

power packs to provide a feasible solution to shortage of power in the rural areas needs to be exploited.

Conclusion

Many of the ICT training programs based on the charitable agencies aid have been unable to have high durability. Because the government has failed in its financial assistance in this situation none of the local communities to provide resources do not needed to continue these programs. Two strategies in here "to support government and local communities to move" are important. Since the 21st century, is century of education support about youth in Asia, to find sustainable ways to bridge the digital age in Asian countries is a real priority. And work through partnership that local leaders and guides are experts it can be lasting forever. Several recommendations that emerged from the discussions emphasized on the need to think of ICT in education beyond computer aided learning and investigate the potential other technologies like community radio and other medium. These mediums could not only be cost effective but also has a greater outreach potential. It was also pointed out that low cost software solutions for e-learning that have scopes for innovation, should be incorporated in large scale projects. With an indication to open source solutions, the sessions recommended that such solutions should become a part of the overall policy for implementating technology supported education interventions.

Sustainability and scalability of project are also issues that needed serious considerations. While moving beyond the pilot and experimental phase, projects especially those that needs a considerable financial contribution should have a viable sustainability model for up scaling. It was also recommended that implementers needs to be cautious when selecting areas for implementing ICT in education projects.

Projects should also not lose priority of the education objectives. In some cases ensuring school accountability system and teachers attendance may be more important that investing time and resources in ICT integration in schools. One fact that emerged in the sessions was that ICTs effectively computers, initiated in government department and schools were being used as decision support in education. Essentially, clear criteria, norms and standards needs to be developed for the information that was being used for decision-making.

Corresponding Author:

Hamidreza Hossein,

Department of Communication, Damavand Branch, Islamic Azad University, Damavand, Iran E-mail: hossein@damavandiau.ac.ir

References

- 1. Becker, H.J. The impact of computer use on children's learning: What research has shown and what it has not. Paper presented at the Annual Meeting of the American Educational Research Association, 2000.
- Becker, H.J. When powerful tools meet conventional beliefs and institutional constraints: National survey on computer use by American teachers. Baltimore, M.D: Center for Social Organization of Schools. John Hopkins University, 1990.
- 3. Cecchini, Simon & Talat Shah .Information & Communications Technology as a Tool

for Empowerment. World Bank Empowerment Sourcebook, 2002.

- Collis, B.A. The ITEC Project: Information technology in education and children. Paris: UNESCO, Division of Higher Education, 2002.
- Collis, B.A., Knezek, G.A., K-W. Lai, K.T. Miyashita, W.J. Pelgrum, T. Plomp & T. Sakamoto. Children and computers in School. Machwah, NJ: Lawrence Erlbaum, 2004.
- 6. Dadgaran, M. Principles of mass communication. Tehran, Firoozeh Publications, 2002.
- 7. FAO. Improving access to Agricultural Information. 1stConsultation on Agricultural Information Management, 2000.
- 8. Falk, M. and Wolfmayr, Y. "Services and materials outsourcing to low-wage countries and employment: Empirical evidence from EU countries," Structural Change and Economic Dynamics, vol. 19, pp. 38–52, 2008.
- Hakkarainen, K. Cognitive value of peer interaction in computer-supported collaborative learning. Paper presented at the American Educational Research Association (AERA) Annual Meeting, San Diego, April 13–17, 2000.
- 10. Harris, R. Success Stories of Rural ICTs in a Developing Economy. Report of the PANAsia Telecentre Learning and Evaluation Group's Mission to India. MSSRF, Chennai, 1999.
- 11. Mohseni, M. Sociology of Information Society. Tehran. Didar Publications, 2003.
- 12. Saadan, Kamarudin. Conceptual Framework for the Development of Knowledge Management System in Agricultural Research and Development. Asia Pacific Advanced Network Conference, Malaysia, 2001.
- Swaminathan, M. S. Research Foundation (MSSRF). Available at <u>http://www.mssrf.org/</u>. 12. Ninth Five Year Plan: Vol II. Planning Commission, Government of India, New Delhi, 2002.
- 14. Virgo, P. "Oil and Vinegar: Why We Must Spice up ICT Education," Computerweekly.com, posted July, 2008.
- 15. World Bank, World Development Report: Knowledge for Development 1998-99 Summary, the World Bank, 1999.

7/6/2011